首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 181 毫秒
1.
南昌市秋季大气PM2.5中金属元素富集特征及来源分析   总被引:4,自引:2,他引:4  
采集2013年秋季南昌市6个不同区域的大气PM_(2.5)样品,分析PM_(2.5)质量浓度及其中18种金属元素(Mg、Al、K、Ca、Ti、V、Ba、Co、Cr、Mn、Fe、Ni、Cu、Zn、Cd、Pb、As、Hg)的富集特征,并用多元统计分析法探讨了PM_(2.5)中上述元素主要来源.结果表明,南昌市秋季大气PM_(2.5)日均质量浓度满足《环境空气质量标准》(GB 3095-2012)二级标准限值(≤75μg·m~(-3)).Mn、Ti、Al和V的富集因子小于1.0,表明这些元素基本没有富集;Fe、Cr、Co、K、Mg、Ba、Ca、Cu和As的富集因子范围为1.7~7.8,表明这些元素受到自然源和人为源的共同影响;Hg、Zn、Pb、Ni和Cd的富集因子范围为21.9~481.2,表明这些元素受到明显的人为污染.综合相关分析、主成分分析和聚类分析结果表明:PM_(2.5)中Mg、K、Al、Ca、Ti主要来源于土壤及建筑尘;As、Hg主要来自燃煤;Ba、Ni、Mn主要来自金属冶炼排放;V、Cu、Fe、Cd、Pb、Cr、Co主要来自交通源;Zn主要受金属冶炼和燃煤的影响.  相似文献   

2.
为了了解金属元素的污染特征和潜在来源,以及重金属元素的风险水平,本研究于2015年4月至2016年1月采集了厦门海沧区不同类型站点四季大气PM_(2.5)样品348份,用X射线荧光分析仪(XRF)测定了其中K、Ca、Na、Mg、Al、Zn、Cu、Fe、Ti、As、V、Mn、Ba、Co等14种金属元素的质量浓度.本研究分析了码头、生活区、工业区和背景区这4个类型站点PM_(2.5)中金属元素的时空分布特征,综合利用富集因子法和健康风险评价模型进行了金属元素的污染评价,并采用相关性分析、主成分分析和后向气团轨迹初步探讨了金属元素的来源.结果表明,采样期间厦门海沧区PM_(2.5)中14种金属元素总质量浓度在PM_(2.5)中的占比为5.4%~10.6%.金属元素总质量浓度的时空变化特征与PM_(2.5)的较为一致,均表现为春冬季浓度高于夏秋季,海润码头和新阳工业区高于海沧分局和市委党校.而夏季海润码头和海沧分局PM_(2.5)日均值超标率较高的现象,与海润码头作业以及风向有关.新阳工业区Zn的质量浓度最高,市委党校次之;海润码头V的质量浓度最高,夏季海沧分局易出现V的浓度高值;均说明污染源站点(新阳工业区和海润码头)排放的污染物对其附近站点的金属元素质量浓度产生了影响.K质量浓度冬季最高,As超标现象出现在冬季和春季,说明冬季生物质燃烧以及燃煤等燃烧排放对大气污染的影响较为严重.Cu、Zn、As、Co、Na和Mn在各站点的富集因子范围为67~8449,富集均较严重.非致癌重金属Zn、Cu、Mn风险值之和低于一般可接受的风险水平(1×10~(-6)a~(-1)),其中Mn对总风险值的贡献范围为74%~88%.综合相关性分析和主成分分析结果表明,厦门海沧区PM_(2.5)中金属元素主要来源于地面扬尘、机动车排放、燃煤和工业排放以及船舶排放,各来源分别可以解释变量的34.5%、12.5%、10.6%、7.8%.后向气团轨迹表明春、秋和冬季均受到局地气团的影响,而夏季气团运动相对较强;春冬季途经长三角内陆的气团可能导致PM_(2.5)浓度偏高.  相似文献   

