首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
工业VOCs排放源废气排放特征调查与分析   总被引:22,自引:5,他引:17       下载免费PDF全文
在大量调研工业挥发性有机物(VOCs)排放源案例的基础上,将工业VOCs排放源分为溶剂产品使用源、化工产品生产源、废物处理源和存储输送源4类,并对不同类型工业VOCs源的废气排放特征进行了分析.结果表明,大多数有组织排放的工业VOCs源的废气流量>1000m3/h,总挥发性有机物(TVOC)浓度100000m3/h的VOCs源以溶剂产品使用源为主;流量10000mg/m3或<100mg/m3的工业VOCs源,均以化工产品生产源为主.在工业VOCs源排放的各种VOCs组分中,以苯系物最为常见  相似文献   

2.
为识别武汉市汽修行业涂装工艺环节废气中VOCs(volatile organic compounds,挥发性有机物)浓度水平及组分特征,采集和分析了武汉市10家典型汽修企业喷(烤)漆房治理设施排放环节、喷(烤)漆环节、调漆环节和刮腻子环节共4个环节的含VOCs废气样品.结果表明:①武汉市10家汽修企业喷(烤)漆房治理设施排放环节的VOCs浓度(82.18 mg/m3)最高,其次是调漆环节、喷(烤)漆环节和刮腻子环节,分别为11.37、7.76和5.57 mg/m3.②喷(烤)漆房治理设施排气环节有组织排放以及喷(烤)漆环节与调漆环节无组织排放的VOCs均以OVOCs(oxygenated volatile organic compounds,含氧挥发性有机物)为主,其占比分别为54.4%、50.8%、43.4%;其次为芳香烃,其占比分别为27.0%、22.9%和24.6%;3个环节排放的VOCs物种中质量分数排名前3位的物种均为乙酸丁酯、间/对-二甲苯和1,2-二氯甲烷.刮腻子环节排放的VOCs物种中以芳香烃和OVOCs为主,质量分数排名前3位的物种为苯乙烯、乙酸丁酯和1,2-二氯甲烷.③喷(烤)漆房治理设施排气筒有组织排放以及喷(烤)漆环节、调漆环节无组织排放的VOCs废气中乙酸丁酯含量均远大于苯、甲苯和间/对-二甲苯的含量,且远高于早期武汉市和其他地区的研究结果.研究显示:喷漆(烤)房排气筒有组织排放的VOCs废气浓度最高,应加强对喷漆(烤)房排气筒有组织排放的关注,提高处理设施的“三率”,加强企业喷(烤)漆房的封闭性管理;各环节VOCs废气中乙酸丁酯含量均最高,可考虑将乙酸丁酯作为汽修行业VOCs源示踪物.   相似文献   

3.
为应对挥发性有机物(VOCs)污染土壤修复开挖过程中的异味污染问题,建立异味风险预测模型,评估其潜在风险具有重要的现实意义. 本文通过构建异味暴露概念模型,综合考虑土壤气扩散、土壤VOCs挥发、地下水溶质挥发等过程以估算污染源强释放速率,并结合高斯扩散模型模拟污染源向周边区域扩散过程,再以臭气强度作为异味表征手段,预测得到周边环境中的VOCs大气浓度及其对人体的嗅觉感官效应. 某修复地块土壤开挖面积为2 800 m2,深度3 m,涉及苯、甲苯、乙苯等9种异味物质,对其开挖过程中的异味扩散风险进行预测. 结果表明:在开挖速率为150 m3/h的情况下,VOCs快速释放并扩散至周边20 m处某居民点形成的混合气体中以氯苯、苯、乙苯、甲苯这4个组分为主,浓度分别为6.86、2.35、1.56、0.85 mg/m3. 进一步采用异味活度值(OAV)及ln(OAV)对VOCs的异味特征进行分析,识别得到乙苯为混合体系中的关键致嗅物质,故以该组分来表征VOCs的气味特性. 由此得到,居民点呼吸区VOCs对应的臭气强度为3.09,开挖过程中周边居民将明显感到臭味. 基于模型敏感性分析识别了影响异味风险的关键参数,主要为敏感目标距离(xair)、土壤污染浓度(Cs)、土壤开挖速率(Q)、土壤空气体积比(θair)及大气风速(Uair)等. 从降低公众受异味影响的角度出发,提出了包括优化土壤修复工艺、控制区域土壤状况以及关注气象影响等控制对策,以期有效控制土壤中异味扩散引起的负面效应.   相似文献   

