首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 286 毫秒
1.
道路环境PGEs多介质累积规律   总被引:3,自引:1,他引:2  
刘玉燕  刘敏  程书波 《环境科学》2009,30(10):3050-3054
为了研究道路环境PGEs多介质累积规律,选择上海市5条道路,同步采集灰尘、土壤及植物样品,对其中铂族元素(PGEs)含量水平进行分析.结果表明,灰尘中Rh、Pd、Pt平均浓度分别为24.92、88.39、22.28 ng/g,土壤中Rh、Pd、Pt平均浓度分别为3.64、17.45、0.97 ng/g,植物中Rh、Pd、Pt平均浓度仅分别达到2.66、6.39、0.57 ng/g,灰尘PGEs浓度远高于土壤及植物,土壤与植物中Pt、Rh浓度水平较接近;道路环境PGEs分布呈现一定规律性,但与交通流量关系并不密切;路边植物对道路灰尘PGEs吸附能力表现为Pt>Pd>Rh,其中,对Pt、Pd吸附作用非常明显,对Rh几乎不存在吸附作用,路边植物对土壤PGEs的吸收能力为Pd>Rh>Pt,Pd的生物有效性最大;多介质PGEs比例值很接近或部分重合,且均在上海市道路灰尘PGEs比值范围内,反映出上海市道路环境PGEs来源相同且均来自汽车VECs.  相似文献   

2.
针对乌达区约200km~2的区域按照1km网格法在185个点位采集了约1.5mm厚度的地表尘土样.热解-Lumex RA-915汞分析仪对其测试结果表明:煤矿区尘土汞含量范围117~765ng/g,平均值为285ng/g;工业园尘土汞含量范围160~6453ng/g,平均值为804ng/g;城区尘土汞含量范围41~382ng/g,平均值为160ng/g;农场尘土汞含量范围16~198ng/g,平均值为66ng/g;荒地尘土范围3~284ng/g,平均值为50ng/g.乌达区尘土汞分布具有显著的非均一性.与乌达区背景值(18ng/g)和中国潮土背景值(50ng/g)相比较,乌达工业园和煤矿区尘土汞明显富集.与国内金属矿区、城区尘土Hg含量相比,乌达煤矿区、城区尘土Hg含量较低;煤矿区尘土汞与煤火区、矸石山相对位置和本身地势有关;城区位于煤矿区下风向,受煤矿区煤火影响,植被稀少、空气干燥和夏季日照较长成为制约汞沉降的主控因素;工业园区的极大值点可能与区域地理位置和PVC生产相关.通过计算Igeo值,发现乌达区工业园污染严重,偏重污染区域占全区36.59%,7.32%达到极重污染程度;煤矿区多为偏中污染和中污染,在全区所占比例为84.09%,偏重污染区域仅为2.27%;城区、农场和荒地污染较少.  相似文献   

3.
张正偲  董治宝 《中国环境科学》2014,34(12):3034-3040
利用建立在腾格里沙漠东南缘的中国科学院风沙观测场内收集的降尘,分析了不同降尘收集方法收集的降尘粒度、化学元素含量、富集因子、硅铝率和硅铝铁率,旨在优化干旱区降尘收集方法、确定我国的沙尘源区.降尘物质的微量元素Ba的含量最大,可达255~474μg/g, Nd的含量为0.3~9.6μg/g;常量元素SiO2的含量最大,79.30%, MgO含量最小,0.98%.微量元素的富集因子值在0~3之间,但常量元素差异较大.结果表明,减速法和湿法收集的降尘从粒度分布、化学元素含量、富集因子、硅铝率和硅铝铁率等方面均具有一致性.平均粒径湿法最细(Φ值2.84),干法最粗(Φ值2.46).因此,减速法能够作为代替湿法在干旱区进行收集降尘的方法.同时,由降尘的地球化学性质可知,西北干旱区沙漠是我国的主要沙尘源区之一.  相似文献   

4.
地下河流域土壤中有机氯农药分布及来源分析   总被引:3,自引:0,他引:3       下载免费PDF全文
为研究有机氯农药在重庆青木关地下河流域土壤中的分布特征及来源,采用GC-μECD对17个代表性表层土壤样品进行分析.结果显示,研究区土壤中OCPs的含量范围是7.29~222.42ng/g,平均值为46.15ng/g.HCHs、DDTs在所有样品中均有检出,HCHs的含量范围是0.55~26.54ng/g,DDTs的含量范围是4.31~213.50ng/g.HCB的检出率达到88%,其含量范围是n.d.~1.78ng/g.研究区土壤中HCHs可能来源于工业HCHs残留和林丹的混合源,且由于环境影响,土壤中HCH的同系物之间发生了明显变化.DDTs主要来源于工业DDTs的非法使用,而非三氯杀螨醇类型的DDTs,并且仍有新的DDTs输入.与国内其他地区同类研究相比,本研究区土壤中HCHs、DDTs的残留水平较低;与国外相关研究相比,研究区内土壤中HCHs和DDTs的含量均高于德国、埃及、罗马尼亚土壤中HCHs和DDTs的含量.  相似文献   

