首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
塑料制品的广泛使用导致陆地生态系统积累大量塑料垃圾,其风化破碎后形成微/纳塑料残存于环境中,对土壤生态系统造成威胁。目前全球气候变化导致高温、干旱、强降雨等特殊天气发生愈加频繁,直接影响土壤生态环境。温度、降水等气候环境因子对土壤中微/纳塑料的赋存状态、迁移转化和生态毒性等能够产生不同程度的影响。该文综述了不同气候因子对土壤中微/纳塑料污染与迁移的影响以及各气候因子与微/纳塑料两者的联合效应,发现升温、干旱、冻融与洪涝现象均能在一定程度上提高土壤微/纳塑料丰度,加速微/纳塑料的老化;两者联合效应体现于土壤性质、养分循环和植物生长等方面;其中升温与干旱联合微/纳塑料对土壤碳氮循环存在显著影响。未来研究重点应从不同气候因子对土壤微/纳塑料的老化特征与环境行为的影响,以及对土壤中关键生物地球化学循环过程的影响机制等方面深入开展。  相似文献   

2.
微/纳塑料污染已成为亟待解决的全球性环境问题。微/纳塑料进入土壤后会长期累积在土壤中,并对土壤生态系统健康产生不良影响。该文从土壤生物健康效应和食物链传递风险角度综述了近年来国内外土壤微/纳塑料调查研究进展,分类介绍了土壤中微/纳塑料对植物、动物和微生物的影响及在陆地生物和食物链中的传递,并展望了土壤中微/纳塑料的未来研究方向。该文指出,微/纳塑料广泛存在于不同功能的土壤中,可以被植物吸收和动物摄食,通过食物链传递进入人体。未来需要加强土壤中微/纳塑料污染过程与生物健康效应研究,加强对微/纳塑料在土壤生态系统和食物链中传递的风险评估,为土壤中微/纳塑料的监测、管控和治理提供科学指导和技术方法参考。  相似文献   

3.
微塑料作为一种新型污染物,具有难以被彻底降解、在环境中分布广泛、易结合疏水性有机污染物和重金属等特性,已成为国内外学者研究的热点问题.近年来,微塑料在海水、淡水、沉积物、土壤和大气等环境介质中不断被报道,且数量不断增加,甚至在人口稀少的偏远地区均有微塑料的检出.微塑料尺寸较小极易被生物误食,微塑料及其结合的污染物对生态环境产生潜在风险.开展微塑料及其结合污染物鉴别分析技术是研究微塑料环境行为、生态毒理效应及风险防控的基础.本文梳理了微塑料的相关研究,总结和比较分析了不同介质(水体、土壤/沉积物、生物体、大气)中微塑料的采样、分离提取、定性(物理形态表征和化学组分鉴定)、定量(数量丰度和质量浓度)以及结合污染物的检测分析技术和方法,为相关领域的研究提供了方法学的参考.  相似文献   

4.
微塑料与有机污染物的相互作用研究进展   总被引:1,自引:0,他引:1  
微塑料(粒径小于5 mm的塑料)作为海洋中一种新型的污染物正受到越来越多的关注。微塑料在全球多个海域均有检出,根据其来源分为原生微塑料和次生微塑料。原生微塑料由人工直接制造所得,常见于日常生活用品中;次生微塑料由大块塑料制品长期风化、磨损和光解形成。塑料自身含有多种有机添加剂,不断向环境中释放,污染海洋环境;微塑料表面还可吸附有机污染物,此吸附作用受两者的物理化学性质和环境条件影响,吸附污染物后的微塑料生物毒性增强。另外,聚合物复合光催化材料可加快有机污染物如染料的光降解反应速率,因而微塑料可能会促进有机污染物的光解。针对目前微塑料对有机物光降解的贡献、机理鲜见研究的问题,未来应加强以下3方面的研究:(1)微塑料对不同有机污染物光降解是否存在影响?(2)微塑料类型、尺寸以及反应条件对有机污染物光降解如何影响?(3)微塑料对有机污染物光降解影响的内在机制是什么?  相似文献   

