首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
研究了高铁酸钾(K_2FeO_4)对处理活性污泥脱水性的效果,重点考察了不同pH和剂量条件下,K_2FeO_4调理对污泥过滤脱水特性和胞外聚合物(EPS)分布和组成的影响,以深入认识K_2FeO_4调理污泥的反应机制.研究表明,K_2FeO_4调理效果随pH值的降低而改善,其不仅有氧化裂解作用导致结合型EPS(BEPS)释放,同时其还原产物三价铁离子兼具混凝功效,能够通过电中和与界面吸附去除部分溶解性EPS(SEPS),同时压缩EPS结构,增强污泥絮体结构.此外,当pH值为3,K_2FeO_4投加量为0.1 g·g~(-1)(以TSS计)时,污泥过滤脱水速率和程度均达到最佳.过量投加K_2FeO_4(0.2 g·g~(-1),以TSS计)后,BEPS大量释放,污泥过滤阻力增加,脱水性能恶化.  相似文献   

2.
考察了不同声能密度(0.03,1.0,3.0,5.0W/m L)时超声作用对净水厂污泥脱水性能的影响,明确了污泥脱水性能变化的影响因素.结果表明,较低声能密度(0.03,1.0W/m L)超声作用少于10min时,污泥脱水性能可改善;而高声能密度条件下,无论超声时间长短,污泥的脱水性能均恶化.声能密度越高,污泥上清液中溶出有机物越高,絮体特性变化越明显,污泥脱水性能恶化程度越显著.在较低声能密度时,污泥的脱水性能与溶出有机物和污泥絮体特性变化无关;而在高声能密度(5.0W/m L)时,脱水性能的恶化程度与溶出有机物和絮体Zeta电位密切相关.  相似文献   

3.
活化过硫酸盐对市政污泥调理效果的影响   总被引:3,自引:2,他引:1  
常规污泥脱水技术只能将市政污泥含水率降到80%左右,难以满足日益严格的污泥处理处置要求.活化过硫酸盐产生硫酸根自由基SO4·-具有强氧化性,可用于破坏污泥的絮体结构.本研究利用Fe2+活化过硫酸钠(SPS)的方法进行污泥调理,以到达改善污泥的脱水性能的目的.结果表明,当Fe2+与S2O2-8投加量(以绝干污泥计)分别为25.88 mg·g-1、80 mg·g-1(Fe2+与S2O2-8摩尔比为1.1∶1)时,污泥毛细吸水时间CST和污泥比阻SRF降低率最大,滤液中蛋白质和多糖浓度达到最大.进一步的研究表明,污泥Zeta电位值由负向正变化,颗粒比表面积增大,絮体由密集的团状变成结构松散的层状结构,污泥脱水性能提高.  相似文献   

4.
污水处理厂剩余污泥处理问题已成为影响中国城市化进程健康发展的重要因素。为提高剩余污泥的脱水及厌氧消化性能,需对其进行预处理,以破坏污泥絮体结构,强化其脱水性能;释放胞内物质,改善其厌氧消化性能。过硫酸盐具有氧化能力强和易于活化等特性,国内外学者将其应用于污泥处理中,发现过硫酸盐活化后产生的SO_4~-·可以有效破解污泥絮体结构,导致污泥絮体内水分和污泥细胞内含物的释放。利用SO_4~-·破解污泥絮体,以提高污泥的脱水性和消化性能是一种较为可行的污泥处理方案。该文尝试梳理已发表的关于使用过硫酸盐处理污泥的研究,对过硫酸盐的活化方法及其在污泥处理中的作用机理和处理效果进行总结,探讨其在处理城市剩余污泥方向的应用前景。  相似文献   

5.
随着城市化进程的加快,我国剩余活性污泥的产生量逐年增加,活性污泥中的胞外聚合物EPS含黏性蛋白类物质并高度亲水,因此破坏污泥絮体、释放和水解黏性有机物是改善污泥脱水性能的有效途径。通过分析水热碳化调理前后污泥比阻(SRF)、黏度(μ)、絮体形态特征及上清液的理化性质,考察了温度、时间以及促进剂Fe_2(SO_4)_3对水热碳化污泥脱水性能的影响。结果表明:反应温度为220℃、反应时间为2 h、Fe_2(SO_4)_3浓度为0. 5 mol/L时的水热碳化处理,污泥的脱水性能最好,比阻和黏度分别比对照组降低了97. 7%和98. 7%。水热碳化的高温高压环境破坏了污泥的絮体,使污泥胶体结构的内聚力降低,污泥的脱水性能得到改善。  相似文献   