4.
基于工艺过程的金属包装业VOCs污染特征   总被引:1,自引:0,他引:1  
识别金属包装业挥发性有机化合物(volatile organic compounds,VOCs)产生和排放节点,定量分析不同类型生产工艺所排放VOCs的物种及含量,结合最大增量反应活性法和修正的气溶胶生成系数法对行业二次污染进行核算.结果表明,金属包装业排放的VOCs主要为苯系物、醇类、酮类和酯类,苯系物和醇类在不同类型工序和排污节点中贡献较大,酮类和酯类贡献相对较少,单物种浓度最高的VOCs为正丁醇,浓度达269.08mg·m~(-3);生产线与相应的排气筒之间VOCs物种浓度相关性较好,但物种种类存在差异;行业的O_3和二次有机气溶胶(secondary organic aerosol, SOA)生成潜势(以O_3/VOCs和SOA/VOCs计)分别为(3.09±0.94)g·g~(-1)和(2.58±1.99)g·g~(-1),苯系物和内全涂烘干工序为O_3和SOA的主要前体物和首要生成节点.  相似文献   

5.
不同行业点源产生VOCs气体的特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
在调研552个工业VOCs点源案例的基础上,采用Origin 7.5软件统计分析了不同行业产生VOCs气体的特征. 结果表明:工业点源产生VOCs气体的流量主要分布在103~105m3/h之间;其中,食品制造业,木材加工,印刷业和木、竹、藤、棕、草制品业等产生的VOCs气体流量较高,在104~105 m3/h之间. 各工业点源产生的ρ(TVOC)(VOCs气体质量浓度)主要分布在102~104mg/m3之间;其中,非金属矿物制品业、农副食品加工业、石油加工、炼焦和核燃料加工业、化学原料及化学制品制造业等行业产生的ρ(TVOC)较高,在103~104mg/m3之间. 化学原料及化学制品制造业、医药制造业产生的VOCs种类较多;各行业产生的典型VOCs包括苯类、酯类、醇类、醛类、酮类等. 该研究成果可为相关行业开展点源VOCs污染治理和控制技术选择提供参考依据.   相似文献   

6.
不同行业点源产生VOCs气体的特征分析   总被引:2,自引:0,他引:2  
在调研552个工业VOCs点源案例的基础上,采用Origin 7.5软件统计分析了不同行业产生VOCs气体的特征.结果表明:工业点源产生VOCs气体的流量主要分布在103~105m3/h之间;其中,食品制造业,木材加工,印刷业和木、竹、藤、棕、草制品业等产生的VOCs气体流量较高,在104~105m3/h之间.各工业点源产生的ρ(TVOC)(VOCs气体质量浓度)主要分布在102~104mg/m3之间;其中,非金属矿物制品业、农副食品加工业、石油加工、炼焦和核燃料加工业、化学原料及化学制品制造业等行业产生的ρ(TVOC)较高,在103~104mg/m3之间.化学原料及化学制品制造业、医药制造业产生的VOCs种类较多;各行业产生的典型VOCs包括苯类、酯类、醇类、醛类、酮类等.该研究成果可为相关行业开展点源VOCs污染治理和控制技术选择提供参考依据.  相似文献   