5.
对我国中部地区洪湖湿地6种水鸟肝脏中20种有机氯农药进行了测量.发现DDTs是最主要的OCPs,约占总OCPs的38.3%~93.0%,其平均含量范围为2.74~121.72ng/g 湿重.HCHs和DDTs的富集形态说明洪湖湿地这些有机氯农药主要来源于历史残留.不同水鸟肝脏中∑OCPs含量差异显著(P<0.01),表现为白鹭和池鹭体内OCPs含量(37.91~137.22ng/g 湿重)要远高于其他水鸟(5.00~21.49ng/g 湿重),这种差异的产生主要与其饮食习性有关.大多数水鸟HCHs性别间基本无差异;但白鹭、池鹭雄性水鸟中总OCPs平均含量(白鹭: 136.90ng/g 湿重; 池鹭: 52.41ng/g 湿重)高于雌性水鸟(白鹭: 126.60ng/g 湿重; 池鹭: 49.78ng/g 湿重).与已有研究相比,洪湖湿地水鸟体内OCPs含量处于较低水平.风险评价结果表明研究区水鸟肝脏中OCPs含量不会对该地区水鸟种群产生不利效应.  相似文献   

6.
佛山市南海城区环境空气中铅污染现状分析研究   总被引:2,自引:0,他引:2  
为了解佛山市南海城区环境空气中铅污染现状,在南海城区中心设置空气质量监测点,采用重量法和电感耦合等离子体质谱法分别对空气颗粒物及不同粒径颗粒物的铅含量进行定量分析,测定结果为:TSP、PM10、PM2.5平均浓度分别是150 ug/m3、99 ug/m3、67 ug/m3,其中铅平均浓度分别是214 ng/m3、175 ng/m3、156 ng/m3.结论为:南海城区环境空气中的铅浓度达到国家环境空气质量二级标准,铅污染水平处于珠江三角洲的中游;大气中的铅主要分布在PM2.5中,机动车尾气是其主要来源.  相似文献   

7.
于2009年3月采集福建武夷山北段106个表层土壤样品,并用气相色谱(GC-ECD)内标法分析其有机氯农药(OCPs)的含量,探讨了研究区土壤中OCPs的残留水平、空间分布及来源.结果表明,该区土壤中HCHs及DDTs的异构体或衍生物的检出率在82.1%~100%之间,土壤中HCHs、DDTs的检出率高达100%.HCHs和DDTs含量范围(平均值)分别为1.05~25.07ng/g(3.98ng/g),0.01~107.99ng/g(7.48ng/g).通过与南极、西藏地区等地区土壤含量比较,该地区土壤中OCPs含量属于低污染区.不同土地利用类型中,土壤中总OCPs含量排序为:水田>蔬菜地>林地.来源分析表明该地区HCHs污染主要来源于历史使用,而DDTs近年来仍有输入,这可能与DDT的替代品-三氯杀螨醇的使用有关.  相似文献   

8.
上海市大气气溶胶中铂元素污染状况调查   总被引:3,自引:0,他引:3  
为调查上海市大气气溶胶中铂元素的污染状况,用PM10-2型可吸入颗粒物采样器采集了上海市大气气溶胶样品,采样时间分别为2003-12~2005-12.用微波消解密闭系统消解样品,电感耦合等离子体质谱法(ICP-MS)测定了大气气溶胶中Pt的含量.分析结果表明,同清洁对照点((0.65±0.16)pg·m-3)相比,上海市中心区大气中Pt((1.69±0.93)pg·m-3)的污染是明显的;装有三元催化转化器的汽车尾气中Pt的含量均在100ng·g-1以上,远远高于大气气溶胶样品(人民广场平均值21.7ng·g-1);不同交通密度区Pt含量分析结果表明,Pt含量与交通密度紧密相关,这说明装有三元催化器的汽车尾气是气溶胶中Pt污染的主要来源;此外,上海市大气气溶胶中Pt呈现季节性变化,并受气象条件影响.同世界其它城市相比,上海市气溶胶中铂元素污染程度还较低,但是这种潜在的重金属污染应该引起重视.  相似文献   

