首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 155 毫秒
1.
提出一种基于深度学习方法的地面PM2.5浓度时空估算模型(PM2.5-DNN),该模型基于葵花-8卫星反演的AOD数据,结合PM2.5监测站和气象站点观测数据对北京市地面PM2.5浓度进行了逐时的高精度模拟,同时将PM2.5-DNN模型的模拟性能与当前的主流方法进行了对比研究.结果表明,使用PM2.5-DNN模型估算的北京地区1km分辨率每小时地面PM2.5浓度与地表监测站观测数据对比的一致性较好,模型估算精度可达到R2=0.88,性能优于当前的主流方法.本文所提出的方法适用于区域尺度PM2.5浓度时空分布细粒度建模与估算,采用端到端的训练方式构建模型,为精细的PM2.5浓度估算提供了一个简便而有效的方法模型.  相似文献   

2.
基于静止卫星高分四号(GF-4)遥感数据,利用6SV辐射传输模型与暗目标算法进行高空间分辨率气溶胶光学厚度(AOD)遥感反演;在此基础上,结合地面监测站大气细颗粒物(PM2.5)浓度、气象资料等数据,采用物理订正方法及线性混合效应模型,实现长三角城市群区域大尺度空间连续的PM2.5浓度遥感反演;最后利用十折交叉验证法对反演精度进行验证.结果表明:GF-4反演的AOD结果分辨率较高,空间连续性好,与AERONET地基监测相关性R达到0.82;利用GF-4 AOD的PM2.5估算模型精度较高,模型估算PM2.5浓度与地面实测数据拟合度R2为0.74;在分春夏秋冬4个季节建模情景下,交叉验证R2依次为0.67,0.59,0.63和0.72,平均绝对误差MAE为10.40,7.42,10.10,13.34μg/m3,表明GF-4卫星适用于区域PM2.5浓度监测.  相似文献   

3.
基于AGRI数据反演区域PM2.5浓度.利用6S辐射传输模式,分析气溶胶光学厚度AOD与能见度相关性,建立AOD、气溶胶标高和能见度模型;通过对大气柱AOD垂直订正,构建AOD与近地面PM2.5浓度关系的物理模型;同时引入了地面相对湿度数据.结果表明,FY-4A遥感的PM2.5浓度与地面空气质量监测站的PM2.5浓度变化趋势一致,算法计算效率较高.利用AGRI估算近地面PM2.5与地面观测网对比分析,其结果不亚于于MODIS以及VIIRS的对比结果,AGRI估算的均方根误差和相对误差较小.从季节分析,冬季近地面颗粒物浓度是影响整层大气柱AOD值的主要因素,AGRI反演结果精度较好,夏季相关系数相对于其他三个季节偏低.总体而言,采用FY-4A/AGRI反演颗粒物浓度精度可靠,有利于实现区域气溶胶全天候实时监测.  相似文献   

4.
为探索卫星遥感监测大气ρ(PM2.5)业务化方法,以北京为例,利用2013年MODIS卫星资料和北京35个地面自动监测站(下称自动站)的实时观测数据,以目前国内外应用最广泛的3种卫星反演大气气溶胶的方法——AOD(气溶胶光学厚度)、Kdrya,0(气溶胶干消光系数)和Ra(气溶胶表观反照率)反演地面ρ(PM2.5)的方法(分别称为AOD法、Kdrya,0法和Ra法)为基础,结合地面ρ(PM2.5)实测数据,建立了气溶胶反演参数与ρ(PM2.5)统计关系,进一步测算了全市区域ρ(PM2.5)的分布情况.结果表明:3种方法都具有较高的反演精度,其获取的全年ρ(PM2.5)与地面实测数据的相关系数分别达到0.80、0.81和0.85,其中Ra法结果精度最高.从季节来看,Ra法在除夏季外的其他季节与地面监测数据相关系数都在0.70以上,优于其他2种方法.建议在春、秋、冬三季以Ra法,夏季以AOD法或Kdrya,0法为基础进行北京PM2.5业务化遥感监测.基于Ra法探讨了在2013年11月20—23日区域性大气重污染过程中北京PM2.5区域分布特征和变化过程,卫星反演结果相对误差低于20%,直观地反映了区域大气颗粒物污染的时空分布规律.研究显示,三者都可以用来反演北京地区ρ(PM2.5),其中Ra法最简便易行,尤其适用于业务化遥感监测.   相似文献   