7.
底泥营养盐释放对淀山湖湖区造成的内源污染不容忽视.采用室外采样和室内模拟实验方法,对春夏两季淀山湖沉积物-水界面氮磷释放速率进行了研究.结果表明春季氨氮、硝态氮、可溶磷的的通量变化范围分别为-692.79~315.82 mg/(m2?h)、-19.04~5.29 mg/(m2?h)和-1.35~2.31 mg/(m2?h),平均值分别为76.65 mg/(m2?h)、-3.29 mg/(m2?h)和0.64 mg/(m2?h).夏季三者变化范围分别为-74.15~91.91 mg/(m2?h)、-70.71 mg/(m2?h)~8.65 mg/(m2?h)和-10.02~18.86 mg/(m2?h),平均值为4.85 mg/(m2?h)、-42.16 mg/(m2?h)和9.47 mg/(m2?h).淀山湖区春夏两季总氮(TN)、总磷(TP)的交换总量分别为-1769.22 t,1539.40 t,淀山湖底泥可以有效去除上覆水体氮负荷,但却是水体磷的释放源.  相似文献   

8.
硝基清漆膜厚度对硝基清漆VOCs释放的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用自制的小型环境测试舱,研究了硝基清漆膜厚度对挥发性有机物(VOCs)释放的影响.漆膜厚度分别为296,508,715,799,960μm,测试条件为:温度为25.0℃,相对湿度为23.9%,空气流量为0.75m3/h,空气流速为3.4cm/s,支持板为不锈钢盘.采用真空采样罐采集舱出口空气,用气相色谱(GC-FID)分析测试.确定了5种主要VOCs(甲基环乙烷、甲苯、乙苯、间/对二甲苯和邻二甲苯)的浓度,并以一阶衰减模型对浓度进行模拟计算得到释放速率.结果表明,漆膜厚度并不影响VOCs的峰值浓度和初始释放速率,但漆膜越厚,VOCs的浓度衰减越慢,衰减速率越小.  相似文献   

9.
聚氨酯合成革厂空气中挥发性有机物的成分谱   总被引:6,自引:1,他引:5       下载免费PDF全文
采用吸附管采样和二次热解吸-GC-MSD联用技术研究了珠江三角洲地区3个典型聚氨酯(PU)合成革厂不同车间空气中挥发性有机物(VOCs)的含量和成分谱.结果表明,主要检出卤代烃、氯苯类、芳香烃类、酯类、酰胺类和酮类等6类共15种VOCs化合物,其中生产车间VOCs总浓度高达(15.300±0.964)mg/m3,而半成品车间、树脂原料车间和厂边界分别为(12.047±0.977)mg/m3,(1.912±1.281)mg/m3, (1.980±0.522)mg/m3;生产车间和半成品车间的VOCs特征轮廓图谱较相似,特征化合物均为甲苯、乙酸乙酯和2-丁酮;而树脂原料车间的特征化合物为甲苯、苯和苯乙烯.源成分谱研究得出该类污染源排放的VOCs分子标志物为乙酸乙酯,其百分比含量最高,达到36.32%± 16.62%.  相似文献   

10.
广州森林大气中VOCs昼夜变化特征及对O_3的影响   总被引:1,自引:0,他引:1  
挥发性有机物化合物(VOCs)是大气光化学过程的重要前驱物,对大气中的臭氧(O)3有重要影响。文章对广州市花都区王子山森林公园大气中VOCs的昼夜变化特征进行了分析,并且评估了其对大气中O3的相对贡献。共定性和定量了21种VOCs,其中1,2,4-三甲基苯(21.50±32.90)μg/m3、甲基环戊烷(20.40±23.30)μg/m3和异戊二烯(14.90±39.20)μg/m3浓度最高。对于大多数VOCs来说,活性VOCs与相对惰性的VOCs表现出相反的昼夜变化特征,这反映了大气光化学反应对于VOCs的影响。采用Propy-Equiv浓度对大气VOCs对O3的影响评估结果表明,该地区大气VOCs对O3贡献的大小为:烯烃>苯系物>烷烃。  相似文献   

