首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
老龄垃圾渗滤液因其成分复杂且可生化性差,故传统技术无法对其进行有效降解,且利用臭氧催化氧化体系处理垃圾渗滤液缺乏系统性评估报道。为解决上述问题,采用臭氧/过二硫酸盐(${{\rm{S}}_2}{{\rm{O}}_8^{2 - }}$,PS)、臭氧/过一硫酸盐(${\rm{HS}}{{\rm{O}}_5^ -} $,PMS)和臭氧/过氧化氢(H2O2)氧化体系,探讨了处理老龄垃圾渗滤液的可行性,考察了初始pH、温度、O3及H2O2、Na2S2O8、KHSO5的投加量等因素对其处理效果的影响,并对其能源效率进行了分析。结果表明,优化条件下,O3/PMS、O3/H2O2和O3/PS的单位数量级能耗(electrical energy per order,EE/O)分别为1 007.5、1 233.7、662.6 kWh·m−3,O3/PMS氧化体系处理老龄垃圾渗滤液的效果与O3/H2O2氧化体系相似,且优于O3/PS。由综合处理效果与能耗评估结果可知,O3/H2O2氧化体系最佳,在温度为25 ℃,pH=6,O3和H2O2投加量分别为3 g·h−1和2 125 mg·L−1,反应时间为60 min条件下,能耗最低,EE/O降至443.9 kWh·m−3,且TOC去除率和反应速率常数分别为27.1%和0.005 3 min−1,BOD5/COD也由0.18增至0.26。综合上述结果,基于臭氧体系的高级氧化法能耗较高,可将臭氧催化氧化与低成本的生物处理技术相结合,从而实现对污染物高效经济降解。上述研究结果可为臭氧高级氧化技术的工程化应用提供参考。  相似文献   

2.
Advanced oxidation of a pulp mill bleaching wastewater.   总被引:8,自引:0,他引:8  
The degradation, by several advanced oxidation reactions, of a pulp mill ECF bleaching effluent, was studied. The initial biodegradability of the organic matter present in the effluent, estimated as the BOD5/COD, was low (0.3). When the effluent was submitted to ozonation and to five different advanced oxidation systems (O3/UV, O3/UV/ZnO, O3/UV/TiO2, O2/UV/ZnO, O2/UV/TiO2), the biodegradability increase significantly. After five minutes of reaction, the O3/UV system appears as the most efficient in to transform the organic matter to more biodegradable forms. A similar effect was observed when the effluent was submitted to an activated sludge treatment. The COD, TOC and toxicity reduction correlated well with the biodegradability enhancement after AOPs treatments.  相似文献   

3.
In this paper, a comparison of various advanced oxidation processes (O3, O3/UV, H2O2/UV, O3/H2O2/UV, Fe2+/H2O2) and chemical treatment methods using Al2(SO4)3.18H2O, FeCl3 and FeSO4 for the chemical oxygen demand (COD) and color removal from a polyester and acetate fiber dyeing effluent is undertaken. Advanced oxidation processes (AOPs) showed a superior performance compared to conventional chemical treatment, which maximum achievable color and COD removal for the textile effluent used in this study was 50% and 60%, respectively. Although O3/H2O2/UV combination among other AOPs methods studied in this paper was found to give the best result (99% removal for COD and 96% removal for color), use of Fe2+/H2O2 seems to show a satisfactory COD and color removal performance and to be economically more viable choice for the acetate and polyester fiber dyeing effluent on the basis of 90% removal.  相似文献   

4.
真空紫外光臭氧降解偏二甲肼的研究   总被引:7,自引:0,他引:7  
研究比较了臭氧氧化(O3)、紫外臭氧(O3/UV)和真空紫外臭氧(O3/VUV)对推进剂——偏二甲肼的处理效果,O3/VUV最为有效,反应速率常数分别比O3/UV和O3高39.8%和65.6%,中间产物——甲醛去除得更迅速,反应50 min即无法检出。初始pH 9时,O3/VUV降解偏二甲肼的速率最快,达到0.4461 min-1;反应速率常数随臭氧投加量的增加而线性增大;随偏二甲肼初始浓度从100 mg/L增加到2 000 mg/L,反应动力学由一级转为零级。碳酸盐浓度在0~2 mmol/L范围内对O3/VUV降解偏二甲肼没有明显的抑制作用。偏二甲肼的无机氮产物以氨离子为主,无机氮只占总氮的40%~60%,说明仍有相当比例的氮以有机氮形式存在。  相似文献   