5.
基于Stacking的地面PM2.5浓度估算   总被引:1,自引:1,他引:0       下载免费PDF全文
赵滨  刘斌 《环境工程》2020,38(2):153-159
为了解决地面PM2.5监测网络在空间和时间覆盖受限的问题,提出了基于宽时空覆盖的卫星气溶胶光学厚度AOD,利用Stacking方法建立地面PM2.5浓度估算模型,将AOD、PM2.5和各气象参数以及与PM2.5排放有关的数据进行训练,使用改进网格搜索对模型超参数进行优化,通过对多重共线性分析,建立基于Stacking的最优PM2.5浓度估算模型。选取2016-01-01-2016-12-31的数据作为实验对象,结果表明:相比于随机森林、GBRT和XGBoost 3种模型,使用岭回归作为元学习器的Stacking模型性能更优,可见Stacking适用于大范围地理区域的大气污染监测。  相似文献   

6.
以京津冀2020年318个地面监测站点的PM2.5数据为估算因子,构建了时空线性混合效应模型(STLME)和时空嵌套线性混合效应模型(STNLME),为AOD数据的补值研究提供了一种新方法.结果表明:在有AOD-PM2.5匹配数据的日期,上述两个模型估算精度相近,交叉验证后决定系数R2分别为0.868和0.874,均方根误差RMSE分别为0.112和0.109;在无AOD-PM2.5匹配数据的日期,嵌套模型估算精度明显高于非嵌套模型,交叉验证后决定系数R2分别为0.63和0.26.经过模型补值后,研究区监测站点所在网格AOD数据空间维有效比率从原始数据的44.35%提高到99.35%,时间维有效比率从87.94%提高到100%;同时,每个站点的年均AOD值都有明显提高,弥补了高PM2.5浓度条件下缺失的AOD数据,可以减少空气污染和健康研究中暴露评估的偏差.  相似文献   

7.
京津冀地区大气PM2.5污染严重.为揭示区域PM2.5时空分布规律,使用2013-2014年河北省地面站点PM2.5监测数据、MODIS AOD(气溶胶光学厚度)遥感数据、地面气象站点数据和土地利用调查数据,基于线性混合效应模型(LME),建立了ρ(PM2.5)时空变化与AOD因子、气象因子、土地利用因子之间的关系模型.采用十折交叉验证法对模型精度进行检验,并利用计算得到的校正因子[全部实测的ρ(PM2.5)年均值除以参与建模的所有实测ρ(PM2.5)年均值]纠正因AOD非随机性缺值导致的抽样偏差.结果表明:①河北省区域模拟精度R2(决定系数)为0.85,经交叉验证后R2为0.77,RMSE(均方根误差)和RPE(相对预测误差)分别为18.28 μg/m3和28.68%.②ρ(PM2.5)年均值模拟结果的校正因子范围为1.24~2.05,校正后的研究区ρ(PM2.5)年均值为89.84 μg/m3,与实际监测数据相近.③ρ(PM2.5)空间分布呈平原高、山区低,平原地区西南高、东北低的趋势.④ρ(PM2.5)与AOD、温度、相对湿度呈正相关,与风速、大气能见度呈负相关.研究显示,线性混合效应模型能有效对ρ(PM2.5)进行时空变化模拟,并实现对非地面监测地区ρ(PM2.5)时空变化的预测,恰当的预测因子组合和模型校正有助于模型预测精度的提升.   相似文献   

8.
PM2.5是大气的重要污染物,掌握其空间分布对于大气污染防控具有重要意义.目前,PM2.5遥感监测主要围绕卫星反演的日间AOD数据开展,无法反映夜间大气污染的空间格局.以2019年9—12月NPP/VIIRS夜间灯光影像和空气质量站点PM2.5观测数据对江苏省淮安市夜间PM2.5浓度进行估算研究.基于辐射传输方程分析夜间灯光辐射与PM2.5浓度之间的关系,在此基础上综合考虑灯光辐射直接衰减和散射补偿确定了计算夜间PM2.5浓度的空间自变量,运用多元线性回归模型(MLR)、随机森林(RF)、Cubist、极端梯度提升树(XGBoost)、神经网络(NNet)、支持向量机(SVM)及最近邻法(KNN)算法构建夜间PM2.5浓度遥感估算模型.结果表明,多元线性归回模型精度明显低于各个机器学习模型,所有模型中SVM模型精度最高,决定系数R2为0.77,平均绝对误差MAE为20.83μg·m-3,均方...  相似文献   

