首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu SM  Lin YL  Tsai TL 《Chemosphere》2005,59(1):91-98
o-Phthalate transformers increased about five orders of magnitude (to 1.6x10(11)cells g-1 sediment) just before the onset of fast biotransformation of o-phthalate (21.6 mg l-1) and then decreased sharply when the concentration of o-phthalate became low during biodegradation of o-phthalate in anaerobic sediment slurries under CO2/H2 (4:1, v/v). In contrast, the benzoate transformers increased about four orders of magnitude (to 1.6x10(11)cells g-1 sediment) in 48 days and then increased one more order (to 1.6x10(12)cells g-1 sediment) in 60 days and then remained at that high level in those sediment slurries. When making a comparison between the growth dynamics of o-phthalate transformers, acetogens, sulfate reducers, and methanogens and the time course of o-phthalate transformation, it appears that acetogens did not initiate biotransformation of o-phthalate, and that sulfate reducers and methanogens were not directly involved in o-phthalte degradation. o-Phthalate was not transformed in sediment slurries amended with BESA plus molybdate under CO2/H2.  相似文献   

2.
Liu SM  Lin YL  Chi WC 《Chemosphere》2005,59(1):41-48
It was found in this study that while addition of the predicted intermediate product benzoate did not, addition of cyclohex-1-ene or cyclohexane carboxylate did inhibit the biotransformation of o-phthalate in sulfate-reducing o-phthalate-adapted sediment slurries under a CO2/H2 atmosphere. Biotransformation rates of benzoate were slightly higher than those of o-phthalate in sediment slurries amended with o-phthalate plus benzoate. By using the most probable number (MPN) method to determine the number of o-phthalate transformers, similar growth dynamics of o-phthalate transformers were observed in sediment slurries amended with or without benzoate. The number of benzoate transformers (1x10(9)cellsg-1 of sediment) remained the same in sediment slurries repeatedly amended with a mixture of o-phthalate and benzoate after their transformation. o-Phthalate transformers decreased about three orders (1x10(9) to 1x10(6)cellsg-1 of sediment) of magnitude after biotransformation of o-phthalate, and remained at the low number thereafter until re-amendment with o-phthalate. o-Phthalate transformers increased to 1x10(8)cellsg-1 of sediment just prior to the onset of biotransformation of the o-phthalate.  相似文献   

3.
C E Kuo  W C Chi  S M Liu 《Chemosphere》2001,45(6-7):835-842
The composition of the headspace gas affected the growth dynamics of microbial populations and the biotransformation pattern of p-toluic acid in anoxic estuarine sediments. Under CO2 atmosphere, p-toluic acid was transformed by the sediment microorganisms without a lag period, while under N2/H2 atmosphere, p-toluic acid was transformed after a lag period of 55 days. Under the N2/H2 atmosphere, the methanogen population, following a rapid increase of almost two orders of magnitude, remained at a high level until just before the onset of biotransformation. We hypothesize that during the lag period, the hydrogenotrophic methanogens were removing the H2, a step which is essential before the reaction can be exergonic. Acetogenic bacteria did not initiate decarboxylation as the first step of biotransformation under either atmosphere. Neither the methanogens nor the acetogenic bacteria appeared to be directly involved in the biotransformation of p-toluic acid under either atmosphere. Under the CO2 atmosphere, biotransformation of p-toluic acid involved sulfate-reducing bacteria, while under N2/H2, both sulfate-reducing bacteria and other eubacteria were involved.  相似文献   

