共查询到15条相似文献,搜索用时 46 毫秒
1.
2.
小流域大气氮干湿沉降特征 总被引:7,自引:1,他引:7
大气氮沉降是陆源污染物和营养物质向水生生态系统传输的重要途径之一.在人类活动影响较大的流域,大量氮素通过大气沉降的形式输入到水体中,能够对地表水体的营养结构、水生生物的生存环境等造成严重的负面生态效应.本文以密云水库石匣小流域为例,采集并分析了研究区大气氮沉降(颗粒态干沉降与湿沉降)样品,探讨了该流域大气氮沉降通量的变化特征及其主要影响因子,进而明确了大气氮沉降对流域氮输入的贡献程度.结果表明:(1)石匣流域大气氮总沉降(颗粒态干沉降与湿沉降之和)呈现出明显的季节变化特征;对湿沉降而言,总氮、氨氮在夏季沉降通量最大,溶解性有机氮沉降通量在春季最大,而硝态氮季节变化并不明显;对颗粒态干沉降而言,总氮和氨氮的沉降通量在冬季最高;硝态氮在不同季节变化不明显,但其沉降趋势与总氮基本一致;溶解性有机氮在秋季出现最高值.(2)该流域氮沉降通量为43. 14 kg·hm-2,其中湿沉降通量占39. 85%,颗粒态干沉降通量占60. 15%.(3)降雨和风速条件是影响大气氮沉降的重要影响因子,其中雨量和雨强与氮湿沉降浓度均呈明显的负相关关系;对颗粒态干沉降而言,监测期内平均风速是影响颗粒态氨氮干沉降通量的重要因子.(4)大气氮沉降占该流域总的氮素输入量的15. 09%,是仅次于畜禽养殖和农村生活的重要污染源.本研究结果可为密云水库上游流域氮素综合管理提供科学参考. 相似文献
3.
大气氮磷干沉降是湖泊外源营养盐输入的重要途径之一,对湖泊水体富营养化及生态系统演化具有重大影响。文章为了深入揭示洱海湖区大气氮磷干沉降(颗粒物)对水体的贡献,于2021年全年对洱海周边布设的6个站点进行了为期1 a的大气干沉降连续监测,使用自动降尘采样器湿法收集大气干沉降。分析了洱海湖区氮磷干沉降通量的时空分布特征,估算了氮磷干沉降直接入湖负荷量。结果表明:洱海湖区干沉降(颗粒物)TN、TP沉降通量年内总体呈先降后升再降的趋势。TN沉降通量范围为8.78~84.93 kg/km2,均值为(33.44±15.94) kg/km2;TP沉降通量范围为0.38~11.91 kg/km2,均值为(4.04±2.69) kg/km2;2021年洱海湖区干沉降TN、TP直接入湖负荷量分别为107.69 t和13.28 t,TN、TP干沉降直接入湖负荷量约占流域农业面源排放量的3.91%和5.12%;影响洱海湖区TN、TP干沉降的主要因素包括湖区上空低层风场环流、湖区降雨分布、气溶胶粒径以及小流域下垫面土地利用现状。 相似文献
4.
滇池大气沉降氮磷形态特征及其入湖负荷贡献 总被引:2,自引:2,他引:2
为研究季节变化和降雨量对滇池各种氮磷形态浓度的影响,采用紫外分光光度法测定大气沉降的各种氮磷形态浓度,探讨滇池湖面氮磷对水污染的贡献.结果表明,滇池大气沉降氮浓度普遍符合雨季低,旱季高的特点;大气沉降氮磷负荷与降雨量正相关,季节性变化主要呈雨季高,旱季低.大气沉降氮负荷以DIN为主,占总氮沉降负荷的63. 70%;磷负荷以PP为主,占总磷沉降负荷的45. 54%,过度施肥和肥料中氮磷的流失是大气湿沉降中主要的氮磷来源.结合入湖河流数据,滇池大气沉降中TN和TP的沉降量分别为河流入湖负荷的6. 14%和12. 76%,因而滇池主要污染来源仍然是入湖河流带来的负荷.但滇池大气沉降氮磷通量与其他地区相比处于中等偏上地位,所以该贡献仍需重视. 相似文献
5.