9.
为了反演高分辨率的PM2.5近地面浓度,利用WRF(中尺度气象模型)模拟的大气相对湿度、风速、边界层高度等气象因子对AOD(气溶胶光学厚度)分别进行订正,以逐步提高AOD与近地面ρ(PM2.5)间的相关性;分析不同反演模型的统计学特征,优选反演模型,并利用最优模型反演中国中东部地区2014年年均ρ(PM2.5)的空间分布特征.结果表明:AOD经相对湿度订正后,其与近地面ρ(PM2.5)的相关性显著提高,相关系数达到0.77;同时引入相对湿度、风速2个气象因子,AOD与近地面ρ(PM2.5)的相关系数升至0.79(n=145,P<0.01);同时引入相对湿度、风速和边界层高度3个气象因子,AOD与近地面ρ(PM2.5)的相关系数进一步升至0.80(n=145,P<0.01).模型反演表明,研究区域内ρ(PM2.5)年均值大于35 μg/m3的面积高达334.49×104 km2,占研究区域面积的83.2%,并且高污染地区与人口密度高度重合.分析表明,北京、天津、河北、山东及河南等典型重污染省、直辖市分别有96.30%、100%、78.16%、98.86%、100%面积的ρ(PM2.5)超标,分别约有99.97%、100%、96.41%、98.88%、100%人口生活在空气质量超标地区.   相似文献   

10.
吴迪  杜宁  王莉  吴宇宏  张少磊  周彬  张显云 《环境科学》2023,44(7):3738-3748
卫星气溶胶光学厚度(AOD)和气象数据已被广泛用于估算空气动力学直径≤2.5μm的地表颗粒物(PM2.5)浓度.研究高时间分辨率、高精度的PM2.5浓度估算方法,对及时准确的空气质量预报和大气污染的预防及缓解具有重要意义.使用Himawari-8 AOD小时产品和ERA5气象再分析资料作为估算变量,提出GTWR-XGBoost组合模型,对四川省PM2.5小时浓度进行估算.结果表明:(1)提出的组合模型运用于全数据集的性能优于KNN、 RF、 AdaBoost、 GTWR、 GTWR-KNN、 GTWR-RF和GTWR-AdaBoost模型,拟合精度指标R2、 MAE和RMSE分别为0.96、 3.43μg·m-3和5.52μg·m-3,验证精度指标R2、 MAE和RMSE分别为0.9、 4.98μg·m-3和7.92μg·m-3.(2)该模型作用于PM2.5浓度小时估算...  相似文献   

11.
利用2016年182d的MODIS 3km AOD数据与地面监测数据,评估了混合效应模型不同参数组合的模拟性能,得出模型在解释AOD-PM2.5关系时,对时间序列变异的解释能力要比空间差异更佳.在此基础上,利用混合效应模型建立京津冀地区每日的AOD-PM2.5关系,模型拟合R2为0.92,交叉验证调整R2为0.85,均方根误差(RMSE)为12.30 μg/m3,平均绝对误差(MAE)为9.73 μg/m3,说明模型拟合精度较高.基于此模型估算的2016年京津冀地区年均PM2.5浓度为42.98 μg/m3,暖季(4月1日~10月31日)为43.35 μg/m3,冷季(11月1日~3月31日)为38.52 μg/m3,与同时期的地面监测数据差值分别为0.59,0.7,5.29 μg/m3.空间上,京津冀地区的PM2.5浓度呈现南高北低的特征,有一条明显的西南-东北走向的高值区.研究结果表明,基于每日混合效应模型可以准确评估京津冀地区的地面PM2.5浓度,且模型估算的PM2.5浓度分布状况为区域大气污染防治提供了基础的数据支撑.  相似文献   