9.
长江口南岸水体SPM和表层沉积物中OCPs的赋存   总被引:5,自引:1,他引:4       下载免费PDF全文
利用GC-ECD对长江口南岸14个采样点水体悬浮颗粒物(SPM)及表层沉积物进行了有机氯农药(OCPs)的测定,分析了其中HCHs和DDTs的赋存水平和形态分布.研究表明,OCPs的含量水平有DDTs>HCHs的趋势;悬浮物中污染物浓度高于表层沉积物.悬浮物中HCHs污染水平分布在6.24~14.75ng/g,平均值为12.27ng/g;DDTs的污染水平为3.36~25.66ng/g,平均值为16.37ng/g.而表层沉积物中HCHs含量为1.19~8.22ng/g,平均值5.92ng/g;DDTs的含量水平为4.96~14.94ng/g,平均值为8.92ng/g.研究区内OCPs的含量低于ER-M值,对环境生物具有潜在的危害性.  相似文献   

10.
以南昌市为例,分析了不同功能区和公交车站降尘及其水溶解相中重金属浓度的空间分布特征.同时结合多种分析技术,探究降尘及其水溶解相理化性质对降尘重金属在固-液相中分配行为的影响.结果表明:南昌市降尘及其水溶解相中总重金属浓度范围分别为310~4393μg/g和2.17~55.62μg/g.两相中重金属的空间分布可能受到车流量较大的交通干线和汽车轮胎零件磨损的影响,其高值区主要分布于南昌县政府、部分高校以及客运站、驾校附近.风险评价的结果表明,南昌市降尘重金属综合生态风险总体处于中等水平,且Cr和As具有一定的致癌风险.溶解态中重金属所占百分比(K值)的排序为:Ni>Mn>Cu>As>Cr>Zn>Pb,K值的空间分布高值区多分布于人口密集地区、交通道路以及汽车客运站附近.大部分降尘及其水溶解相的理化性质与Pb、As、Mn具有显著正相关关系,降尘溶解相中较高的溶解性有机碳和腐殖化程度对重金属向溶解相中的释放具有重要作用.  相似文献   

11.
Dust samples collected from the Beijing metropolitan area (China) were evaluated to determine the distribution and the concentration of platinum group elements (PGEs). The dust particles that were smaller than 100 mesh size fraction (150 μm) were analyzed after aqua regia digestion. Concentrations[RL2] of Pt, Rh, and Pd were found to be between 3.96 and 356.3 ng/g, 2.76 and 97.11 ng/g, and 0.1 and 124.9 ng/g, respectively, in the urban areas of Beijing, whereas for the background samples collected from the suburbs of Beijing, the concentration of Pt, Pd, and Rh were very low and ranged from 0.1 to 0.9 ng/g, 0.5 to 1.4 ng/g, and 0.8 to 2.2 ng/g, respectively. The[RL3] distributions of PGEs in road dust were an accurate reflection of the levels of pollution and were found to match with the local traffic conditions. A strong positive correlation was established among all the elements found in road dust. This suggests that emissions of abraded fragments from vehicle exhausts may be the source of the high concentration of Pt, Rh, and Pd in road dust along the main roads of Beijing.  相似文献   

12.
Dust samples collected from the Beijing metropolitan area (China) were evaluated to determine the distribution and the concentration of platinum group elements (PGEs). The dust particles that were smaller than 100 mesh size fraction (150 μm) were analyzed after aqua regia digestion. Concentrations ofPt, Rh, and Pd were found to be between 3.96 and 356.3 ng/g, 2.76 and 97.11 ng/g, and 0.1 and 124.9 ng/g, respectively, in the urban areas of Beijing, whereas for the background samples collected from the suburbs of Beijing, the concentrations of Pt, Pd, and Rh were very low and ranged from 0.1 to 0.9 ng/g, 0.5 to 1.4 ng/g, and 0.8 to 2.2 rig/g, respectively. The distributions of PGEs in road dust were an accurate reflection of the levels of pollution and were found to match with the local traffic conditions. A strong positive correlation was established among all the dements found in road dust. This suggests that emissions of abraded fragments from vehicle exhausts may be the source of the high concentration of Pt, Rh, and Pd in road dust along the main roads of Beijing.  相似文献   