5.
水体有机污染是水质污染的主要问题。衡量有机污染的程度,最好进行有机污染的全分析,但十分困难。除规定的有毒有机污染物外,一般只测定有机污染综合指标来定量地反映水质有机污染程度。 有机污染综合指标主要有:生化需氧量(BOD) 是间接表示水体中可被生物降解的有机物含量的指标。化学需氧量(COD)是表征水中能被强氧化剂氧化分解的有机物含量的参数。总有机碳(TOC) 是以水样中的含碳量来表示有机物含量的,总需氧量(TOD)表示水中含C、N、H、S、P、M(金属) 的有机物完全氧化生成稳定无机氧化态的需氧量。紫外吸收(UVA或UV)是利用芳香族和一些具有不饱和双键的化合物对220—250nm波段的紫外光有强烈吸收的特性来测定污水中有机物的含量。此外尚有碳-氯仿提取物(CCE)和碳-醇提取物 (CAE),它们是先用活性碳吸附,再用氯仿或乙醇提取,脱去溶剂,恒重残渣即得结果。此法对含有杀虫剂的水样测定有明显的优点。主要有机污染综合指标测定方法的比较见表1。  相似文献   

6.
环境微塑料可吸附有机污染物,并与有机污染物进行相互作用从而改变其毒性效应,增加微塑料的治理难度.本文就全球范围内微塑料与有机污染物的相互作用及毒性效应的研究进展进行综述,分析不同介质中微塑料与有机污染物的共存水平、吸附机理、影响因素以及联合毒性效应等.研究表明,微塑料可作为多环芳烃(PAHs)、多氯联苯(PCBs)、六...  相似文献   

7.
微塑料一般是指粒径小于5 mm的塑料碎片,作为一种新污染物已经成为全球环境领域的研究热点.土壤作为环境中微塑料的最大储库,土壤中微塑料的污染逐渐引起重视并取得了一定的研究进展.本文系统了梳理了国内外土壤中微塑料的污染现状和污染特征,介绍了土壤中微塑料检测技术研究进展,重点探讨各类样品采集、前处理和和定性定量方法的优缺点以及对土壤中微塑料检测的适用性,分析了土壤中微塑料检测技术研究面临的主要挑战,提出未来土壤中微塑料污染调查与检测技术的研究方向,以期为科学开展土壤中微塑料污染风险治理与管控提供技术支撑.  相似文献   

8.
微塑料污染作为新型的生态环境问题,是全球共同面临的严峻挑战,其对生态系统的威胁及潜在风险已成为当前环境领域的研究热点。自然界中的微塑料与多种污染物共存所产生的复合污染,比微塑料单一污染造成的后果更严重,因此,对微塑料复合污染的内在机制研究及所采取的防控对策将更加复杂。该文按照土壤环境中与微塑料产生复合污染的污染物的不同来源,将微塑料复合污染划分为两种类型:污染物来自土壤环境中的重金属、持久性有机污染物和抗生素等,称为外源性复合污染;污染物来自微塑料自身所释放的有毒添加剂等,则称为内源性复合污染。综述了土壤中微塑料复合污染的3种主要路径:一是微塑料与土壤环境中常见的主要污染物,如重金属、持久性有机污染物、抗生素等发生吸附作用;二是微塑料与土壤微生物等形成生物膜;三是微塑料与自身释放的有毒添加剂形成共同污染。同时,分析了微塑料与以上不同污染物和自身释放的添加剂共同作用的过程、相关影响因素,以及微塑料复合污染所引发的生态毒性效应。在此基础上,对土壤微塑料复合污染研究一些未来发展方向进行了展望。该文旨在为深入探究土壤中微塑料复合污染的互作机理、风险评估和综合治理提供参考。  相似文献   

9.
微塑料对环境中有机污染物吸附解吸的研究进展   总被引:1,自引:0,他引:1  
微塑料已成为新的全球性环境污染问题。作为强吸附剂,微塑料可以吸附共存的有机污染物,进而改变其环境行为和毒性;也可以通过解吸作用促进污染物在不同介质中的迁移。因而,微塑料与有机污染物的相互作用强度和机理是全面评估两者的环境风险和深度研究微塑料毒性机制的必要信息。目前微塑料研究处于快速发展的起始阶段,加之微塑料本身成分、粒径、表面风化情况的复杂性及共存有机污染物的多样性使两者的相互作用十分复杂,亟需理清微塑料吸附解吸作用的影响因素和相关机制。因而,本文详细综述了微塑料对有机污染物吸附解吸作用的研究进展,并着重从微塑料性质(成分、粒径和表面风化)、有机污染物性质和水环境介质性质方面探讨了吸附的影响因素和相互作用机制,希望为微塑料吸附有机污染物及吸附的后续影响研究提供借鉴与参考。  相似文献   