11.
为评估河南省生活垃圾焚烧发电厂排放的挥发性有机物(VOCs)对臭氧生成的贡献,选取某典型企业进行调研. 采用气袋、苏玛罐和吸附管进行采样,通过气质联用(GC/MS)和高效液质(HPLC/MS)联用分析方法对117种VOCs物种排放水平进行监测,并计算本地化VOCs排放因子. 采用最大增量反应活性(MIR)法计算臭氧生成潜势(OFP),并识别OFP贡献率较大的物种. 结果表明:①主排放口实测的VOCs总浓度为4.28 mg/m3,VOCs排放量为3.5 t/a,计算的VOCs排放因子为0.016 g/kg (以垃圾计,下同). ②MIR系数法计算的有组织OFP总排放量为9.3 t/a,对应的MIR系数平均值为2.67. ③排放量占比较大的VOCs组分依次为芳香烃(38.37%)、卤代烃(28.79%)、含氧化合物(14.32%)和烷烃(12.75%). 对OFP贡献率较大的VOCs组分为芳香烃(53.91%)和含氧化合物(28.16%),OFP贡献率排名前5位的VOCs物种分别为乙醛(20.5%)、间/对-二甲苯(20.2%)、正丁烯(6.2%)、1,2,4-三甲苯(5.4%)和正丁醛(4.9%). ④固废间、锅炉房、锅炉房外、渗滤液泵房及房顶采样点测得的VOCs无组织排放总浓度分别为83.6、6.19、1.24、5.71、1.79 mg/m3. 研究显示,该垃圾焚烧发电厂固废间VOCs浓度较高,需要进一步提高车间内VOCs收集率,以减少无组织VOCs排放,同时可在主排放口安装合适的VOCs去除装置以进一步削减VOCs有组织排放量.   相似文献   

12.
采用定向驯化活性污泥接种生物滴滤塔(BTF)同时处理甲苯、甲醇、丙烯酸乙酯挥发性有机化合物(VOCs)混合废气,考察BTF的长期稳定运行性能及微生物平均代谢活性.结果表明,混合气进口浓度低于910mg/m3时,BTF对VOCs混合废气总去除率可维持在80%以上,BTF可高效同步净化中低浓度VOCs混合废气;当进气负荷>120g/(m3·h)时,去除负荷趋于稳定,为100g/(m3·h)左右;CO2的生成量与混合废气的去除负荷的比值为1.731,表明BTF对此3种混合废气有较高程度的矿化;BTF对甲苯、甲醇、丙烯酸乙酯的降解行为符合Michaelis-Menten动力学模型,单位体积最大降解速率rmax分别是为90.9,50.5,58.5 g/(m3·h).平均吸光度(AWCD)值分析结果表明塔内微生物具有较高的代谢活性.  相似文献   

13.
对北京地区27家汽修企业进行调研,选取2家典型汽修企业进行气袋采样-GC-MS-FID采集及分析,定量分析其VOCs的排放特征,并计算其臭氧生成潜势(OFP)。结果表明:使用不同漆料的汽修企业排放特征不同,水性漆企业非甲烷总烃的排放浓度为0.62~36.49 mg/m3,油性漆企业的排放浓度为0~100.39 mg/m3;水性漆排放的VOCs以烷烃为主,占比高达57.16%,丙烷(39.65%)和甲苯(11.41%)是首要污染物;卤代烃(55.51%)是油性漆企业的主要VOCs排放物种,主要组分为1,2-二氯丙烷和1,2-二氯乙烷;水性漆企业的OFP值为144.78 mg/m3,油性漆企业的OFP值为664.43 mg/m3,大气反应活性最大的物种多为芳香烃,芳香烃对OFP的贡献率分别为52.18%和88.44%。  相似文献   

14.
高性能生物滴滤器净化甲苯气体的试验研究   总被引:8,自引:1,他引:7  
为研究开发净化挥发性有机物的高性能生物滴滤器 ,以甲苯为唯一碳源筛选出对甲苯具有高生化降解能力的适宜微生物菌种 ,采用气液相同步驯化菌种 ,强化接种 ,投加营养改善挂膜的方法 ,挂膜周期由 2 3d左右缩短为 7d。甲苯气体的生物滴滤器净化试验研究结果表明 :在入口气体甲苯浓度范围为 0 4 2~ 4 71mg L和表观气速为 4 8~ 12 0m h(停留时间 10 5~ 2 6 7s)的条件下 ,该生物滴滤塔对废气中甲苯的最大去除能力为 6 2 6g m3·h ,稳定甲苯净化去除能力为 36 0g m3·h。  相似文献   