3.
为了探究新乡地区年际间冬季PM_(2.5)组分的变化特征和污染来源,于2015年冬季和2016年冬季分别在新乡市区进行连续1个月的膜采样,测定PM_(2.5)质量浓度、金属元素含量及其水溶性离子成分含量,并结合气象因素进行分析.结果表明,新乡地区2015年和2016年冬季采样期间PM_(2.5)的质量浓度日均值分别为226μg·m~(-3)和224μg·m~(-3),污染水平较高.观测期间,新乡冬季PM_(2.5)中Cd和Pb金属元素富集明显,富集因子超过1000.且与2015年相比,2016年金属元素(除Ag和Ni)浓度下降约7. 83%~73. 33%,富集程度均趋于降低.水溶性离子以SO_4~(2-)、NO_3~-和NH_4~+这3种为主,2016年在PM_(2.5)中占比上升25. 1%.综合两种成分分析,新乡地区的PM_(2.5)污染呈现出金属污染向二次水溶性离子污染转移的趋势.综合PCA和PMF源解析结果显示,新乡市冬季有4种主要排放源,即尘土、二次源、工业源和化石燃料燃烧源,2015年冬季主要来源是土壤和建筑扬尘混合源,贡献率37. 46%,2016年主要来源是交通及工业生产中的二次气溶胶污染源,贡献率为34. 94%.  相似文献   

4.
天津市春季道路降尘PM2.5和PM10中的元素特征   总被引:1,自引:0,他引:1  
为探究天津市春季道路降尘中元素污染特征及来源,于2015年春季采集了天津市道路降尘样品,通过再悬浮得到PM_(2.5)和PM_(10)滤膜样品,继而测定了滤膜样品中16种元素的含量,通过非参数检验、分歧系数法、富集因子法等研究了道路降尘中元素的污染特征、来源和成分谱的相似性.结果表明,天津市春季道路降尘PM_(2.5)和PM_(10)质量分数平均值在1%~20%之间的元素从大到小依次为:SiAlCaFeMgKNa;PM_(10)和PM_(2.5)中元素成分谱分歧系数为0.06,表明两者元素成分谱很相似;PM_(10)和PM_(2.5)中,元素Cd和Cr强烈富集,Zn、Cu、Pb和As显著富集;道路降尘PM_(2.5)和PM_(10)中元素主要来源于土壤风沙尘、建筑尘、交通尘(汽车尾气的排放、轮胎磨损和刹车片磨损)和煤烟尘.  相似文献   

5.
于山东省菏泽市采集了2017年10月15日至2018年1月31日期间菏泽学院、华润制药和污水处理厂共3个采样点的大气PM2.5样品,利用电感耦合等离子体质谱仪(ICP-MS)测定PM2.5中21种金属元素的浓度,并讨论元素富集程度、评估重金属的健康风险和潜在生态风险.结果表明,采样期间3个采样点中ρ(PM2.5)范围为26.7~284.1 μg·m-3且浓度值差别不大,均处于较高污染水平;3个采样点金属元素中K浓度最高,分别占总量的31.03%、39.47%和38.43%,主要由于菏泽作为较大农业城市,其秋冬季生物质燃烧贡献率较高;3个采样点微量元素中ρ(Zn)最高,分别为89.70、84.21和67.68 ng·m-3.富集因子结果表明,Zn、Pb、Sn、Sb、Cd和Se的富集因子值均高于100,其中Cd和Se的富集因子分别高于2 000和4 000,受人为活动影响显著,可能与工业生产、金属冶炼、道路源和燃煤排放等有关.健康风险结果表明,As存在一定的潜在非致癌风险(儿童和成人HQ>0.1),3个采样点对儿童和成人均存在综合潜在非致癌风险(HI>0.1)和一定的潜在致癌风险(CRT>1×10-6),其中污水处理厂对成人的致癌风险较为显著(CRT>1×10-4),成人的致癌风险略高于儿童可能与成人室外活动时间较长和PM2.5暴露量更高有关.潜在生态风险值最高的元素为Cd、As和Pb,其中Cd表现为极高的潜在生态风险,应引起重视;3个采样点均呈现出极高的综合潜在生态风险,强度在空间上表现为:菏泽学院>华润制药>污水处理厂.  相似文献   