4.
Dinitrotoluenes (DNTs) are widely used in the manufacturing of explosives and propellants hence causing contamination of several terrestrial and aquatic environments. The present study describes biotransformation of 2,4-DNT and 2,6-DNT in marine sediment sampled from a shipwreck site near Halifax Harbour. Incubation of either 2,4-DNT or 2,6-DNT in anaerobic sediment slurries (10% w/v) at 10 degrees C led to the reduction of both DNTs to their corresponding diaminotoluene (2,4-DAT and 2,6-DAT) via the intermediary formation of their monoamine derivatives (ANTs). The production of diaminotoluene was enhanced in the presence of lactate for both DNT isomers. Using [(14)C]-2,4-DNT less than 1% mineralization was observed as determined by liberated (14)CO(2). Sorption of DNTs, ANTs, and DATs was thus investigated to learn of their fate in marine sediments. Under anaerobic conditions, sorption followed the order: DNTs (K(d)=8.3-11.7lkg(-1))>ANTs (K(d)=4.5-7.0lkg(-1))>DATs (K(d)=3.8-4.5lkg(-1)). Incubation of 2,4-DAT in aerobic sediment led to rapid disappearance from the aqueous phase. LC/MS analysis of the aqueous phase and the acetone sediment extract showed the formation of azo- and hydrazo-dimers and trimers, as well as unidentified polymers. Experiments with radiolabelled 2,4-DAT showed a mass balance distributed as follows: 22% in the aqueous phase, 24% in acetone extracts, and 50% irreversibly bound to sediment. We concluded that DNT in anoxic marine sediment can undergo in situ natural attenuation by reduction to DAT followed by oxidative coupling to hydrazo-oligomers or irreversible binding to sediment.  相似文献   

5.
The potential for anaerobic biodegradation of 1,1,1-trichloro-2,2-bischlorophenylethane (DDT), 1,1-dichloro-2,2,-bischlorophenylethane (DDD), and dichlorodiphenylchloroethylene (DDE) in anoxic sediment slurries collected from the Keelung River was investigated in this study. o,p'- and p,p'-DDT were dechlorinated to o,p'- and p,p'-DDD, respectively, and then transformed to other compound(s). 1-Chloro-2,2-bis (p-chlorophenyl) ethylene (DDMU) and trace amount of dichlorobenzophenone (DBP) were detected in sediment slurries amended with p,p'-DDT or p,p'-DDD. DDMU was also detected in sediment slurries amended with p,p'-DDE. The relative transformation rates for both o,p'- and p,p'-isomers of DDT, DDD, and DDE were DDT>DDD>DDE. Re-addition of DDT, DDD, or DDE to the sediment slurries after initial removal enhanced the respective dechlorination rates. The transformation rates of the p,p'-isomers of both DDT and DDD were faster than those of the respective o,p'-isomers. p,p'-DDT dechlorination in the p,p'-DDT-adapted sediment slurries were inhibited by the addition of molybdate, or molybdate plus sulfate, but not inhibited by the addition of sulfate. Addition of bromoethane-sulfonic acid (BESA) slightly inhibited p,p'-DDT dechlorination. Non-adapted sediment slurries lost the ability to dechlorinate pentachlorophenol during adaptation to p,p'-DDT. p,p'-DDD was the major transformation product of p, p'-DDT in 3,4,4',5-tetrachlorobiphenyl-adapted sediment slurries, which suggested that the microbial community in the 3,4,4',5-CB-adapted sediment was unable to remove chlorine from the aromatic rings of p,p'-DDT.  相似文献   

6.
The thermophilic bacterium Nocardia otitidiscaviarum strain TSH1, originally isolated in our laboratory from a petroindustrial wastewater contaminated soil in Iran, grows at 50 degrees C on a broad range of hydrocarbons. Transformation of naphthalene by strain TSH1 which is able to use this two ring-polycyclic aromatic hydrocarbon (PAH) as a sole source of carbon and energy was investigated. The metabolic pathway was elucidated by identifying metabolites, biotransformation studies and monitoring enzyme activities in cell-free extracts. The identification of metabolites suggests that strain TSH1 initiates its attack on naphthalene by dioxygenation at its C-1 and C-2 positions to give 1,2-dihydro-1,2-dihydroxynaphthalene. The intermediate 2-hydroxycinnamic acid, characteristic of the meta-cleavage of the resulting diol was identified in the acidic extract. Apart from typical metabolites of naphthalene degradation known from mesophiles, benzoic acid was identified as an intermediate for the naphthalene pathway of this Nocardia strain. Neither phthalic acid nor salicylic acid metabolites were detected in culture extracts. Enzymatic experiments with cell extract showed the catechol 1,2-dioxygenase activity while transformation of phthalic acid and protocatechuic acid was not observed. The results of enzyme activity assays and identification of benzoic acid in culture extract provide strong indications that further degradation goes through benzoate and beta-ketoadipate pathway. Our results indicate that naphthalene degradation by thermophilic N. otitidiscaviarum strain TSH1 differs from the known pathways found for the thermophilic Bacillus thermoleovorans Hamburg 2 and mesophilic bacteria.  相似文献   