在密云水库石匣小流域对农田、林果地、荒草坡、村庄等4种不同类型的非点源污染发生区,进行降雨、径流量、径流水质同步监测,分析不同土地利用类型小区地表径流和泥沙中氮磷污染物的流失情况.结果表明,径流中总磷的浓度以村庄最高,其次为坡耕地、林果地和荒草坡.村庄径流的溶解态磷浓度为荒草坡径流的10倍.不同地表径流中的溶解态氮浓度的差别较大,村庄最高,其次是耕地、荒草坡、林果地.在降雨初期,随着径流量的增大,径流中总氮的浓度迅速降低,呈线性递减;此后随着径流的减少,总氮的浓度下降速度极其缓慢.不同土地利用类型中吸附态磷占总磷的比重都在90%以上,与泥沙结合的吸附态磷的浓度远大于溶解态磷的浓度,吸附态磷是磷流失的主要形态. 相似文献
6.
大气氮磷沉降是湖库营养盐输入的重要途径,深刻地影响着湖库水体营养盐平衡及生态系统演化进程. 为了解山区大型水库大气氮磷沉降对水体的贡献,于2020年11月—2021年10月在千岛湖街口和淳安县城2个监测站点开展了大气氮磷干湿沉降周年观测,分析千岛湖大气氮磷沉降特征及入库负荷. 结果表明:千岛湖街口监测点大气总氮(TN)、总磷(TP)沉降量分别为1 774.83和34.11 kg/(km2·a),淳安县城监测点大气TN、TP沉降量分别为1 799.73和34.44 kg/(km2·a). 大气TN沉降以湿沉降为主,街口和淳安县城监测点TN湿沉降分别占总沉降的92%和88%;两个监测点大气TP沉降的组成差异较大,其中街口监测点湿沉降占53%,淳安县城监测点干沉降占60%. 气象条件(降雨)叠加人类活动(施肥等农业活动和旅游等城市活动)能够显著增加大气营养盐沉降量,全年85%的TN沉降和71%的TP沉降集中在降雨期. 观测期间,千岛湖大气TN、TP干湿沉降入湖负荷分别估算为1 041.98和20.04 t/a,分别占千岛湖河道TN、TP输入的9.4%和8.3%. 研究显示,千岛湖大气氮磷沉降量显著低于长三角地区其他水体,但农耕、旅游等人类活动仍造成千岛湖大气营养盐沉降量明显升高. 相似文献
7.
科学识别不同土地利用方式下的径流污染输出特征是治理流域面源污染的前提.以南方红壤丘陵地区小流域为例,野外实地观测对比了不同降雨特征下林地、种植用地和建设用地的水文过程和面源污染物输出过程.结果表明,土地利用方式影响着地表径流的水文水质过程,典型降雨下3类用地类型产流时间及产流累积雨量的特征为:建设用地(9 min,2.0 mm)、种植用地(35 min,11.4 mm)和林地(108 min,24.0 mm);而3种用地类型的总悬浮物(TSS)、总氮(TN)和总磷(TP)的污染物浓度、形态、氮磷比变化及输出强度等污染输出过程特征也呈现明显差异.典型降雨下不同用地类型具有相似的污染输出阶段,径流初期的TSS、TN和TP质量浓度均偏高,之后逐步趋于稳定;产流过程的前30 min贡献TSS、TN及TP负荷的范围均在23%~43%之间.年尺度下,各用地类型对TN和TP负荷的贡献率及单位面积负荷比存在明显差异,表现为种植用地污染负荷贡献最高(57%和45%),而建设用地单位面积负荷比最高(9.50~12.50).结果亦表明小流域面源污染关键源区的分布具有时空动态变化特征,由汇水单元内的用地类型组成和年降雨特征等综合决定;随着次降雨量的增加,主要贡献源由建设用地向种植用地动态转变,治理时需要根据关键源区的分布特征及下垫面产流过程规律进行针对性生态拦截. 相似文献
8.
三峡库区典型小流域氮磷流失特征 总被引:53,自引:9,他引:53
为揭示三峡库区农业非点源物氮、磷流失的一般规律,以三峡库区秭归县的张家冲小流域为研究对象,自2005年1月至2006年4月,在自然降雨条件下,同步观测降雨、地表径流量,并对2次降雨径流的全过程进行了氮、磷浓度的测定,对降雨过程中径流量及污染物浓度随降雨-径流变化过程进行了监测研究.结果表明,长期干旱后的初期降雨径流中的氮、磷浓度明显高于雨季径流中的浓度,且氮、磷浓度变化与流量变化呈现出大致相同的趋势.降雨初期,氮、磷浓度随径流量的增大而升高;随着流量的继续增大,浓度呈现出下降趋势.对浓度随流量变化过程的监测表明,与基流中的浓度相比,总氮和硝态氮的浓度变化幅度较小,而氨氮和总磷浓度变化的幅度较大,其最大值分别是其最小值的10和67.5倍.溶解性的氨氮排放主要受降雨条件的制约,而径流中的磷主要是以颗粒态存在通过对径流量和氮、磷排放负荷的多项式回归分析表明,TN、TP、NH4 -N和NO3--N的排放负荷和径流量之间存在着多项式关系,R2分别为0.9545、0.9740、0.9677和0.9504. 相似文献
9.