6.
2005年四季在北京市不同功能区9个采样点采集大气PM10和PM2.5样品,并对其中有机物污染水平、分布特征及不同功能区PM10和PM2.5中有机物的相关性进行了探讨.结果表明,市区PM10和PM2.5中有机物年均值分别为41.39 μg/m3和34.84 μg/m3,是对照区十三陵的1.44倍和1.26倍;冬季有机物污染最严重,分别为春季的1.15、 1.82倍,秋季的2.06、 2.26倍,夏季的4.53、 6.26倍.不同季节PM2.5与PM10中EOM的比值超过0.60, 并呈现一定季节差异.各功能区有机污染表现出工业区(商业区)>居民区(交通区、对照区)的变化趋势,且不同功能区PM2.5中EOM对PM10中EOM的影响程度各异.有机组分的年均值有非烃>沥青质>芳烃>饱和烃的变化规律,而污染源的季节性排放是造成有机物组分季节变化的主要原因.  相似文献   

7.
为探讨盘锦市冬季PM_(2.5)水溶性离子污染特征和来源,于2017年1月采集3个点位的PM_(2.5)样品,用ICS-900离子色谱仪分析了8种离子(Na~+、Mg~(2+)、Ca~(2+)、K~+、NH_4~+、SO_4~(2-)、Cl~-和NO_3~-).开展了PM_(2.5)和离子浓度特征分析、硫氧化率(SOR)和氮氧化率(NOR)计算、离子平衡计算、主成分分析等.结果表明:盘锦市冬季PM_(2.5)浓度与水溶性离子浓度特征为文化公园开发区第二中学;SO_4~(2-)、NO_3~-、NH_4~+质量浓度较大;冬季硫氧化率(SOR)和氮氧化率(NOR)的均值均大于0.10,说明SO_4~(2-)、NO_3~-主要由SO_2和NO_x转化而来;阳离子和阴离子当量相关性较强;开发区整体上呈现出中性,文化公园与第二中学呈现出偏碱性;盘锦市PM_(2.5)中水溶性离子主要来源于煤烟尘,生物质燃烧,二次粒子以及扬尘.  相似文献   

8.
兰州城区大气PM2.5污染特征及来源解析   总被引:2,自引:5,他引:2  
王新  聂燕  陈红  王博  黄韬  夏敦胜 《环境科学》2016,37(5):1619-1628
为探究兰州城区PM_(2.5)的污染特征及其来源,分别在兰州市城关区和西固区设置PM_(2.5)采样点,于2013年10月(非采暖期)和12月(采暖期)采集样品并进行分析,得到了PM_(2.5)及其16种化学组成的质量浓度.结果表明,兰州城区PM_(2.5)污染水平较高,平均质量浓度为129μg·m~(-3).样品无机元素平均质量浓度为:SCaFeAlMgPbZnMnTiCu,其中S、Ca、Fe、Al的质量浓度在1μg·m~(-3)以上,是主要元素组分;样品各无机元素质量浓度表现为采暖期高于非采暖期,城关区高于西固区.样品水溶性离子平均质量浓度为:SO~(2-)_4NO~-_3NH~+_4Cl~-K~+Na~+,其中SO~(2-)_4、NO~-_3、NH~+_4的质量浓度在10μg·m~(-3)以上,是主要离子组分;样品各水溶性离子质量浓度表现为采暖期高于非采暖期,西固区高于城关区.富集因子(EF)分析结果表明,元素Al、Ca、Mg、Ti的EF值均小于1以自然来源为主;元素Cu、Pb、S、Zn的EF值显著大于10,表明这4种元素在PM_(2.5)中高度富集,且主要源于人为活动造成的污染.主成分分析结果表明,交通排放源、生物质燃烧源、土壤源和二次粒子对兰州城区大气PM_(2.5)贡献显著.  相似文献   

9.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

10.
PM2.5水溶性离子特征研究主要集中在大中型城市,为探讨珠海市PM2.5水溶性离子特征及来源,2016年6月至12月采集PM2.5样品,用离子色谱分析9种水溶性离子浓度。结果表明:珠海PM2.5总离子浓度处于较低水平,离子浓度有季节变化特征,表现为冬季>秋季>夏季;夏、秋季PM2.5呈碱性,冬季显酸性;从夏季到冬季,SO42-和NH4+在总离子中比例有减小趋势,NO3-比例有增大趋势。SO42-、NO3-、NH4+为主要组成成分,占离子总成分的85.07%,表明珠海市大气PM2.5二次污染较严重,NO3-/ SO42-均值0.2,表明以固定源污染为主。从气团聚类、离子相关性、富集因子分析和主因子分析等角度讨论来源和存在形式,珠海PM2.5水溶性离子受气团影响较大,来自陆地气团的离子浓度高于海洋气团;夏季到冬季,PM2.5受到80.2%的人为源和海洋源的混合源和16%的农业源贡献,离子主要存在形式有NH4HSO4、Mg(NO3)2、KNO3、Ca(NO3)2、NH4NO3、NaCl、KCl和CaCl2。  相似文献   