5.
以印染污水生化处理出水为研究对象,组建了集管式臭氧/紫外(O3/UV)反应系统、臭氧发生系统、气液分离系统、臭氧破坏系统和生物曝气滤池(BAF)系统为一体的中试集成设备。分别研究了各单元及O3/UV-BAF一体化设备的运行效果。结果表明,COD范围为62.3~102.1 mg·L-1,平均值为83.2 mg·L-1时的进水经过O3/UV处理后,BOD5浓度可增加3倍以上,该处理单元可提高污水的生化性能;而单独BAF处理,COD去除率仅为22.5%,表明该污水生化性能较差(BOD5/COD=0.117)且出水COD浓度也不能达到排放标准;O3/UV-BAF联合工艺对印染废水则呈现良好的处理,出水COD去除率达到46.93%,UV254去除率为39.73%。此外,该联合工艺对色度、TN和TP也具有较好的去除效果,去除率分别为54%、34.52%和53.81%,均可达到排放标准。通过对O3/UV-BAF一体化中试设备的评估,为管式O3/UV高级氧化大规模工程应用提供技术支撑。  相似文献   

6.
臭氧氧化法处理反渗透浓缩垃圾渗滤液   总被引:7,自引:1,他引:6  
采用臭氧氧化法处理经反渗透膜处理后的浓缩垃圾渗滤液,考察了反应时间、臭氧投量、pH和温度对COD,色度以及浓缩液中腐殖酸的去除影响,通过BOD5/COD变化分析了臭氧氧化对浓缩液生化性的提高作用。结果表明:在pH 8.0,温度30℃,臭氧投量5 g/h,反应时间90 min的条件下,浓缩液的COD、色度以及浓缩液中腐殖酸的去除率分别达到67.6%、98.0%和86.1%, BOD5/COD从0.008提升到0.26,生化性有很大提高。  相似文献   

7.
针对垃圾焚烧渗沥液经"厌氧-缺氧-好氧"生物组合工艺处理后的出水COD仍在500 mg·L-1左右,且可生化性差(B/C=0.13)的问题,研究采用"臭氧-过硫酸盐"氧化体系进一步处理,以提高其可生化性。研究了臭氧和过硫酸盐投量对该废水处理的效果影响。结果表明,臭氧浓度和S2O2-8浓度分别为19.8 g·m-3和0.4 g·L-1时,且反应20 min,出水的B/C从0.13提高到0.49,表明该氧化体系适用于深度处理垃圾焚烧渗沥液生物组合工艺处理后的出水。采用紫外-可见光谱、三维荧光光谱、红外光谱和气质联用对处理系统废水中有机物进行表征分析,表明废水在"臭氧-过硫酸盐"氧化过程中芳香族化合物发生了开环、断链等反应,芳构化程度降低,不饱和的CC键被破坏,产生CO和C—O键,并生成一些结构简单的长链烷烃。自由基捕获研究表明,氧化体系中·OH和·SO4- 2种自由基均存在,以臭氧直接氧化为主。  相似文献   

8.
采用液相化学沉淀法制备了易于回收的磁性碳纳米管催化剂,应用于催化湿式氧化实验处理垃圾转运站渗滤液。结果表明,在反应温度为200 ℃,n(COD)∶n(H2O2)=1∶1.8,时间为60 min,催化剂添加量为0.1 g·L−1的最佳条件下,垃圾渗滤液的COD去除率达到86.38%。出水可溶解性有机物(DOM)的紫外和三维荧光分析表明,实验对芳香族化合物和腐殖质的去除效果良好,可生化性提高。磁性碳纳米管在外加强磁场作用下30 s内便可实现快速分离,重复5次使用回收率可达90%。  相似文献   