15.
RTO(蓄热式氧化炉)应用调研分析研究   总被引:2,自引:0,他引:2  
通过调研RTO(蓄热式热氧化炉)装置处理VOCs(挥发性有机物)的应用实例,对比分析了VOCs处理效果及存在问题,结合RTO处理VOCs原理及相关规范,指出采用RTO方法的优点及需要完善改进之处,为RTO装置的建设和运营提供指导意见.在一定VOCs浓度区间范围内,随着VOCs浓度的升高,RTO对VOCs去除率呈上升趋势,RTO对VOCs的绝对去除量有保障.RTO装置比较适合处理VOCs浓度为1000~8000 mg/m3的废气,三室式RTO装置可以兼顾到处理效率和经济性要求,现有主流三室式RTO比较适宜的VOCs废气处理量为10000~30000 m3/h.  相似文献   

16.
基于无人飞机和吸附管采样技术建立了一种大气边界层VOCs的采样方法,并将该方法应用于上虞化工园区(杭州湾上虞经济技术开发区)大气VOCs垂直廓线观测研究. 使用该方法采集高空VOCs样品后,基于PAMS和TO-15混合VOCs标气,利用TD-GCMS (热脱附-气相色谱质谱联用)检测富集在吸附管上的VOCs,获得了上虞化工园区大气VOCs垂直廓线. 结果表明:①该方法测定的97种VOCs体积分数在3×10?9~30×10?9范围内线性良好,检出限范围为0.14×10?9~0.96×10?9,回收率在93.6%~124.0%之间. ②上虞化工园区大气中φ(卤代烃)、φ(芳香烃)和φ(烷烃)较高,主要污染物有十二烷、十一烷、二氯甲烷、1,2,4-三氯苯和1,4-二乙苯;不同VOCs组分具有不同的垂直廓线特征,φ(芳香烃)、φ(卤代烃)、φ(烯烃)和φ(含氧化合物)随高度的上升呈先增后降的趋势,而φ(烷烃)随高度上升不断降低. ③大部分污染物体积分数峰值出现在100 m高空,这可能与大气逆温现象有关;14:00 的φ(TVOCs)(TVOCs为总挥发性有机物)高于17:00,可能是午后高温导致有机溶剂挥发量增大所致;白天φ(VOCs)在100~300 m高空范围内下降较快,说明在该范围内可能存在较强的光化学反应,夜晚φ(VOCs)可能来自区域水平输送. ④观测期间,对大气OFP (臭氧生成潜势)贡献较大的组分为芳香烃和烯烃,主要包括1,2,3-三甲苯、1,4-二乙苯、顺式-2-丁烯和1,2,4-三甲苯. 研究显示,高浓度卤代烃及OFP贡献较高的芳香烃是上虞化工园区需首要减排的VOCs组分.   相似文献   

17.
有机废物在生物转化过程中会产生大量的VOCs,不仅污染环境、危害人体健康,也成为目前废弃物处理处置工程顺利运行的瓶颈。通过文献综述的形式总结了有机废物在生物转化过程中VOCs的产生机理、监测技术、排放状况、影响因素及控制等方面的研究现状,为有机废物处理过程中VOCs的排放控制提供参考。结果表明:在有机物生物转化过程中,填埋和堆肥中产生的VOCs在100种以上,填埋和堆肥中产生的VOCs浓度分别为67~7 896,411~14 547 mg/m3,VOCs浓度分布较广,去除效率有待提高。厌氧发酵产生的最高VOCs浓度一般低于30 mg/m3,且厌氧发酵产生的VOCs易于收集,并通过可催化和热力焚烧有效去除VOCs。因此,应将有机废物填埋和堆肥过程产生的VOCs作为重点研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号