10.
微塑料在全球海洋水体及沉积物中广泛存在,然而关于近海养殖海区的微塑料污染特征鲜有报道,本研究调查了中国近海养殖海区茅尾海水体和沉积物中微塑料的分布特征并初步对其微塑料污染进行风险评估.结果表明,茅尾海区域广泛分布着微塑料,茅尾海水体中微塑料的平均丰度为(2.01±1.23) n·m-3,泡沫(60.1%)是主要的类型.沉积物中的微塑料平均丰度为(22.4±19.6) n·kg-1,薄片(50%—100%)在采样点中占主要部分.茅尾海水体、沉积物中的微塑料粒径都以1—5 mm为主(33.3%—100%),水体和沉积物中的微塑料主要来自钦江的输入、旅游活动以及海水养殖活动.通过风险评估模型初步得出,茅尾海区域微塑料的污染水平属于中等偏低水平,水体中微塑料整体污染风险等级显著高于沉积物,生态风险等级分别属于Ⅲ级(较高风险)和Ⅱ级(较低风险).风险指数最高的点位于茅尾海入海河流钦江入海处,达到了Ⅳ级(高风险),各沉积物采样点的风险等级主要集中在Ⅰ—Ⅱ级,属于较低风险.危害评分高的聚合物聚丙烯腈(Polyacrylonitrile,PAN)是水体中微塑...  相似文献   

11.
<正>自20世纪50年代以来,全球塑料年生产量从1950年的1.70×106t激增到2020年的3.67×108t[1]。塑料的大量广泛使用、不完善的废物回收体系和不健全的废物管理制度,导致大量塑料垃圾被丢弃而进入环境和生态系统,造成日益严重的塑料污染[2]。进入环境中的塑料垃圾在物理、化学和生物学作用下不断发生风化、破碎和降解,形成微塑料(<5 mm)和纳塑料(<1μm)[3]。当前,环境中的微/纳塑料污染已成为全球广泛关注的热点环境问题。微/纳塑料尺寸微小且吸附性能强,致使其环境毒害效应更加突出。联合国环境规划署(UNEP)已将微塑料列入全球性新污染物。  相似文献   

12.
水库贫营养异养硝化-好氧反硝化菌Sxf14的脱氮特性   总被引:1,自引:0,他引:1  
为利用生物强化法降低微污染源水中的氮素,从水库沉积物中筛选到一株好氧反硝化细菌Sx f14.通过扫描电镜和16S r RNA序列分析,鉴定其为不动杆菌属(Acinetobacter sp.),命名为Acinetobacter sp.Sxf14.同时,对该菌株脱氮特性进行研究,并将其接种到C/N(总有机碳与总氮的比值)为1.2的微污染水库源水中,以探究其对实际源水总氮的去除效果.结果显示:Sxf14能以硝酸盐和亚硝酸盐为唯一氮源进行好氧反硝化.反应48 h后,NO3--N和NO2--N的去除率分别达74.84(±0.86)%和40.52(±1.49)%,TN去除率最高达到65.07(±1.56)%和41.33(±0.98)%;在以NH4Cl为氮源的异养硝化系统内,该菌在48 h内使NH4+-N浓度由3.73(±0.08)mg/L降到1.28(±0.20)mg/L,氨氮去除率达到65.63(±1.39)%.72 h内,微污染水库源水的TN浓度由2.46(±0.02)mg/L降到1.68(±0.01)mg/L,去除率达到31.7(±0.14)%.因此,菌株Acinetobacter sp.Sxf14具有反硝化能力,能承受较低的碳氮比,降低微污染源水中的氮素,本研究可为微污染水体的菌剂修复技术提供科学依据.  相似文献   

13.
土壤酶和微生物量碳是反映土壤健康的重要微生物性质指标。土壤重金属污染能够对土壤微生物性质产生影响,然而土壤酶和微生物量碳对土壤重金属污染的响应受到土壤本身理化性质的影响。通过北京市建成区233个样点的数据监测和实验室模拟,研究了土壤脲酶活性和微生物量碳对土壤低浓度重金属污染的响应以及受土壤理化性质的影响。研究结果表明:在野外主要重金属污染的浓度范围内(Cd 0.003~0.98μg·g-1,Cu 13.4~207.9μg·g-1,Zn 29.4~322μg·g-1,Pb 4.02~174μg·g-1),土壤脲酶活性、微生物量碳(MBC)和有机碳(SOC)的含量与土壤中Cd、Cu、Zn和Pb的浓度正相关,而微生物量碳占有机碳的比率(MBC/SOC)与重金属浓度负相关;脲酶活性、MBC/SOC与重金属浓度建立的相关关系只能解释总变异的5%~10%。实验室模拟试验表明,土壤酶活性受土壤重金属含量和土壤性质联合效应的影响;土壤有机质含量和pH是影响酶活性的主要土壤理化性质。引入土壤有机碳含量和pH两个参数,重新建立脲酶活性、MBC/SOC与土壤中重金属浓度的关系,建立的相关关系的决定系数变大,能够解释总变异的14%~17%。  相似文献   