为了研究邯郸市大气氮干湿沉降特征,文章利用自动分离干湿沉降采样器对邯郸市的干湿沉降进行逐月采集,测定了干湿沉降量和干湿沉降中氮的浓度,并计算了氮沉降通量。结果显示,监测期内氮干沉降通量和湿沉降通量分别为14.60 kg/(hm2·a)和33.44 kg/(hm2·a),氮沉降通量以湿沉降为主。邯郸市春季、夏季和秋季的氮湿沉降通量分别为7.37、12.34和13.15 kg/hm2,邯郸市春季、夏季、秋季、冬季的氮干沉降通量分别为5.36、4.64、2.78和3.28 kg/hm2。TN、NH4+、NO3-和DON的湿沉降通量与降雨量密切相关,其沉降浓度与降雨量呈显著的负指数幂相关。氮干沉降通量不仅与降尘量有关,还受温度、湿度、风速等条件影响。化肥的使用、汽车排放、化石燃料的燃烧以及污水处理厂排放的NH3是邯郸市氮素沉降的重要来源。邯郸市氮素沉降总量已可满足无肥区小麦的需求,建议适当减少氮肥的... 相似文献
10.
为了研究太湖2009-2018年大气湿沉降的时空变化特征,于2009年8月-2010年7月及2017年8月-2018年7月进行了两次环太湖大气湿沉降逐月调查,并从降水中ρ(TN)和ρ(TP)、湿沉降率及沉降通量三方面,对比分析了太湖大气湿沉降的时空变化特征.结果表明:①2009年8月-2010年7月降水中ρ(TN)、ρ(TP)平均值分别为3.170、0.077 mg/L;2017年8月-2018年7月降水中ρ(TN)、ρ(TP)平均值分别为3.160、0.056 mg/L;T检验结果表明,两次调查ρ(TN)、ρ(TP)污染水平差异显著,主要是由于2017年8月-2018年7月较高污染浓度降水事件的减少,全年降水中ρ(TN)、ρ(TP)变异较小.②与2017年8月-2018年7月相比,2009年8月-2010年7月太湖TN、TP湿沉降率平均值分别下降33%和53%,且TN、TP湿沉降空间分布更均匀.③与2009年8月-2010年7月相比,2017年8月-2018年7月太湖流域大气TN、TP沉降通量分别为7 641和131 t,分别下降30%、47%.研究显示,两次调查降水中ρ(TN)平均值均远高于水体富营养化阈值(0.2 mg/L),因此大气湿沉降中的营养盐对太湖富营养化的贡献不可忽视. 相似文献
11.
大气氮沉降是氮素生物地球化学循环中的重要环节,也是水库水体外源氮输入的重要来源之一。以丹江口水库淅川库区为研究区,在库区周围设置6个采样点,于2019年10月至2020年9月期间采集并分析大气氮干沉降样品,探讨无机氮干沉降的时空分布特征及其对水库水体外源氮输入的贡献。研究结果表明:库区无机氮干沉降量为16.30kg/(hm2·a),其中氨氮占比77%,硝氮占比23%,两者比值的变化范围为2.09(1月)~7.65(7月);氨氮沉降量在季节上表现出极显著差异性,硝氮、氨氮沉降量在空间上表现出显著差异性;气象要素(温度、气压、风向、相对湿度和水汽压)是影响氨氮沉降量的重要因素;无机氮沉降量占河流总氮入库量的7.28%,氨氮沉降量占河流氨氮入库量的38.10%;水库水体氮浓度对无机氮沉降响应的净增量为0.06mg/(L·a);库区氮沉降的削减策略须以农业减排为主,未来水库的水质保护需要重点考虑农业活动的影响。 相似文献
12.