7.
C E Kuo  S M Liu  C Liu 《Chemosphere》1999,39(9):1445-1458
In this study, we investigated the biodegradability of biphenyl and 5 congeners (one non-planar and four coplanar) of polychlorinated biphenyl (PCB). Biphenyl, the non-planar congener 2,3',4',5-tetrachlorobiphenyl (25-34 CB), and the four coplanar congeners 3,3',4,4'-tetrachlorobiphenyl (34-34 CB), 3,4,4',5-tetrachlorobiphenyl (345-4 CB), 3,3',4,4',5-pentachlorobiphenyl (345-34 CB), and 3,3',4,4',5,5'-hexachlorobiphenyl (345-345 CB) were amended at a concentration of 10 mg/L into anoxic sediment slurries collected from the estuaries of the Tansui River and the Erjen River. During 2 years' incubation under sulfidogenic conditions, biphenyl was persistent, while all other chlorinated congeners, except for 345-345 CB, were dechlorinated with or without a lag period in sediment slurries collected from both rivers. Dechlorination of coplanar and non-planar congeners began with para chlorine removal. All para chlorines from the mono-, di-, and trichlorobiphenyl groups could be removed by sediment slurries from both rivers. Microbial communities in sediment from the Erjen River additionally fostered meta-dechlorination activity, but only after removal of all the para chlorines. Addition of Tween 20 (0.05%, v/v) into sediment slurries from the Tansui River did not enhance dechlorination rates or extents, but the addition of toluene- or 3-chlorobenzoate-adapted sediments enhanced dechlorination of 34-34 CB and 345-4 CB.  相似文献   

8.
In this study, the effect of CO(2) on the thermal conversion of sewage sludge was investigated by means of the thermogravimetric analysis and the batch-type thermal process. The results showed that the kinetics of sewage sludge during thermal treatment under both N(2) and CO(2) atmospheres are quite similar and can be described by a pseudo bi-component separated state model (PBSM). It was, however, noticed that under CO(2) atmosphere, the first reaction was significantly accelerated whereas the secondary reaction temperature was shifted to a lower temperature. The apparent activation energies for the first decomposition reaction under both N(2) and CO(2) atmosphere, corresponding to the main decomposition typically at 305 degrees C were similarly attained at ca. 72 kJ mol(-1), while that of the second decomposition reaction was found to decrease from 154 to 104 kJ mol(-1) under CO(2) atmosphere. The typical reaction order of the decomposition under both N(2) and CO(2) atmosphere was in the range of 1.0-1.5. The solid yield was slightly reduced while the gas and liquid yields were somewhat improved in the presence of CO(2). Furthermore, CO(2) was found to influence the liquid product by increasing the oxygenated compounds and lessening the aliphatic compounds through the insertion of CO(2) to the unsaturated compounds resulting in the carboxylics and the ketones formation.  相似文献   

9.
Contaminated water and soil at active or abandoned munitions plants is a serious problem since these compounds pose risks to human health and can be toxic to aquatic and terrestrial life. Our objective was to determine if zero-valent iron (Fe(0)) could be used to promote remediation of water and soil contaminated with 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). As little as 1% Fe(0) (w/v) removed 70 mg TNT litre(-1) from aqueous solution within 8 h and removed 32 mg RDX litre(-1) within 96 h. Treating slurries (1:5 soil:water) of highly contaminated soil (5200 mg TNT and 6400 mg RDX kg(-1) soil) from the former Nebraska Ordnance Plant (NOP) with 10% Fe(0) (w/w soil) reduced CH(3)CN-extractable TNT and RDX concentrations below USEPA remediation goals (17.2 mg TNT and 5.8 mg RDX kg(-1)). Sequential treatment of a TNT-contaminated solution (70 mg TNT litre(-1) spiked with (14)C-TNT) with Fe(0) (5% w/v) followed by H(2)O(2) (1% v/v) completely destroyed TNT and removed about 94% of the (14)C from solution, 48% of which was mineralized to (14)CO(2) within 8 h. Fe(0)-treated TNT also was more susceptible to biological mineralization. Our observations indicate that Fe(0) alone, Fe(0) followed by H(2)O(2), or Fe(0) in combination with biotic treatment can be used for effective remediation of munitions-contaminated water and soil.  相似文献   