14.
微塑料污染作为全球性环境问题,仍有诸多具有挑战性的前沿科学问题有待解决。植物对微塑料的吸收和响应方面研究已有诸多报道,但关于影响植物吸收微塑料的环境因素研究仍非常有限。基于室内水培条件,研究了不同温湿度条件(高温低湿,30℃、相对湿度55%;低温高湿,10℃、相对湿度85%)下,小麦幼苗(Triticum aestivum)对亚微米级(0.2μm)聚苯乙烯(polystyrene, PS)微球吸收的量化特征。进一步基于形态学指标、光合作用指标和生化指标,分析小麦吸收微球后生长与生理状态的变化。结果表明,随着PS微球暴露浓度的增加,其在小麦体内的积累量成比例地显著增加。在高温低湿环境中,PS微球会抑制小麦根系生长和小麦茎叶中的过氧化氢酶活性,高浓度(200 mg·L-1)PS微球可显著降低叶绿素b含量,并显著增加小麦茎叶中超氧化物歧化酶活性和小麦根中丙二醛含量;而在低温高湿环境中,高浓度PS微球可显著增加小麦茎叶丙二醛含量,但对小麦光合作用和抗氧化酶活性无显著影响。综上,研究结果证实小麦对微塑料的吸收及微塑料的植物毒性效应与小麦生长环境和PS微球暴露浓度密切相关。研...  相似文献   

15.
土壤中微塑料污染问题越来越受到公众关注。施用畜禽粪便堆肥被认为是土壤中微塑料积累的重要途径。但是,对粪便堆肥中微塑料污染程度的了解仍然处于起步阶段。该研究调查了来自中国4个省份的商品化鸡粪、牛粪、羊粪和猪粪堆肥中微塑料的赋存特征。通过筛分和Fenton试剂消解提取粪便堆肥中的微塑料,进一步分析其颜色、粒径、形状、聚合物种类和丰度。结果表明:粪便堆肥中透明、黑色、红色和蓝色微塑料含量较高;粪便堆肥中微塑料形状为纤维、碎片、薄膜和颗粒,以纤维为主;在粒径上以<1 mm的微塑料为主(27.6%~69.5%),粪便堆肥中微塑料的聚合物种类以聚酯(PES)、聚丙烯(PP)和聚乙烯(PE)为主(87.8%~97.0%);微塑料丰度为(2 054.8±493.9)~(9 131.0±600.7)个·kg-1。该研究证实了粪便堆肥是农用地土壤微塑料的重要来源,其对中国农田土壤微塑料的年贡献量可高达1.1×1014个。研究结果为揭示粪便堆肥中微塑料污染特征和区域分布差异以及农田土壤中微塑料的溯源提供了基础数据和科学依据。  相似文献   

16.
微塑料作为一种新污染物普遍存在于各类环境介质中,土壤环境中的微塑料污染已受到全球的广泛关注。该研究围绕农田土壤中微塑料污染这一主题,在总结分析国内外最新研究进展的基础上,综述了微塑料对农田土壤理化性质、土壤微生物生物量以及微生物群落结构与功能的影响。通过农业活动等途径进入农田土壤的微塑料会在非生物和生物作用下发生风化和降解,并对土壤理化性质、养分循环和污染物相互作用产生影响,进而影响微生物生物量、微生物群落结构与多样性、土壤酶活性,以及碳、氮循环和污染物降解等土壤生物地球化学过程,且微塑料对上述指标的影响与微塑料自身性质、土壤类型和暴露条件等多种因素有关。最后,对未来土壤微塑料的研究方向做了展望,以期为后续研究提供参考和思路。  相似文献   