6.
采用均匀试验法设计城市污泥过滤脱水实验,分析了聚合氯化铝和生石灰对城市污泥过滤脱水性能的影响。结果表明:投加聚合氯化铝有利于更大絮体的形成,随着加药量的提高,污泥的比阻、压缩系数以及过滤时间均显著降低,最优剂量为10wt%左右;生石灰的添加破坏了污泥的絮体结构,提高了滤饼的渗透性,降低了污泥的压缩性和过滤阻力;对于超高可压缩的污泥,较高的过滤压力无益于脱水特性的改善。  相似文献   

7.
采用亚铁离子活化过硫酸盐调理污泥,探究其对污泥脱水性能的影响。以CST降低率和污泥沉降比为评价指标,借助响应面法的Box-Behnken试验设计,考察各实验因素对污泥脱水性能的交互影响,确定最优工艺条件,并对脱水机理进行分析。结果表明:Na_2S_2O_8投加量为125.24 mg/g DS,Fe~(2+)投加量为32.86 mg/g DS,pH值为6.8时,CST降低率达到89.35%,污泥脱水性能最好,三因素交互作用明显。对调理前后污泥样品的分析测试结果表明,该过程主要是Fe~(2+)活化激发S_2O_8~(2-)产生强氧化自由基SO_4~-·,将团聚紧密的污泥絮体破解为碎片状,形成孔洞结构,附着在污泥颗粒上的胞外聚合物发生溶解,这些变化有利于结合水的脱除。  相似文献   

8.
以污泥中水的4种形态(重力水、封闭水、包裹水、结合水)含量变化为评价指标,探讨厌氧消化(Anaerobic digestion,AAD)和好氧消化(Aerobic digestion,AD)两系统处理过程中污泥所含水的形态变化及其对污泥脱水性能的影响.结果表明:处理前污泥结合水含量约占污泥总水分的3.5%,其含量几乎不随消化过程而产生改变.污泥厌氧酸化阶段由于污泥絮体中有机酸降解反应消耗了重力水及包裹水,使该阶段脱水性能下降;气化阶段由于产甲烷代谢反应及污泥絮体结构的破坏使重力水含量上升,此时污泥比阻(SRF)降低了36.5%.而污泥好氧的升温和降解阶段均伴随细胞裂解释放的蛋白酶对水与亲水性胶体结合能力的削弱,以及大分子有机物向小分子有机物的转化,使重力水含量增加了15.15%,封闭水含量下降了16.16%,污泥脱水性能提高,此时SRF下降了44.44%.相比于AD,AAD过程中各水形态含量和污泥胞外聚合物(EPS)各组分之间无显著相关性,而AD处理后的污泥紧密层EPS(TB-EPS)中多糖含量与封闭水含量呈正相关(r=0.628),表明污泥好氧消化过程中TB-EPS中多糖的降解更有助...  相似文献   

9.
为探讨缺氧酸化联合零价铁(ZVI)-过氧化氢(H_2O_2)调理对污泥脱水性能的影响,本文通过单因素试验,以污泥比阻(SRF)作为参考指标,系统考察了调理条件对污泥脱水性能的影响.同时,在试验的最佳调理条件下,分析了污泥各层胞外聚合物(EPS)有机物质量浓度及荧光光谱强度以阐明该联合作用机理.结果表明,当初始pH为2,ZVI投加量为280 mg·g~(-1)(以干污泥量(DS)计,下同),缺氧时间为4 h,H_2O_2投加量为30 mg·g~(-1)(以DS计,下同),类芬顿反应时间为10 min时,SRF降低了90.39%,处理效果较单独类芬顿处理提升了1倍.机理探究试验表明,在缺氧条件下,酸化处理可加速污泥的水解,溶解得到更多的二价铁离子,促使EPS结构发生改变;ZVI-H_2O_2调理可有效地氧化部分EPS,使得紧密结合胞外聚合物(TB-EPS)破解转化至松散结合胞外聚合物(LB-EPS)和上清液胞外聚合物(SB-EPS).EPS分析结果表明,蛋白质的减少能有效提高污泥脱水性能,腐殖酸和富里酸类有机物的产生能提高污泥疏水性能.此外,ZVI的再次利用效率高,重复利用仍能使SRF降低率达到82.04%.因此,缺氧酸化联合ZVI-H_2O_2处理能实现污泥的水解、氧化和絮凝过程,达到改善污泥脱水性能的目的.  相似文献   