12.
中国大陆城市PM_(2.5)污染时空分布规律   总被引:2,自引:0,他引:2  
为分析中国大陆城市PM_(2.5)污染的时空分布规律,运用统计学方法和GIS技术对2014年开展PM_(2.5)常规监测的161个城市进行分析,结果发现:仅8.1%的城市年评价结果达标,日均质量浓度超标天数占26.6%.夏季及春末、秋初PM_(2.5)污染相对较轻,冬季污染较重.PM_(2.5)的日变化曲线呈现不太明显的双峰分布,最低值出现在16:00前后,最高值出现在10:00前后,而凌晨至清晨保持相对较高的污染水平.京津冀及周边地区,中部地区的湖北、湖南、安徽PM_(2.5)污染较重,东南沿海和云南、西藏污染相对较轻.PM_(2.5)的空间分布与风速、相对湿度、土地利用等因素的空间分布具有较强的相关性.PM_(2.5)与PM10质量浓度比值的平均值为0.591,空间上呈由西北向东南逐渐升高、南方高于北方的格局,时间上除1、2月份较高、5月份较低外,其余月份基本稳定在0.55~0.6.研究结果有利于从宏观上认识中国城市PM_(2.5)污染的时空格局,从而针对性地开展环境污染防控.  相似文献   

13.
利用MODIS气溶胶光学厚度(AOD)数据针对不同土地覆盖类型的适用性,提出了一种基于土地覆盖类型的AOD融合方法,生成了一种新的3km AOD数据集.在此基础上,通过地理加权回归(GWR)模型估算了京津冀地区2016年PM2.5浓度,并用交叉验证的方法对模型性能进行评价.结果表明:利用融合后的AOD数据建立的模型可解释PM2.594.85%的浓度变化,交叉验证R2为0.94,RMSE为9.27μg/m3,MPE为6.72μg/m3,明显优于多元线性回归(MLR)模型;基于GWR模型估算的京津冀地区2016年年均PM2.5浓度为58.57μg/m3,其中冬季PM2.5浓度最高,春秋季次之,夏季浓度最低,PM2.5月均浓度变化范围32.78~140.83μg/m3,8月份浓度最低,12月份浓度最高;空间分布南北差异显著,衡水市PM2.5污染最为严重,张家口市PM2.5浓度较低.利用此方法成功弥补了PM2.5空间缺失,为城市尺度的健康效应和环境流行病学研究提供数据支持.  相似文献   

14.
汤宇磊  杨复沫  詹宇 《中国环境科学》2019,39(12):4950-4958
为深入了解四川盆地PM2.5与PM10污染情况,通过机器学习的方法,基于卫星遥感气溶胶产品(MAIAC)与国家环境空气质量监测网数据以及气象、地理、社会经济变量等,构建2个随机森林机器学习模型(R2均为0.86),反演四川盆地2013~2017年间1km网格逐日PM2.5与PM10浓度时空分布,并分析两者的时空关联性.结果表明:2013~2017年四川盆地地面PM2.5与PM10平均浓度分别为47.8,75.2μg/m3.PM2.5与PM10浓度空间上均整体呈现"倒月牙"状分布,西部与南部区域浓度值较高.5a间,区域颗粒物浓度逐年递减,总降幅均达到27%,季节上则均具有"冬高夏低"的特点;PM2.5与PM10浓度空间相关性显著(相关系数0.96),呈现"内强外弱"的格局,春夏季相关系数(0.91、0.90)低于秋冬季(0.96、0.96).盆地西南部PM2.5与PM10比值较高,比值高低的季节性排序为冬季 > 秋季 > 夏季 > 春季.  相似文献   

15.
PM2.5和PM10污染已成为全球关注的重要环境问题,监测其污染状况对人类健康、动植物生长、大气环境评价等具有重要意义。基于2013—2018年山东省17个城市大气PM2.5和PM10监测数据,利用时空分析方法和Spearman相关分析方法,研究其污染时空变化特征,并分析气象、人为及政策因素对二者的影响。结果表明:与2013年相比,2018年山东省大气PM2.5和PM10污染程度明显减轻,年均浓度降幅分别为48.72%、37.72%;6年整体月均PM2.5浓度呈近似"U "形变化规律,月均PM10浓度呈近似" V"形变化规律;PM2.5和PM10污染整体呈由西北内陆向东部沿海地区逐渐减轻的空间趋势;PM2.5和PM10浓度受气温和降水量2个气象因素影响较显著,受道路密度、城市绿化覆盖面积、SO2和NOx排放量等人为因素影响较显著,且气象因素和人为因素对PM2.5浓度的影响较PM10更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号