10.
Das KC  Xia K 《Chemosphere》2008,70(5):761-768
4-Nonylphenol, a degradation intermediate of commercial surfactant and known endocrine disruptor, has been frequently detected at levels up to several thousand microgl(-1) in surface waters and up to several hundred mgkg(-1) (dry weight) in soil and sediment samples. Large quantities of 4-NP can be quickly sorbed by the organic rich solid phase during wastewater treatment and are concentrated in biosolids, a possible major source for 4-NP in the environment. Microbial transformation in culture studies followed different mechanisms for different 4-NP isomers, which have different estrogenic activity. Composting is a process of solid matrix transformation where biological activity is enhanced by process control. This approach has been used successfully in remediation of contaminated soils and sludges. In this study, the transformation kinetics of 4-NP and its isomers were characterized during biosolids composting. Five distinctive 4-NP isomer groups with structures relative to alpha- and beta-carbons of the alkyl chain were identified in biosolids. Composting biosolids mixed with wood shaving at a dry weight percentage ratio of 43:57 (C:N ratio of 65:1) removed 80% of the total 4-NP within two weeks. At this biosolids/wood shaving ratio (B:WS), the transformation of total 4-NP and its isomers followed second-order kinetic. Higher B:WS ratios yielded significantly slower 4-NP transformation which followed first-order kinetic. Isomers with alpha-methyl-alpha-propyl structure transformed significantly slower than those with less branched tertiary alpha-carbon and those with secondary alpha-carbon, suggesting isomer-specific degradation of 4-NP during biosolids composting.  相似文献   

11.
Gallard H  De Laat J 《Chemosphere》2001,42(4):405-413
The rates of degradation of 1,2,4-trichlorobenzene (TCB), 2,5-dichloronitrobenzene (DCNB), diuron and isoproturon by Fe(II)/H2O2 and Fe(III)/H2O2 have been investigated in dilute aqueous solution ([Organic compound]0 approximately 1 microM, at 25.0 +/- 0.2 degrees C and pH < or = 3). Using the relative rate method with atrazine as the reference compound, and the Fe(II)/H2O2 (with an excess of Fe(II)) and Fe(III)/H2O2 systems as sources of OH radicals, the rate constants for the reaction of OH* with TCB and DCNB were determined as (6.0 +/- 0.3)10(9) and (1.1 +/- 0.2)10(9) M(-1) s(-1). Relative rates of degradation of diuron and isoproturon by Fe(II)/H2O2 were about two times smaller in the absence of dissolved oxygen than in the presence of oxygen. These data indicate that radical intermediates are reduced back to the parent compound by Fe(II) in the absence of oxygen. Oxidation experiments with Fe(III)/H2O2 showed that the rate of decomposition of atrazine markedly increased in the presence of TCB and this increase has been attributed to a regeneration of Fe(II) by oxidation reactions of intermediates (radical species and dihydroxybenzenes) by Fe(III).  相似文献   