10.
电絮凝污泥调理是近年来发展起来的一种新型污泥预处理技术,具有破解污泥絮体、溶出胞外聚合物、改变污泥颗粒结构等作用,是实现后端污泥稳定化和减量化的有效手段.本研究比较了传统化学絮凝与电絮凝调理对污泥脱水性能的影响,深入分析了调理过程对污泥过滤性能、EPS组分和絮体结构的改变,并在此基础上优化了电絮凝操作条件.结果表明,以...  相似文献   

11.
采用Fe2+活化过氧化钙(Fe2+/CaO2)提高剩余污泥的脱水性能,考察初始pH值、Fe2+和CaO2投加量对污泥脱水性能的影响,并进一步探究了实现污泥深度脱水的内在机制.结果表明,初始pH值为中性,Fe2+和CaO2投加量(以VSS计)分别为3.31 mmol·g-1和3.68 mmol·g-1时,污泥的脱水效果最好,污泥比阻(SRF)和含水率(WC)分别由20.99×1012 m·kg-1和86.61%降低至3.91×1012 m·kg-1和76.15%.Fe2+/CaO2的氧化使污泥微生物细胞裂解,胞内有机物释放,胞外聚合物(EPS)降解;同时,Fe3+促使污泥颗粒再絮凝形成致密、多孔的絮体结构,有利于EPS结合水释放,实现污泥深度脱水.从技术和经济角度来看,Fe2+/CaO2工艺经济实用,在提高剩余污泥脱水能力方面具有一定的应用前景.  相似文献   

12.
电化学处理改善剩余污泥脱水性能   总被引:5,自引:3,他引:2  
以毛细吸水时间(CST)作为衡量污泥脱水性能的指标,采用铱/二氧化钌电极板为阳极、钛/二氧化钌网状极板为阴极,对剩余污泥进行电化学处理,考察了电压、处理时间等因素对剩余污泥脱水性能的影响.结果表明,电压对污泥脱水性能影响较大,当电压为30V、极板间距为4cm、搅拌速率为100r.min-1、处理30min条件下污泥调理...  相似文献   

13.
探究基于臭氧旁路处理的污泥原位减量技术在不同臭氧含量以及不同污泥龄条件下的工艺参数和污泥性质.本研究发现75 mg·g-1(以O3/MLVSS计)为实现污泥减量并维持污水处理系统正常处理能力较为适宜的臭氧含量,该含量下的臭氧旁路处理后污泥产率系数Yh从0.331 g·g-1减少到0.326 g·g-1,衰减系数Kd从0.046 d-1增加到0.050 d-1,污泥产生速率减小,衰减速率增大,且污泥龄为10 d时SBR系统出水水质良好.即臭氧含量75 mg·g-1、污泥龄为10 d条件下的臭氧旁路处理为适宜的工艺条件,此时剩余污泥减量12%.该工艺条件下的臭氧旁路处理改变了剩余污泥中微生物在门和属上的种群丰度,臭氧旁路处理后拟杆菌门相对丰度增加1.2倍,与硝化和反硝化相关的变形菌门相对丰度从24%降低到18%,硝化细菌相对丰度的减少影响了污水处理系统的脱氮能力,但出水总氮仍满足一级B排放标准;在属上Lactococcus等乳酸菌的种群相对丰度从0.4%增加到21.6%.同时,剩余污泥胞外聚合物(EPS)中蛋白质与腐殖质类等大分子有机物比例增加,使CST值从15 s升高至17 s,Zeta电位从-10.04 mV下降至-15.20 mV,剩余污泥的SVI由54 mL·g-1升高至62 mL·g-1,说明沉降性能和脱水性能受到一定影响,但系统的出水SS含量以及抽滤后泥饼含固率变化不明显,系统仍能够稳定运行,未明显影响剩余污泥的后续脱水.  相似文献   