13.
城市灰尘PAHs累积与迁移过程的影响因素研究   总被引:3,自引:0,他引:3  
以上海市为例,探讨了城市中心城区地表灰尘中多环芳烃(PAHs)累积与迁移过程的影响因素.结果表明,粒度只是影响城市灰尘吸附PAHs的一个次要因子,与PAHs含量之间没有明显的相关关系.城市灰尘TOC与PAHs含量显著正相关(冬季r=0.62,p<0.000 1;夏季r=0.55,p=0.002),说明对于城市地表灰尘而言,有机质的含量越高,其吸收PAHs的能力就越强,这种结果与理论上PAHs的憎水亲脂性相一致.风向能够直接影响PAHs在空间上的分布趋势,污染源下风向的地区更容易累积较多的PAHs,且距离污染源越近,污染程度越重,相反,污染源上风向的地区则不利于PAHs的累积,污染程度较轻.夏季最高值出现在西北城区,含量为27 766 ng·g-1,冬季最高值出现在南部和东部城区,含量分别为30 741 ng·g-1和32 573 ng·g-1.大城市中心区存在PAHs污染的"空心效应".温度是影响城市灰尘PAHs累积与迁移的重要气象参数.  相似文献   

14.
道路灰尘PGEs时间变化特征   总被引:1,自引:1,他引:0  
刘玉燕  刘敏  王玉杰 《环境科学》2011,32(9):2676-2680
为了研究道路灰尘铂族元素(PGEs)时间变化规律及其影响机制,以上海市为研究区,共采集季节样品24个、年际样品18个.用王水消解制样,ICP-MS测定.结果表明,灰尘PGEs春、夏、秋、冬含量分别为,Rh:10.40(6.06~17.28)ng/g、11.60(5.52~20.11)ng/g、32.91(18.53~6...  相似文献   

15.
为研究西安市城市降尘和土壤尘PM10和PM2.5中碳组分污染特征,丰富大气降尘的成分谱库,于2015年4~5月收集了西安市城区5个点位的城市降尘和周边16个点位的土壤尘样品,通过ZDA-CY01颗粒物再悬浮采样器获得PM10和PM2.5的滤膜样品,使用Model5L-NDIR型OC和EC分析仪测定了样品中的有机碳(OC)和元素碳(EC),定量分析了西安市城市降尘和土壤尘PM10和PM2.5中碳组分特征及其主要来源.结果表明,不同站点降尘PM10和PM2.5中OC的占比差异较大,分别为6.0%~19.4%和7.6%~29.8%.不同站点降尘PM10和PM2.5中EC的占比较小,在城市站点的占比分别为0.6%~2.2%和0.2%~3.6%,而在多数外围土壤尘中几乎检测不到EC的存在.PM10中含碳组分的占比为:城市降尘>外部对照>河滩土>土壤尘,PM2.5中含碳组分的占比为:城市降尘>土壤尘>外部对照>河滩土.不同站点降尘含碳气溶胶均以OC为主,在城市降尘中相对较低,在PM10和PM2.5中OC占总碳(TC)的比值分别为85.2%~95.3%和87.9%~98.9%;在土壤尘中OC的占比较高,均超过99%.含碳物质主要集中在细颗粒物中.不同城市站点降尘中碳组分的分布具有一致性,不同土壤尘中碳组分的差异较大.城市和土壤降尘中碳组分主要受生物质燃烧、燃煤、汽油车和柴油车尾气等污染源的影响,PM10和PM2.5中含碳气溶胶的来源贡献率存在差异.  相似文献   

16.
道路灰尘铂族元素含量的短期变化过程分析   总被引:4,自引:0,他引:4  
选择上海市区中山北路(华东师大~武夷路)、长宁路(中山西路~安西路)、杨柳青路(金沙江路~武宁路)等3条道路,对道路灰尘铂族元素(PGEs)含量的短期变化过程进行研究.结果表明,Rh的含量为24.95~36.24ng·g-1(平均值为29.42ng·g-1),Pd的含量为85.34~158.89ng·g-1(平均值为117.88ng·g-1),Pt含量为20.15~48.48ng·g-1(平均值为34.42ng·g-1).其中,道路灰尘Rh、Pd、Pt含量分别是参照点的19.48倍、12.17倍和64.94倍.与国际其他城市相比,Pt含量较低,Pd和Rh含量处于中间水平.总体而言,道路灰尘PGEs含量及负荷随时间变化呈上升趋势,到达上限后,变化则趋于和缓.在车流量恒定的情况下,PGEs浓度及负荷的短期变化主要归因于气象条件的变化.降雨会使PGEs浓度降低,但不同类型降雨会使PGEs负荷发生不同变化,雨量较大,则负荷降低;;雨量较小,负荷反而有升高可能;;连续降雨后,PGEs浓度与负荷达到下限.一定的风力扰动会使PGEs浓度升高,但使PGEs的负荷变化变得较为复杂;;连续干燥无风天气会使上述PGEs浓度及负荷达...  相似文献   