9.
采用O3、H2O2/O3及UV/O3等高级氧化技术(AOPs)对某焦化公司的生化出水进行深度处理,考察了O3与废水的接触时间、溶液pH、反应温度等因素对废水COD去除率的影响,确定出O3氧化反应的最佳工艺参数为:接触时间40min,溶液pH8.5,反应温度25℃,此条件下废水COD及UV254的去除率最高可达47.14%和73.47%;H2O2/O3及UV/O3两种组合工艺对焦化废水COD及UV254的去除率均有一定程度的提高,但H2O2/O3系统的运行效果取决于H2O2的投加量。研究结论表明,单纯采用COD作为评价指标,并不能准确反映出O3系列AOPs对焦化废水中有机污染物的降解作用。  相似文献   

10.
Fenton's pre-treatment of mature landfill leachate   总被引:20,自引:0,他引:20  
Lopez A  Pagano M  Volpe A  Di Pinto AC 《Chemosphere》2004,54(7):1005-1010
The aim of this study was to check the effectiveness of the Fenton's reagent (Fe2+ + H2O2 + H+) for the pre-treatment of a municipal landfill leachate with the objective of improving its overall biodegradability, evaluated in terms of BOD5/COD ratio, up to a value compatible with biological treatment. The leachate came from a municipal sanitary landfill located in southern Italy and the average values of its main parameters were: pH=8.2; COD=10,540 mgl(-1); BOD5=2,300 mgl(-1); TOC=3,900 mgl(-1); NH4-N=5210 mgl(-1); conductivity=45,350 microScm(-1); alkalinity=21,470 mgl(-1) CaCO3. The effect of initial pH value on the pre-treatment effectiveness was evaluated by titrating the amount of acidic by-products formed. The extent of leachate oxidation was monitored and controlled by both pH and redox potential measurements. The best operational conditions for achieving the desired goal (i.e., BOD5/COD> or =0.5) resulted: Fe2+=275 mgl(-1); H2O2=3,300 mgl(-1); initial pH=3; reaction time=2 h. At the end of the Fenton's pre-treatment, in order to permit a subsequent biological treatment, residual ferric ions were removed increasing the pH up to 8.5 by adding 3 gl(-1) of Ca(OH)2 and 3 mgl(-1) of a cationic polyelectrolyte, the latter as an aid to coagulation. This final step also resulted in a further modest removal of residual COD due to co-precipitation phenomena.  相似文献   