11.
为了探究郑州-新乡地区PM_(2. 5)中各化学组成的污染特征和可能来源,用中流量大气采样器于2016年冬季分别在郑州、新乡市区进行连续1个月大气PM_(2. 5)膜采集,利用重量法、电感耦合等离子体质谱法(ICP-MS)和离子色谱法分别进行了PM_(2. 5)浓度、17种金属元素的含量和7种水溶性离子含量的测定,并采用富集因子法和主成分分析法分析元素污染特征及其来源.结果表明,新乡地区2016年冬季PM_(2. 5)的质量浓度日均值为223. 87μg·m~(-3),郑州2016年冬季PM_(2. 5)质量浓度日均值为226. 67μg·m~(-3),两地污染水平相对较高.两地PM_(2. 5)中主要常量元素均为Al、Ca和Fe,约占17种元素总量的50%,而主要重金属含量差异明显,新乡PM_(2. 5)中重金属的含量均高于郑州地区,其中Cd、Ag和Pb富集因子超过1 000,新乡Cd元素富集突出.两地水溶性盐离子均以SO_4~(2-)、NO_3~-和NH_4~+这3种离子为主,占水溶性离子总量超过94%,(NH_4)_2SO_4和NH_4NO_3是两地PM_(2. 5)中主要存在形式.源解析结果显示,新乡2016年冬季的主要来源是生物质燃烧及二次气溶胶混合源,贡献率为34. 94%.郑州2016年冬季PM_(2. 5)的主要来源是燃煤及交通混合源,贡献率为33. 99%.  相似文献   

12.
北京大气PM2.5中微量元素的浓度变化特征与来源   总被引:17,自引:7,他引:17  
为了解北京大气细粒子中微量元素的污染水平和来源,在车公庄和清华园进行了连续1年、每周1次的PM2.5采样和全样品分析.微量元素浓度的周变化大,尤以冬季为甚,相邻2周最大相差达1.6倍;但除冬季的平均浓度较高之外,其季节变化并不显著.微量元素的富集因子在春季最低,反映了频繁发生的沙尘天气的影响.Se、Br和Pb的浓度比来自于北京A层土壤中的含量要高出约1000~8000倍,表明它们主要来自于人为污染.其中Se的富集度最高,反映了北京细粒子来自于燃煤污染的特征.Pb的年均浓度(0.31μg·m-3)虽然未超过WHO的年均标准,但与洛杉矶和布里斯班相比处于较高的水平;与Br、Se的比较分析表明,燃煤可能是Pb除机动车排放之外的另一个重要来源.  相似文献   

13.
2015年北京市两次红色预警期间PM2.5浓度特征   总被引:2,自引:1,他引:2  
利用北京市及周边地区大气污染物监测数据,综合分析了2015年北京市两次空气重污染红色预警期间PM2.5浓度变化特征并初步评估了减排措施对PM2.5浓度的影响.结果表明:第1次红色预警期间,北京市PM2.5平均最高小时浓度出现在12月9日19:00,为282μg·m-3,单站最高小时值出现在京东南市界永乐店站,浓度达496μg·m-3.第2次红色预警期间,PM2.5全市平均最高小时浓度出现在12月22日20:00,为421μg·m-3;单站最高小时值出现在京西南市界琉璃河站,浓度达831μg·m-3.两次红色预警累积持续时间均呈现出南部站 > 城区站 > 北部站的特征,且第2次红色预警期间PM2.5浓度南北差异明显大于第1次,PM2.5平均浓度在150μg·m-3以上的面积明显大于第1次,第2次红色预警期间重污染面积可达总面积的93%.两次预警期间气象条件均不利于污染物的扩散,均存在不同程度的二次转化和区域输送现象,极端气象条件是重污染形成的外因,区域污染物排放量大才是导致重污染形成的内因.初步评估结果显示红色预警应急措施实施后,北京市PM2.5环境浓度下降约20%~25%,减排效果显著.  相似文献   