14.
探讨城市污泥生物沥浸过程中微生物菌群和胞外聚合物(EPS)变化对污泥脱水性能的影响,对进一步揭示生物沥浸法提高污泥脱水性能机理具有重要意义.本研究通过摇瓶试验探讨了硫杆菌和异养微生物菌群数量的变化及EPS在生物沥浸法提高城市污泥脱水性能中的作用.试验结果表明,在生物沥浸处理的前2 d内,由于硫杆菌A.ferrooxidans LX5和A.thiooxidans TS6的大量生长,导致生物沥浸污泥的pH从初始的4.62显著下降至2.47,进而导致污泥中异养菌数量从初始的2.65×108CFU·mL-1下降至8.20×106CFU·mL-1,污泥中EPS含量从初始的28.18 mg·g-1(以VSS计,下同)显著下降为13.53 mg·g-1.A.ferrooxidans LX5和A.thiooxidans TS6的大量生长、异养微生物细胞的死亡破裂及EPS含量的下降共同促使污泥的结合水含量从初始的37.28%下降至21.10%,最终导致污泥比阻从初始的5.14×1012m·kg-1显著下降至6.92×1011m·kg-1.通过验证试验发现,原始污泥在剥离EPS后其比阻仅为原来的11.23%,其脱水性能与生物沥浸2 d后的污泥在0.05水平上没有显著性差异.因此,污泥中A.ferrooxidans LX5、A.thiooxidans TS6和异养微生物菌群数量的改变及EPS含量的减少是生物沥浸法提高污泥脱水性能的两个重要因素.  相似文献   

15.
气升流速变化对SBR污泥颗粒化的作用及机理   总被引:1,自引:0,他引:1  
采用两个相同的SBR反应器:R1保持恒定气升流速3.0 cm·s~(-1),R2气升流速由3.0 cm·s~(-1)逐渐降低至1.0 cm·s~(-1),对比研究了气升流速变化对絮体污泥凝聚和颗粒化的作用.结果表明:R1中35 d后絮体污泥全部转变成均值粒径为564.59μm的颗粒污泥;R2中24 d后絮体污泥全部转变成均值粒径978.71μm的颗粒污泥.R2气升流速由3.0 cm·s~(-1)逐渐降至2.0 cm·s~(-1)时,污泥的分形维数(D2)增大;气升流速由2.0cm·s~(-1)逐渐降到1.6 cm·s~(-1)时,D2先下降后上升,污泥粒径比增长率为0.16±0.01,微生物颗粒表面所受的剪切解吸附率随粒径的增长由调整前的1.35×10~(-2)mg·cm~(-2)·d~(-1)(以VSS计,下同)略微降低后升高至1.88×10~(-2)mg·cm~(-2)·d~(-1),颗粒结构变得更加致密;气升流速小于1.6 cm·s~(-1)之后,旋涡尺度作用减弱,D2持续减小.总体上,当气升流速递减后,R2中污泥混合液流变特性发生了变化,形成的漩涡尺度大于R1,促使更多体积分数的污泥分布在漩涡尺度的耗散范围内,加剧耗散对应范围粒径大小的污泥剪切凝聚,加快了污泥颗粒化进程.  相似文献   

16.
以剩余污泥臭氧化过程中含磷物质的形态分布及变化规律为研究核心,分析了不同臭氧投加量下污泥样品中液相和固相中磷的形态,并探讨了不同磷形态与臭氧相关的释放性能.结果表明,臭氧投加量为0.15 g·g~(-1)时,液相总磷(TP_L)含量为38.26 mg·L~(-1),比氧化前污泥混合液中TP_L含量增加了29倍,因此,可将0.15 g·g~(-1)作为实际释磷工艺最佳臭氧投加量.臭氧氧化过程中污泥固相中各形态磷含量及其所占固相总磷(TP_S)比例的变化趋势基本相同.臭氧可提高污泥中磷潜在的生物可利用性,臭氧投加量为0.15 g·g~(-1)时,生物有效磷含量达20.74 mg·g~(-1),在TP_S中所占比例由原始污泥中的73.60%提高至86.27%.TP_L含量的增加主要来自污泥臭氧氧化过程中污泥解絮和溶胞,每溶解1 g MLSS向液相中释放TP_L的量为0.0324 g.  相似文献   