12.
Kim YM  Lee M  Chang W  Lee G  Kim KR  Kato S 《Chemosphere》2007,69(10):1638-1646
Atmospheric hydrogen peroxide and methyl hydroperoxide were determined onboard the Melville over the North Pacific from Osaka to Honolulu during May-June 2002. The concentrations of H(2)O(2) and CH(3)OOH increased from 0.64+/-0.57 ppbv and 0.27+/-0.59 ppbv in subpolar region (30-50 degrees N) to 1.96+/-0.95 ppbv and 1.56+/-1.3 ppbv in subtropical region (24-30 degrees N). The increase in concentrations towards the Equator was more pronounced for CH(3)OOH than H(2)O(2). In contrast, the levels of O(3) and CO were decreased at lower latitudes as air mass was more aged, denoted by the ratios of C(2)H(2)/CO and C(3)H(8)/C(2)H(6). CH(3)OOH concentrations showed a clear diurnal variation with a maximum around noon and minimum before sunrise. Frequently, the concentrations of peroxides remained over 1 ppbv in the dark and even gradually increased after sunset. In addition, the ratios of C(2)H(4)/C(2)H(6) and C(3)H(6)/C(3)H(8) were increased in aged subtropical air, which implies that these alkenes were emitted from the ocean surface. As a result, the reaction of these biogenic alkenes with O(3) was suggested to be a potential source for peroxides in aged marine air at lower latitudes.  相似文献   

13.
In vitro biotransformation rates of tetrachlorobenzyltoluene (TCBT) isomers 3,3',4,4'-Cl4-2-Me (TCBT 87), 3,3',4,4'-Cl4-5-Me (TCBT 88), and 3,3',4',5-Cl4-4-Me (TCBT 94) were determined using trout and rat hepatic microsomes. The disappearance of the TCBTs from the in vitro system followed first-order kinetics. The estimated biotransformation constants (k) for the rat ranged from 0.96 to 4.14 h(-1). Biotransformation rates for trout microsomes were much lower and ranged from 0.009 to 0.017 h(-1).  相似文献   

14.
Nipper M  Qian Y  Carr RS  Miller K 《Chemosphere》2004,56(6):519-530
Bio- and photo-transformation of two munitions and explosives of concern, 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked marine sediments and water. A sandy and a fine-grained sediment, with 0.25% and 1.1% total organic carbon, respectively, were used for biotransformation assessments at 10 and 20 degrees C. Sterilized sediments were used as controls for biotic vs. abiotic transformation. Transformation products were analyzed by HPLC, GC/MS and LC/MS. Biotransformation in sediments started soon after the initial contact of the chemicals with the sediments and proceeded for several months, with rates in the following sequence: fine-grain at 20 degrees C > fine-grain at 10 degrees C > sand at 20 degrees C > sand at 10 degrees C. The biotransformation paths seemed to be similar for all conditions. The major biotransformation product of 2,6-DNT was 2-amino-6-nitrotoluene (2-A-6-NT). 2-Nitrotoluene (2-NT) and other minor components, including N,N-dimethyl-3-nitroaniline, benzene nitrile, methylamino-2-nitrosophenol and diaminophenol, were also identified. After more prolonged incubation these chemicals were replaced by high molecular weight polymers. Several breakdown products of picric acid were identified by GC/MS, including 2,4-dinitrophenol, amino dinitrophenols, 3,4-diamino phenol, amino nitrophenol and nitro diaminophenol. Photo-transformation of 2,6-DNT and picric acid in seawater was assessed under simulated solar radiation (SSR). No significant photolysis of picric acid in seawater was observed for up to 47 days, but photo-transformation of 2,6-DNT began soon after the initial exposure to SSR, with 89% being photo-transformed in 24 h and none remaining after 72 h. High molecular weight chemicals were generated, with mass spectra ranging from molecular weight 200-500 compared to 182 for DNT, and the color of the stock solution changed from clear to orange. Complexity of the mass spectra and mass differences among fragments suggest that multiple polymers were produced and were co-eluting during the LC/MS analyses.  相似文献   