14.
为研究我国中部地区不同类型城市夏季大气细颗粒物PM2.5中元素组成特征及来源,于2017年6月对平顶山、随州和武汉这3个站点空气中的PM2.5进行观测,采用电感耦合等离子体质谱仪(ICP-MS)对样品中Ti、Zn、Cu、Cr、As、Pb、Fe、Ni、Se、V、Sb、Cd和Co等13种元素进行分析,并结合富集因子法、主成分-多元线性回归分析方法(PCA-MLR)和后向气团轨迹聚类分析模型对3个站点的污染类型及污染来源进行分析.结果表明,平顶山、随州和武汉三地PM2.5的痕量元素中均以Zn元素浓度最高,As元素的浓度均超过环境空气质量标准(GB 3096-2012)年均浓度限值,3个站点的Pb和Cd浓度均较低.富集因子分析结果表明:Se、Sb、Cd、As、Cu和Zn元素富集因子系数均超过10,受人为污染严重,其中3个站点Se元素的富集因子系数均高于600. PCA-MLR和后向气团轨迹聚类分析结果表明:平顶山站点主要受工业污染/燃油(57. 90%)、交通污染源(24. 40%)、燃煤源(6. 10%)和矿区土壤源(11. ...  相似文献   

15.
上海市冬季PM_(2.5)无机元素污染特征及来源分析   总被引:3,自引:2,他引:3  
为了解高污染季节上海市细颗粒物PM2.5及其无机元素的污染特征和来源,于2013年1月4日至2月1日在上海3个点位采集PM2.5样品,并采用电感耦合等离子光谱仪(ICP-OES)测定样品中19种元素含量.结果表明,采样期间PM2.5污染水平较高,均值达(90.5±41.2)μg·m-3,且郊区明显高于市区和背景参照点.所测无机元素的空间分布规律与PM2.5一致,但背景参照点元素Zn的浓度较高.采样期间Cd、As、Zn、Pb、S和Cu等人为污染元素的富集因子较高.因子分析结果表明冬季上海市PM2.5具有多源性,主要来源于燃煤、自然尘、燃油以及机动车.  相似文献   

16.
为研究唐山市大气PM2.5中元素组成特征及其来源,于2017年10月19日—2018年1月31日(秋冬季)在唐山市的超级站(典型城市站点)、开平站(工业站点)和古冶站(工业站点)开展了PM2.5的手工连续采样,定量分析测定了PM2.5中23种无机元素.结果表明:Si、Al、Ca和Na等地壳元素的质量浓度均在10月最高,在1月最低.10月,ρ(Cr)在开平站最高(0.020 0 μg/m3),随后逐月略微降低,其主要受钢铁冶炼工业的减产和限产影响.多数重金属元素质量浓度在11月或12月最高,包括Zn、Pb、Mn、Cu、Ni、Se、V、Cd和Co,其可能受燃煤取暖影响.Cd、Zn、Pb和Cu四种元素的富集因子值分别为2 677、616、422和77,均达到极强富集,且均受人为排放源影响最大.基于因子分析法得出,唐山市大气PM2.5中元素的主要来源有燃煤源、钢铁工业源与扬尘源的混合源、交通源以及土壤扬尘源,其方差贡献率分别为56.3%、21.6%、7.1%、5.4%.研究显示,秋冬季唐山市大气颗粒物PM2.5中元素最主要的污染来源为工业源、燃煤源和扬尘源.   相似文献   

17.
北京市大气PM2.5中矿物成分的污染特征   总被引:6,自引:1,他引:6  
为了解北京市大气细粒子中矿物成分的浓度水平和污染特征,在清华园和车公庄进行了连续1a的PM2.5累积周采样和全样品分析.Al、Si、Ca、Mg和Fe等地壳元素的周变化相似,最大周均浓度均出现在春季有强沙尘天气的一周;其季节变化显著,显示季节性的源排放以及气象条件对矿物成分的含量影响显著.土壤尘的季节平均浓度从夏季逐步上升,至次年春季达到最高(21.1 μg·m-3),表明春季频繁发生的沙尘天气对土壤尘细粒子有重要贡献.大量的建筑活动可能大大增加了北京细粒子中Ca的负荷,应加强其排放控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号