17.
探讨污泥中丝状真菌对污泥脱水性能的影响及其机制,对生物法强化污泥脱水技术的发展具有重要意义.本研究从剩余污泥中分离筛选可以提高污泥脱水性能的丝状真菌,并分析其改善污泥脱水性能的具体机制.结果表明,在剩余污泥中存在着可以促进污泥脱水性能改善的丝状真菌,从中分离筛选出1株毛霉属的真菌Mucor circinelloides ZG-3,该菌对改善污泥脱水性能具有良好的效果.该丝状真菌处理剩余污泥过程中污泥的脱水性能改善效果主要受到接种方式、接种浓度和污泥含固率的影响,其最适接种方式为菌丝体接种,最适接种浓度为10%,最适污泥含固率约为4%.在最适条件下处理污泥可使污泥比阻降低75.1%,显著改善污泥的脱水性能,并且处理后污泥溶液的COD值约为310 mg·L-1,处理后的污泥仍具有良好的沉降性能.M.circinelloides ZG-3处理剩余污泥过程中,污泥脱水性能的改善主要与污泥胞外聚合物(EPS)的降解和污泥p H的降低有关.因此,采用M.circinelloides ZG-3处理剩余污泥是一种非常有潜力的新型污泥调理技术.  相似文献   

18.
王嗣禹  刘灵婕  王芬  季民 《环境科学》2019,40(12):5430-5437
溶解氧(DO)是控制短程硝化的重要因素,其对不同的生物处理系统有不同的影响.本文研究了DO对悬浮污泥及生物膜系统短程硝化效果的影响,并利用高通量测序技术分析了微生物群落结构变化.结果表明,对于悬浮污泥系统,当DO从0. 25 mg·L~(-1)增加到0. 50 mg·L~(-1)时,氨氧化速率(AOR)从18. 08 mg·(L·h)-1升高至30. 27 mg·(L·h)-1;当曝气继续增加,DO达到3. 00 mg·L~(-1),仅运行14 d,进水氨氮(NH_4+-N)基本全部转化为硝酸盐氮(NO_3--N),且通过降低DO来恢复短程硝化效果需77 d,恢复过程缓慢.对于生物膜系统,DO由2. 50 mg·L~(-1)上升到3. 00 mg·L~(-1)的过程中,AOR稳定在11. 50~13. 50mg·(L·h)-1,当DO为3. 00 mg·L~(-1)时,80 d的运行结果显示,出水中氨氮与亚硝酸盐氮(NO_2--N)的比值可长期稳定在1∶1. 2~1∶1. 7,基本满足ANAMMOX工艺进水要求.微生物群落结构分析结果表明,悬浮污泥系统在DO从0. 25 mg·L~(-1)增加到3. 00 mg·L~(-1)的过程中,主要氨氧化菌(AOB)菌属Nitrosomonas丰度由10. 07%增长至18. 64%.当DO为3. 00 mg·L~(-1)时,生物膜系统中Nitrosomonas菌属丰度与悬浮污泥系统相近为20. 43%,且生物膜系统富集了0. 78%的ANAMMOX菌属Candidatus_Kuenenia.综上,生物膜系统内DO的变化受曝气量影响较小,短程硝化效果受DO影响较小,短程硝化速率更稳定,更适合作为ANAMMOX脱氮工艺的前处理单元.  相似文献   

19.
活性污泥厌氧Fe(Ⅲ)还原氨氧化现象初探   总被引:6,自引:3,他引:3  
李祥  林兴  杨朋兵  黄勇  刘恒蔚 《环境科学》2016,37(8):3114-3119
采用常规化学分析和微生物群落变性梯度凝胶电泳(DGGE)监测技术,探究了厌氧条件下活性污泥中Fe(Ⅲ)还原氨氧化(Feammox)反应的存在及微生物群落动态响应.结果表明,当反应器运行至第24 d时NH_4~+发生转化,同时检测到NO_3~-和Fe(Ⅱ)的生成,表明活性污泥中存在着Fe(Ⅲ)还原NH_4~+氧化反应,产物主要为NO_3~-和Fe(Ⅱ),并伴随少量N_2生成.经过84d培养,氨氮最大转化量达29.85 mg·L~(-1),转化率为59.7%,出水NO_3~-最高值达24.56 mg·L~(-1).活性污泥中Feammox为产酸过程,体系中p H值下降.整个培养过程中微生物群落条带分布发生变化,参与活性污泥中Feammox反应的部分群落在培养过程获得保留,部分优势菌群获得富集.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号