11.
INTENTION, GOAL, SCOPE, BACKGROUND: Since the intermediate products of some compounds can be more toxic and/or refractory than the original compund itself, the development of innovative oxidation technologies which are capable of transforming such compounds into harmless end products, is gaining more importance every day. Advanced oxidation processes are one of these technologies. However, it is necessary to optimize the reaction conditions for these technologies in order to be cost-effective. OBJECTIVE: The main objectives of this study were to see if complete mineralization of 4-chlorophenol with AOPs was possible using low pressure mercury vapour lamps, to make a comparison of different AOPs, to observe the effect of the existence of other ions on degradation efficiency and to optimize reaction conditions. METHODS: In this study, photochemical advanced oxidation processes (AOPs) utilizing the combinations of UV, UV/H2O2 and UV/H2O2/Fe2+ (photo-Fenton process) were investigated in labscale experiments for the degradation and mineralization of 4-chlorophenol. Evaluations were based on the reduction of 4-chlorophenol and total organic carbon. The major parameters investigated were the initial 4-chlorophenol concentration, pH, hydrogen peroxide and iron doses and the effect of the presence of radical scavengers. RESULTS AND DISCUSSION: It was observed that the 4-chlorophenol degradation efficiency decreased with increasing concentration and was independent of the initial solution pH in the UV process. 4-chlorophenol oxidation efficiency for an initial concentration of 100 mgl(-1) was around 89% after 300 min of irradiation in the UV process and no mineralization was achieved. The efficiency increased to > 99% with the UV/H2O2 process in 60 min of irradiation, although mineralization efficiency was still around 75% after 300 min of reaction time. Although the H2O2/4-CP molar ratio was kept constant, increasing initial 4-chlorophenol concentration decreased the treatment efficiency. It was observed that basic pHs were favourable in the UV/H2O2 process. The results showed that the photo-Fenton process was the most effective treatment process under acidic conditions. Complete disappearance of 100 mgl(-1) of 4-chlorophenol was achieved in 2.5 min and almost complete mineralization (96%) was also possible after only 45 min of irradiation. The efficiency was negatively affected from H2O2 in the UV/H2O2 process and Fe2+ in the photo-Fenton process over a certain concentration. The highest negative effect was observed with solutions containing PO4 triple ions. Required reaction times for complete disappearance of 100 mgl(-1) 4-chlorophenol increased from 2.5 min for an ion-free solution to 30 min for solutions containing 100 mgl(-1) PO4 triple ion and from 45 min to more than 240 min for complete mineralization. The photodegradation of 4-chlorophenol was found to follow the first-order law. CONCLUSION: The results of this study showed that UV irradiation alone can degrade 4-CP, although at very slow rates, but cannot mineralize the compound. The addition of hydrogen peroxide to the system, the so-called UV/H2O2 process, significantly enhances the 4-CP degradation rate, but still requires relatively long reaction periods for complete mineralization. The photo-Fenton process, the combination of homogeneous systems of UV/H2O2/Fe2+ compounds, produces the highest photochemical elimination rate of 4-CP and complete mineralization is possible to achieve in quite shorter reaction periods when compared with the UV/H2O2 process. RECOMMENDATIONS AND OUTLOOK: It is more cost effective to use these processes for only purposes such as toxicity reduction, enhancement of biodegradability, decolorization and micropollutant removal. However the most important point is the optimization of the reaction conditions for the process of concern. In such a case, AOPs can be used in combination with a biological treatment systems as a pre- or post treatment unit providing the cheapest treatment option. The AOP applied, for instance, can be used for toxicity reduction and the biological unit for chemical oxygen demand (COD) removal.  相似文献   

12.
The removal performance of typical refractory organic compounds in landfill leachate was investigated during the electrochemical (EC) oxidation and anaerobic process combined treatment system in this paper. The results indicated that the treatment of landfill leachate by the combined system was highly effective. The toxicity of leachate was notably decreased after the electrochemical oxidation process and the biodegradability was improved. The concentration of the organic acid with low molecular weight in the leachate increased from 28% to 90% based on the biodegradability assays after the EC oxidation process. The anaerobic digestion could further remove the residual organic compounds. At a hydraulic retention time (HRT) of 16 hours and an organic loading rate (OLR) of 8 kg COD/m3 d, the concentration of COD, SS, ALK, VA, N-TKN, N-NH4+ and P-PO4(3)- [corrected] in UASB effluent were 532, 12, 6744, 400, 540, 455 and 11.6 mg/L, respectively, with approximately 90% removal efficiency of COD. The organic compounds in the landfill leachate revealed different degradation characteristics in the combined system. p-chloroaniline, bisphenol A, 6-methyl-2-phenyl-quinoline, dimethylnaphthaline and N'-(2-methyl-4-chlorophenyl)-N-cyclohexyformamidine, classified into the first group in this paper, were completely removed by the EC oxidation and did not reappear in the effluent of the UASB reactor. Phenylacetic acid, 3-methyl-indole and N-cyclohexyl-acetamide, called the second group, were completely removed, but reappeared in the UASB reactor. 4-methyl-phenol, 3,4-dihydroisoquinoline, 2(3H)-benzothiazolone, exo-2-hydroxycineole and benzothiazole, the third group, were degraded little in the EC oxidation process, but extensively removed by the anaerobic process. Benzoic acid, benzenepropanoic acid and 2-cyano-3,5-dimethyl-1-hydroxypyrrole, the fourth group, concentration obviously increased in the EC process, but was completely removed in the UASB reactor. The content of volatile fatty acids (VFAs) markedly increased from 0.68% in the leachate to 16.18% in the effluent from the electrochemical oxidation process (EC(effl)). In addition, the degradation rate of organic compounds from the landfill leachate was different in the EC oxidation and anaerobic process.  相似文献   