通过对2020年位于洱海湖区周边4个站点大气降水的实地监测,定量揭示了大气湿沉降不同形态氮素(TN、DTN、AN、NN、NIT、PN)的浓度和时空分布规律,探讨了氮素沉降通量的变化特征及其主要影响因子,进而明确了大气氮湿沉降对湖区外源性氮素输入的贡献程度,评估了氮素湿沉降入湖负荷对湖区水环境的影响。结果表明:各监测点降水中氮素浓度年内总体呈先升后降再升的趋势,总氮浓度为0.18~8.73 mg/L,平均浓度为1.34±0.686 mg/L,氮素浓度呈现干季高湿季低的变化规律;氮素湿沉降通量月际变化大致呈M双峰型,沉降通量峰值出现在浓度最低但降雨量最大的8月,最小值出现在12月,沉降通量与降雨量呈极显著正相关,沉降通量AN/NN为1.97,农业生产活动的氮素排放是湿沉降的主要来源;2020年洱海湖面湿沉降总氮直接输入负荷量约为170.11 t,其中铵态氮86.86 t,硝态氮51.58 t,总氮直接入湖负荷约占流域农业面源排放量的6.18%。 相似文献
13.
九龙江流域大气氮湿沉降研究 总被引:25,自引:5,他引:25
通过2004~2005年对位于我国东南沿海的九龙江流域及周边共17个站点的实地观测,运用GIS技术定量揭示了大气氮湿沉降强度和时空分布特征,并利用氮稳定同位素分析雨水硝态氮的主要来源.结果表明,①17个站点雨水总氮平均浓度为(2.20±1.69)~(3.26±1.37) mg·L-1(以N计,下同),铵态氮、硝态氮和有机氮分别占39%、25%和36%;②雨水氮浓度随降雨强度的增大呈降低趋势,旱季浓度明显大于雨季,降水对大气具有清洗作用;③低δ15N值表明雨水硝态氮主要来源于汽车尾气排放、化石燃料燃烧和化肥施用;④九龙江流域大气氮湿沉降量平均9.9 kg·hm-2,春夏2季约占全年的91%,大气氮湿沉降占沉降总量的66%,揭示了该地区1∶2的大气氮干湿沉降结构.大气氮湿沉降时空差异与降雨量和氮的排放直接相关. 相似文献
14.
太湖氮磷营养盐大气湿沉降特征及入湖贡献率 总被引:11,自引:2,他引:11
2009年8月—2010年7月在太湖流域不同区域10个采样点收集降水样品230多个,测定其中不同形态N,P营养盐的质量浓度,分析太湖大气湿沉降中N,P营养盐沉降特征,计算N,P营养盐湿沉降率及其占太湖河流入湖负荷的贡献率. 结果表明:湿沉降中ρ(TN)年均值为3.16 mg/L,DTN(溶解性总氮)占TN的70%以上,其中以NH4+-N为主;湿沉降中ρ(TN)年均值最高值出现在南部湖区,最低值出现在北部湖区. 湿沉降中ρ(TP)年均值为0.08 mg/L,相对较低. 5个区域湿沉降中不同形态N的质量浓度均表现为冬季高、夏季低,而不同形态N,P的湿沉降量均为夏季最大. 南部、东部湖区TN的湿沉降率相对较大. 各采样点湿沉降中NH4+-N沉降率约占DTN沉降率的30.4%~52.0%,NO3--N沉降率约占DTN的31.6%;各区域间湿沉降中DTP(溶解性总磷)占TP的比例差异较大. 大气湿沉降中TN和TP的年沉降总量分别为10 868 和247 t,为同期河流入湖负荷的18.6%和11.9%,湿沉降对太湖富营养化的贡献及可能带来的水生态系统的影响不容忽视. 相似文献
15.
北京城区大气氮湿沉降特征研究 总被引:3,自引:3,他引:3
采用离子交换树脂法研究2012年6~10月北京五环内城区大气中不同形态氮在不同月份环路(五环、四环、三环和二环)以及功能区(文教区、环路、生活区、火车站和公园)的湿沉降差异,探索城市区域内不同形态氮在时间、空间和功能区上沉降的特征.结果表明氨氮、硝态氮和亚硝态氮的沉降均体现出明显的时间特征.其中,在研究时段内,氨氮和硝态氮沉降均呈现出先升高后降低的趋势,7月达到最大值;亚硝态氮沉降呈现出先降低后上升的趋势,9月达到最大值.大气氨氮和硝态氮沉降量受到降雨量的影响显著(P<0.05).在空间沉降特性方面,氨氮、硝态氮和亚硝态氮在不同环路上沉降没有显著的差别,环路和火车站等功能区氮沉降高于其它功能区. 相似文献