15.
Fan KS  Chen YY 《Chemosphere》2004,57(9):1059-1068
Biological production of H(2) has received considerable attention lately. The present study was undertaken to observe the effects of substrate/seeding ratios (S(0)/X(0)) on batch H(2) generation. The H(2)-producing seeding spores were obtained from the heat treatment (88 degrees C for 12h) of the compost from a grass composting facility. A dehydrated brewery mixture was used as feed substrate. The results indicate that the pattern of the cumulative H(2) production with time is similar to the growth curve with a typical lag, exponential and stationary phase; the results were successfully modeled with a modified Gompertz equation. It appears that maximum H(2) yield potential (27ml g(-1)COD(added)) occurs at an S(0)/X(0) ratio of about 4, whereas the maximum specific H(2) yield (205ml g(-1) VSSd(-1)) occurs at approximately S(0)/X(0)=3. The S(0)/X(0) ratios higher than 4 would inhibit H(2) production. An attempt was made to waste a certain amount of reactor content and replaced it with fresh substrate in order to enhance H(2) production. After this medium replacement, the H(2) production was initially inhibited and the system then exhibited a long lag before it reached an active H(2) production stage. For a continuous-stirred tank-reactor (CSTR) system, the results of replacing 25% of the reactor content indicate that there is still a lag time before a sudden increase in H(2) production after the addition of the new substrate feed. The major low molecular weight acids identified are HAc and HBu with total volatile acids of about 6000-8000mg l(-1). The ratio of HAc/HBu in the present study is relatively constant (about 5) and appears not significantly affected by the medium replacement. The concentration of total alcohols is about 2000mg l(-1). All in all, the CSTR system is able to recover to its previous performance after such a dramatic 25% medium replacement.  相似文献   

16.
Experiments were conducted to compare the sorption and desorption of phenanthrene and its primary degradation product, 1-hydroxy-2-naphthoic acid (HNA), in estuarine sediment, humic acid (HA) and humin. Ionic composition, ionic strength (0.4 M) and pH (7.6) were employed to mimic native estuarine pore water at the sediment-water interface. Sorption to whole sediment and organic matter (OM) fractions was significantly lower for HNA than for phenanthrene. Whereas HNA did not sorb to HA, uptake to sediment and humin was observed, suggesting that HNA does not bind directly to OM. Phenanthrene uptake was characterized by hysteretic behavior and exhibited slow desorption. In contrast, HNA initially was more readily desorbed from sediment and humic fractions, but a significant fraction was not recovered in repeated desorption runs. The lower sorption of HNA reflects its greater polarity and water solubility, but the consistent retention of a non-desorbing fraction suggests strong binding and/or chemical transformation reactions may be important. It was postulated that abiotic transformation of HNA may occur in estuarine sediments, in part due to the presence of redox active minerals (Fe(III) and Mn(IV) oxides). The presence of Fe and Mn solids in the estuarine sediment was verified by sequential extraction and studies were then conducted to investigate the transformation of HNA in the presence of synthetic goethite (alpha-FeOOH) and birnessite (delta-MnO2) as model solids. Reaction with birnessite led to transformation of all HNA in solution within 24 h and resulted in the formation of partial oxidation products (POPs). Following reaction with goethite, HNA was present in solution and POPs were observed in the weakly bound fraction. This study indicates that degradation products of polycyclic aromatic hydrocarbons (PAHs) may have distinctly different sorption affinities and reactivities toward environmental surfaces than their parent compounds.  相似文献   

17.
This study presents the results of experimental Fenton-like treatments conducted on marine sediment slurries (2g sediment vs. 20 ml liquid). The sediment was collected in a harbor situated in a high density industrial area, characterized by a great hydrocarbon C>12 and PAHs contamination. The investigated parameters were: the H(2)O(2) dose, the reagent's pH and the effect of a phosphate salt and ferrous iron addition. To evaluate sediment's characteristics COD, particle size, thermogravimetric and differential thermal analyses were performed under N(2) and O(2) atmosphere while dissolved organic carbon and COD analyses were performed on the filtrate. Results indicate that the treatment was able to change the organic matter to a less hydrophobic state, to destroy part of the organic carbon (up to 78% decrease of the 200-400 degrees C labile organic matter), to lower the COD of the sediment (60% COD removal maximum) and to increase the cumulated distribution undersize. In addition as the treated sediment showed easier-to-handle characteristics, reduced caking and lower aggregation capacity, the modified Fenton treatment could also be considered a pre-treatment of a successive thermal treatment.  相似文献   