13.
电化学氧化法处理垃圾渗滤液纳滤浓缩液   总被引:2,自引:0,他引:2  
实验利用电化学氧化法处理垃圾渗滤液纳滤浓缩液,以提高废水的可生化性。研究考察了水力停留时间、进水流量、循环流量、电流强度和原水氯离子浓度对有机物去除的影响。研究结果表明,电化学氧化法的最佳运行条件如下:水力停留时间为 3 h,进水流量为1 m3/h,循环流量为15 m3/h,电流强度为420 A。在上述条件下,原水COD浓度从3 100 mg/L降到1 311.3 mg/L,去除率达到57.7%,BOD/COD值由0.03提升至0.31。氯离子对电解有促进作用,但原水氯离子浓度超过5 000 mg/L,不需要外加工业盐。  相似文献   

14.
采用多孔碳素阴极、Ti/SnO2-Sb2O5-IrO2阳极构建电化学氧化系统用于渗滤液的深度处理。研究结果表明,所构建的电化学氧化系统通过阳极氧化和电-Fenton氧化2种机制降解有机污染物;处理过程中阴极表面形成的沉淀物对TOC和COD的衰减也产生了影响。在阴极电位为-1.0 V、Fe2+ 初始浓度为0.5 mmol/L的条件下,电化学处理120 min获得了58% 的TOC去除;处理480 min COD去除率为55%,NH3-N去除率为99%,TN去除率为60%,色度几乎被完全去除。GC-MS分析结果表明,渗滤液中以腐殖质类物质为主的有机化合物被降解为分子量相对较小的有机物,直至完全矿化。联合阳极氧化和电-Fenton氧化机制的电化学处理方法为垃圾渗滤液深度处理提供了新的选择。  相似文献   

15.
在Ti(Ⅳ)和过氧化氢存在条件下,考察了臭氧化酸性苯乙酮溶液、硝基苯溶液和垃圾渗滤液(浙江衢州某垃圾填埋场)的预处理效能。结果表明,在pH2.86条件下,单独臭氧化处理对苯乙酮、硝基苯和垃圾渗滤液的COD去除率分别为10.1%、44%和28.6%。BOD,/COD值分别从原来的0.039、0.060和0.085提高到了0.130、0.158和0.174,仍属生化难降解废水。当体系加入Ti(Ⅳ)后,臭氧化苯乙酮和硝基苯的COD去除率分别达到了75.5%和65%,BOD;/COD则提高到了0.679和0.314,可生化性提升明显。对于垃圾渗滤液,只有当体系加入Ti(Ⅳ)和H22后,臭氧化COD的去除率达到66.6%,BOD、/COD提高至0.425。上述结果对酸性难降解废水的处理实际意义非常突出。  相似文献   

16.
研究比较了臭氧氧化(O3)、臭氧/活性炭氧化(O3/AC)、真空紫外/臭氧(VUV/O3)、真空紫外/臭氧/活性炭氧化(VUV/O3/AC)对甲基肼废水的处理效果,以甲基肼和COD去除率为指标,其中VUV/O3/AC最为有效。考察了活性炭投加量、臭氧投加量、初始pH值和活性炭使用次数等因素的影响。结果表明,反应最佳工艺条件为臭氧投加4.2 mg·min-1、pH值为9.60、活性炭投加量为6 g·L-1。反应60 min,甲基肼去除率可达99.3%,COD去除率可达75.7%。同时,探究了活性炭的重复使用效果,分析了反应过程的中间产物。  相似文献   