17.
环境中微(纳米)塑料的来源及毒理学研究进展   总被引:7,自引:0,他引:7  
微(纳米)塑料是环境中分布广泛的微小颗粒污染物,不同环境介质中微(纳米)塑料的污染状况及其对生物体的毒害效应受到越来越多研究者的关注.本文系统的综述了环境中微(纳米)塑料的来源和微(纳米)塑料对海洋生物的毒性效应,从转运吸收和毒性评价两个方面重点论述了微(纳米)塑料对人体健康潜在的影响,并介绍了由微(纳米)塑料带来的典型污染物毒性效应.研究结果表明,陆地环境中微纳米塑料的来源主要包括污泥的使用、农业上使用的塑料制品、被微纳米塑料污染的灌溉水以及大气沉降,海洋环境中微纳米塑料的来源主要包括陆源的输入、滨海旅游业、船舶运输业、海上养殖捕捞业以及大气沉降;微(纳米)塑料可被很多海洋生物摄取、并在生物体中积累,且可通过食物链层层富集到更高等的生物体中,从而对生物体正常的新陈代谢及繁殖造成影响;微(纳米)塑料的对人体的毒性,与其表面性质、尺寸大小息息相关,通常情况下,尺寸较小的纳米塑料颗粒更容易进入并积累到细胞和组织,而表面带正面的纳米塑料颗粒对细胞生理活动有较为明显的影响;微(纳米)塑料添加剂及表面吸附的污染物在生物体内的释放,对生物体造成的伤害远远超过微(纳米)塑料本身的影响.本研究结果将为系统地和进一步地开展微(纳米)塑料的风险评估及全面深入地研究其毒理学效应提供支持.  相似文献   

18.
不同耕作方式对玉米田土壤有机碳含量的影响   总被引:4,自引:0,他引:4  
在华北夏玉米生产体系中,采用田间试验,研究了撂荒、翻耕、免耕和旋耕4种耕作方式下,玉米4个生育期(苗期、拔节期、灌浆期、成熟期)耕层(0~20 cm)土壤总有机碳质量分数、活性有机碳质量分数和碳库管理指数的变化.结果表明:在观测期间,玉米不同生育期(0~20 cm)土层有机碳质量分数和活性有机碳质量分数均呈明显的动态变化,就3种耕作方式来讲,土壤总有机碳和活性有机碳均表现为免耕最高,翻耕和旋耕次之;成熟期免耕、旋耕、翻耕3种处理的土壤碳库管理指数比撂荒分别提高了47.38%、30.43%、27.00%;土壤活性有机碳与总有机碳、碳库管理指数均存在显著相关关系,玉米产量与土壤总有机碳质量分数存在显著相关性,与土壤活性有机碳质量分数和土壤碳库管理指数无明显相关性.综合考虑以上因素,免耕有利于提高土壤有机碳质量分数和土壤碳库管理指数,改善土壤质量,提高土壤肥力.  相似文献   

19.
聚氯乙烯(polyvinyl chloride, PVC)微塑料广泛分布于设施土壤中,具有较强的植物毒性,对农作物生长发育构成严重威胁,因此,亟需采取措施降低土壤微塑料的植物毒性。生物炭具有较强的吸附能力,能有效钝化土壤污染物,被广泛应用于污染土壤修复。此外,生物炭在改土增产方面表现出巨大潜力。为了探究生物炭对土壤中PVC微塑料植物毒性的影响,对比分析了单一PVC微塑料暴露以及PVC微塑料和不同浓度生物炭复合暴露条件下生菜的生长指标和生理生化指标。结果表明,单一PVC微塑料暴露下生菜叶片叶绿素含量较对照组显著增加(P<0.01),然而,生菜地下部和地上部生物量却分别降低23.54%和12.04%。这可能是因为PVC微塑料附着在生菜根系表面,诱导根部过氧化氢(H2O2)积累并产生氧化损伤,从而影响根系的正常生理功能。向PVC微塑料污染土壤中添加质量分数w为0.5%~2.5%的生物炭,降低了生菜根部和叶片丙二醛(MDA)含量,并使得生菜生物量较单一PVC微塑料处理组有所增加。但是,高浓度(w=5.0%)生物炭加剧了生菜根部的氧化损伤,其对生...  相似文献   

20.
微塑料作为一种新型环境污染物在全球环境介质中普遍存在,其存在可能会影响传统有机污染物的分布、迁移和环境归趋.微塑料本身具有强疏水特性和较大的比表面积,使其能够有效地吸附有机污染物并将其输送到生物体内,从而改变微塑料潜在的环境风险.微塑料与有机污染物之间的相互作用机制主要受二者自身的理化性质,及溶液pH、温度、盐度、溶解性有机质和老化作用等环境因素的影响.本文从微塑料的基本特性、与有机污染物的作用机制、环境影响因素,以及二者复合对有机污染物生物有效性的影响等方面进行了综述,并提出微塑料与有机污染物相互作用研究中亟需解决的问题和未来的研究方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号