17.
上海市地表灰尘中PAHs季节变化与功能区差异   总被引:5,自引:3,他引:2  
程书波  刘敏  欧冬妮  高磊  王丽丽  许世远 《环境科学》2007,28(12):2789-2793
研究了上海市中心城区地表灰尘中多环芳烃(PAHs)的季节变化与功能区差异,并探讨了这种变化特征的原因.结果表明,上海市中心城区地表灰尘中PAHs累积水平具有显著的季节变化,PAHs总量和组分均表现出冬季含量高于夏季的特征.冬季样品中PAHs含量为9 176~32?573 ng·g-1,平均值为20 648 ng·g-1;而夏季PAHs含量为6?875~27?766 ng·g-1,平均值仅为14?098 ng·g-1.PAHs组分也表现出相似特征,冬季含量为50(二氢苊)~3 162 ng·g-1 (茚并[1,2,3-c,d ]芘),夏季含量为3(苊)~1 485 ng·g-1 (茚并[1,2,3-c,d ]芘).各个功能区地表灰尘PAHs含量的差异明显.冬季最高值出现在工业区(31 163 ng·g-1)、商业区(24 932 ng·g-1)和交通要道(18 815 ng·g-1),最低值出现在公园(7 885 ng·g-1)和绿地(8 036 ng·g-1);夏季最低值出现在公园(7 942 ng·g-1),最高值出现在交通要道(14 528 ng·g-1)、工业区(14 247 ng·g-1)和商业区(11 523 ng·g-1).所有功能区样品中PAHs组分含量呈现出按环数或分子量的增加而逐渐升高的趋势.大城市地表灰尘中PAHs的季节变化与功能区差异与其来源密切相关,也受到各组分理化性质的影响.  相似文献   

18.
北京市中心城区道路尘土中铂族元素的污染特征   总被引:1,自引:1,他引:1  
为研究北京市中心城区铂族元素(PGEs)的污染状况,于2009年12月采集了二环道路尘土样品.样品经王水消解和阳离子交换树脂分离纯化后,采用电感耦合等离子体质谱法(ICP-MS)测定了道路尘土中PGEs的含量.结果表明,二环道路尘土中,Pd的含量为17.40~458.75 ng.g-1(平均值为126.66 ng.g-1),Pt的含量为10.04~182.89 ng.g-1(平均值为65.25ng.g-1),Rh的含量为4.00~68.04 ng.g-1(平均值为22.67 ng.g-1).与国内外其它城市相比,Pt含量偏低,Pd和Rh含量处于中等水平.总体而言,近几年道路尘土中Pd含量有了较大幅度的升高.中心城区的PGEs平均含量从大到小的顺序为:西二环≈东二环>北二环>南二环,主要受机动车流量控制.不同粒径的道路尘土中PGEs含量不同,0.125~0.25 mm粒径范围内尘土中的PGEs含量最高,而粒径<0.063 mm的尘土中PGEs含量较低.采用粒径<0.063 mm尘土中的PGEs含量来评价整个道路尘土中的PGEs含量容易导致结果偏低,从而低估其在环境的污染水平.  相似文献   

19.
道路扬尘评估方法的建立和比较   总被引:3,自引:1,他引:2       下载免费PDF全文
建立了降尘法和AP-42法2种道路扬尘评估方法,它们分别以减去背景降尘的道路自身降尘(ΔDFr)和道路扬尘排放强度(EIr)作为评估指标. 通过对这2种方法评估结果的比较与分析发现:①ΔDFr和EIr有很好的正相关关系,相关系数(R2)为0.708;②ΔDFr能同时反映车辆激发扬尘和路面风蚀扬尘,而EIr只反映车辆激发扬尘;③积尘负荷大小不代表评估道路扬尘污染程度,但适用于定量评价道路清扫保洁质量. 降尘法相比AP-42法,其实施安全、简单易行、误差小,但不能满足快速评估要求,而且评估成本略高. 2种评估方法均表明《奥运保障措施》控制道路扬尘的效果明显,2008年北京奥运会期间与2007年同期相比,快速路、主干路、次干路和支路ΔDFr分别下降了65%,55%,65%和84%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号