18.
The aim of the present study was to analyze and compare the efficacy of UV photodegradation with that of different advanced oxidation processes (O(3), UV/H(2)O(2), O(3)/activated carbon) in the degradation of naphthalenesulfonic acids from aqueous solution and to investigate the kinetics and the mechanism involved in these processes. Results obtained showed that photodegradation with UV radiation (254 nm) of 1-naphthalenesulfonic, 1,5-naphthalendisulfonic and 1,3,6-naphthalentrisulfonic acids is not effective. Presence of duroquinone and 4-carboxybenzophenone during UV irradiation (308-410 nm) of the naphthalenesulfonic acids increased the photodegradation rate. Addition of H(2)O(2) during irradiation of naphthalenesulfonic acids accelerated their elimination, due to the generation of ()OH radicals in the medium. Comparison between UV photodegradation 254 m and the advanced oxidation processes (O(3), O(3)/activated carbon and UV/H(2)O(2)) showed the low-efficacy of the former in the degradation of these compounds from aqueous medium. Thus, among the systems studied, those based on the use of UV/H(2)O(2) and O(3)/activated carbon were the most effective in the oxidation of these contaminants from the medium. This is because of the high-reactivity of naphthalenesulfonic acids with the *OH radicals generated by these two systems. This was confirmed by the values of the reaction rate constant of *OH radicals with these compounds k(OH), obtained by competitive kinetics (5.7 x 10(9) M(-1) s(-1), 5.2 x 10(9) M(-1) s(-1) and 3.7 x 10(9) M(-1) s(-1) for NS, NDS and NTS, respectively).  相似文献   

19.
L Larsen  J Aamand 《Chemosphere》2001,44(2):231-236
We examined the potential for complete degradation (mineralisation) of the four [ring-U-14C]herbicides mecoprop, isoproturon, atrazine, and metsulphuron-methyl in two sandy aquifers representing aerobic, denitrifying, sulphate-reducing, and methanogenic conditions. Slurries with sediment and groundwater were set-up aerobically or anaerobically in the presence of the electron-acceptor prevailing at the sampling site, amended with 25 microg l(-1) herbicide, and incubated at 10 degrees C. Considerable mineralisation was only observed in sediment from the plough layer incubated aerobically. Here, 30% of 14C-mecoprop was recovered as 14CO2 after 15 days and 15% of isoproturon was recovered as 14CO2 after 267 days. Only 7% of mecoprop was recovered as 14CO2 after 313 days in sediment from the aquifer below sampled at 1.95-3.00 mbs (m below the surface). In denitrifying and methanogenic slurries, 3% of 14C added as mecoprop was recovered as 14CO2. Isoproturon was not mineralised except in the aerobic plough layer, and atrazine and metsulphuron-methyl were not mineralised under any of the conditions applied.  相似文献   

20.
Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental chemical with widespread nonoccupational human exposure through multiple ways. Although considerable efforts have been invested to investigate mechanisms of DEHP toxicity, the key metabolic biomarkers of DEHP toxicity remain to be identified. The aim of this study was to assess the urinary metabonomics of dietary DEHP in rats using the technique of ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). Fourteen female Wistar rats were divided into two groups and given increasing dietary doses of DEHP for 30 consecutive days. The urinary metabolite profile was studied using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) enabled clusters to be clearly separated. Eleven principal urinary metabolites were identified as contributing to the clusters. The clusters in the positive electrospray ionization (ESI) mode were xanthurenic acid, kynurenic acid, nonate, N6-methyladenosine, and L-isoleucyl-L-proline. The clusters in the negative ESI mode were hippuric acid, tetrahydrocortisol, citric acid, phenylpropionylglycine, cPA(18:2(9Z, 12Z)/0:0), and LysoPC(14:1(9Z)). The urinary metabonomic changes indicated that exposure to dietary DEHP can affect energy-related metabolism, liver and renal function, fatty acid metabolism, and cause DNA damage in rats. The findings of this study on the urinary metabolites and metabolic pathways of DEHP may form the basis for future studies on the mechanisms of toxicity of this commonly found environmental chemical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号