17.
Physical-chemical methods have been suggested for the treatment of low strength municipal landfill leachates. Therefore, applicability of nanofiltration and air stripping were screened in laboratory-scale for the removal of organic matter, ammonia, and toxicity from low strength leachates (NH4-N 74-220 mg/l, chemical oxygen demand (COD) 190-920 mg O2/l, EC50 = 2-17% for Raphidocelis subcapitata). Ozonation was studied as well, but with the emphasis on enhancing biodegradability of leachates. Nanofiltration (25 degrees C) removed 52-66% of COD and 27-50% of ammonia, the latter indicating that ammonia may in part have been present as ammonium salt complexes. Biological pretreatment enhanced the overall COD removal. Air stripping (24 h at pH 11) resulted in 89% and 64% ammonia removal at 20 and 6 degrees C, respectively, the stripping rate remaining below 10 mg N/l h. COD removals of 4-21% were obtained in stripping. Ozonation (20 degrees C) increased the concentration of rapidly biodegradable COD (RBCOD), but the proportion of RBCOD of total COD was still below 20% indicating poor biological treatability. The effect of the different treatments on leachate toxicity was assessed with the Daphnia acute toxicity test (Daphnia magna) and algal growth inhibition test (Raphidcocelis subcapitata). None of the methods was effective in toxicity removal. By way of comparison, treatment in a full-scale biological plant decreased leachate toxicity to half of the initial value. Although leachate toxicity significantly correlated with COD and ammonia in untreated and treated leachate, in some stripping and ozonation experiments toxicity was increased in spite of COD and ammonia removals.  相似文献   

18.
A new bioassay proposed in the patent P201300029 was applied to a pre-treated wastewater containing a mixture of commercial pesticides to simulate a recalcitrant industrial wastewater in order to determine its biodegradability. The test uses a mixture of standardized inoculum of the lyophilized bacteria Pseudomonas putida with the proper proportion of salts and minerals. The results highlight that biodegradation efficiency can be calculated using a gross parameter (chemical oxygen demand (COD)) which facilitates the biodegradability determination for routine water biodegradability analysis. The same trend was observed throughout the assay with the dehydrated and fresh inoculums, and only a difference of 5 % in biodegradation efficiency (E f) was observed. The obtained results showed that the P. putida biodegradability assay can be used as a commercial test with a lyophilized inoculum in order to monitor the ready biodegradability of an organic pollutant or a WWTP influent. Moreover, a combination of the BOD5/COD ratio and the P. putida biodegradability test is an attractive alternative in order to evaluate the biodegradability enhancement in water pre-treated with advanced oxidation processes (AOPs).  相似文献   

19.
炼油高浓度有机废碱水是石化行业中很难降解的废水.本实验用光化学氧化技术对其进行了降解研究,比较了紫外光/空气、紫外光/O3、紫外光/空气/H2O2系统的处理效果.结果表明,光化学氧化技术降解此废水是可行的,紫外光可使废水中COD、油、酚的降解率明显提高.当废水中O3的投加量每小时为22 mg/L,或H2O2投加量为1%/L时,UV/O3法与UV/空气/H2O2法的降解效果相近.同时,通过控制O3浓度或H2O2的投加量等条件,可使废水中COD、油、酚和硫化物降解到地方污染物二级排放标准.  相似文献   

20.
在静态水培实验条件下,对不同浓度垃圾渗滤液条件下凤眼莲的生长状况及其净化效果进行了研究。结果表明,在高浓度(COD 3 546.7 mg/L、NH3-N 527.5 mg/L、TP 8.02 mg/L)垃圾渗滤液条件下(HCL)凤眼莲全部被毒害致死,在中浓度(COD 1 233.3 mg/L、NH3-N 182.9 mg/L、TP 2.83 mg/L)垃圾渗滤液条件下(MCL)生长状况差,生物量减少为实验前的32.6%。在低浓度(COD 660.0 mg/L、NH3-N 99.7 mg/L、TP 1.59 mg/L)垃圾渗滤液条件下(LCL)能够正常生长,且对低浓度垃圾渗滤液有较好的净化效果。24 d后COD、NH3-N和TP的去除率分别为85.9%,99.8%和84.8%。COD与NH3-N均达到《生活垃圾填埋场污染控制标准(GB16889-2008)》排放标准,TP达到《地表水环境质量标准(GB 3838-2002)》Ⅳ类排放标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号