首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 904 毫秒
1.
为了解京津冀及周边地区“2+26”城市PM2.5和O3复合污染时空分布特征,利用ArcGIS和SPSS软件对2015~2021年京津冀及周边地区“2+26”城市空气质量数据和气象数据进行关联性分析.结果表明:(1) 2015~2021年PM2.5污染持续减缓,污染集中在区域中南部;O3污染呈波动上升趋势,空间分布呈现“西南低,东北高”的格局.季节变化来看,PM2.5浓度主要为:冬季>春季≈秋季>夏季,O3-8h浓度为:夏季>春季>秋季>冬季.(2)“2+26”城市PM2.5超标天数持续下降,O3超标天数波动上升,复合污染日下降趋势显著;PM2.5和O3污染在夏季呈强正相关,相关系数最高达0.52,冬季呈强负相关.(3)对比典型城市臭氧污染时期与复合污染时期气象条件,复合污染发生的温度区间集中在23.7~26.5℃、湿度48%~65%和S~S...  相似文献   

2.
气象条件变化对复合污染的发生发展起重要作用,基于PM2.5和O3不同的污染形成机制,利用污染气象长期观测数据,分别采用统计运算和深度学习方法,构建了PM2.5和O3气象条件指数,形成以气象条件指数开展区域大气复合污染气象特征和影响贡献的研究方法,并对剔除区域气象差异影响的污染分布与变化进行了量化分析.结果表明,2021年夏季我国中东部重点区域污染气象条件整体上呈北差南优(指数:“2+26”城市>苏皖鲁豫交界>长三角地区),6月最差、 7月最好的分布特征,当区域内城市PM2.5气象条件指数>30且O3气象条件指数>100时,“双高”污染开始出现,随O3气象条件指数增大,“双高”频率不断升高;与上年同期相比,各地区ρ(PM2.5)受气象条件改善影响分别降低3.9、 3.3和1.4μg·m-3,平均占到各地ρ(PM2.5)降低的58.5%,O...  相似文献   

3.
为揭示湖北省PM2.5和臭氧(O3)复合污染演变特征,基于湖北省17个地市的空气质量国控点和武汉市大气超级站组分监测数据,全面分析湖北省17个地市2015—2020年PM2.5和O3的时空变化特征及相关关系,探讨PM2.5和O3协同效应的成因机理. 结果表明:①2015—2020年,湖北省PM2.5显著改善,平均降幅为4.7 μg/(m3·a),但冬季负荷仍较高,主要集中于中部地区;O3污染凸显,平均增幅为3.8 μg/(m3·a),污染集中在4—10月的暖季,东部地区最严重,近两年超标天数已与PM2.5相当. ②湖北省PM2.5和O3关联日趋密切,协同效应显著,日评价指标显示夏季二者呈显著正相关(相关系数为0.57),近两年当PM2.5浓度≤50 μg/m3时,相关系数高达0.63;冬季PM2.5浓度与Ox(O3+NO2)浓度呈正相关,尤其2020年东部城市二者相关性高达0.46,显示大气氧化性对PM2.5二次污染的重要性. ③以武汉市为例,归纳PM2.5和O3复合污染的成因,暖季低PM2.5背景下,高温、中等湿度和弱风速的气象条件以及VOCs和NOx等前体物的高浓度排放,使得受VOCs主控的光化学反应加剧,易造成O3污染,从而加强PM2.5二次生成;冬季高的大气氧化性,叠加不利气象条件,促进颗粒物的二次生成,导致重污染时PM2.5组分以硝酸盐等二次无机组分为主. 研究显示,湖北省PM2.5和O3协同控制重点为,在保持现有NOx控制力度基础上强化VOCs控制,遏制暖季和东部区域O3浓度上升,加强冬季和中部PM2.5治理.   相似文献   

4.
基于空气质量监测、地面气象资料、风廓线雷达观测等数据和HYSPLIT模型,对2020年8月26日至9月8日2008号台风“巴威”、 2009号台风“美莎克”和2010号台风“海神”影响期间我国中东部地区的O3污染特征及成因进行了分析.结果表明“,三连击”台风期间京津冀及周边地区和长三角地区出现O3污染的站点数均超过50%“,海神”影响期间两个区域O3污染日数分别达到2.22 d和2.97 d,持续性特征显著.台风位置对O3浓度影响明显,当台风位于24 h和48 h警戒线之间时,京津冀及周边地区O3浓度最高;当台风移动至34°N以北时,长三角地区最易于出现区域性O3污染.上海O3污染主要出现在台风西侧偏北气流控制下,来自上游的区域传输对O3及前体物浓度升高影响明显;1 000 m以下的下沉气流使O3在夜间维持较高浓度.济南O3污染期间大气中低层盛行下沉气流.8月28~30...  相似文献   

5.
姜华  常宏咪 《环境科学研究》2021,34(7):1576-1582
为揭示我国近地面臭氧的污染特征,甄别导致高浓度臭氧形成的关键影响因素,该文在探究我国重点区域近年来O3污染特征的基础上,对O3污染成因进行了初步分析.结果表明:①近年来我国O3污染呈缓慢上升态势,2019年夏季异常高温、干旱的极端天气导致O3污染偏重.京津冀及周边地区等重点区域O3浓度明显高于欧美等发达国家和地区.②从时间上看,我国O3污染主要出现在夏季及其前后,O3浓度峰值一般出现在午后.从空间上看,O3污染主要集中在京津冀及周边、汾渭平原和苏皖鲁豫交界地区,其次是长三角和珠三角区域,成渝和长江中游地区O3污染也逐渐凸显.我国O3污染程度主要以轻度污染为主,重点区域O3和PM2.5污染时空分异性特征明显.③前体物方面,我国NOx和人为源VOCs的排放量总体处于高位,京津冀及周边地区和长三角为全国NOx和VOCs排放强度较大的区域.近地表大气O3形成机理复杂,O3浓度与前体物VOCs和NOx均呈复杂的非线性响应关系.气候变化和气象因素对O3污染影响显著,O3及其前体物在区域和城市之间存在相互输送影响.研究显示,我国臭氧污染形势严峻,未来针对臭氧污染防控应加强对多时空尺度下不同区域臭氧污染的形成机理与主导因素的研究.   相似文献   

6.
为了解黄河三角洲区域细颗粒物(PM2.5)和臭氧(O3)大气复合污染特征和成因,本文利用2021年和2022年夏秋季黄河三角洲中心城市东营市、滨州市的挥发性有机物(VOCs)连续观测数据及常规污染物数据,识别对O3和二次有机气溶胶(SOA)生成有显著贡献的VOCs物种并对VOCs进行来源解析,同时利用基于观测的化学盒子模型探讨O3的生成敏感性.结果表明:(1)黄河三角洲地区PM2.5和O3浓度“双高”的大气复合污染主要出现在秋季,夏季东营市和滨州市首要污染物均为O3,距离入海口越远的站点O3超标天占比越高;秋季东营市和滨州市首要污染物均为PM2.5,且超标情况相近.(2)烯烃和含氧挥发性有机物(OVOCs)对臭氧生成潜势(OFP)的贡献大,优势物种为乙醛;芳香烃对SOA生成潜势(SOAFP)的贡献大,优势物种为1,2,3-三甲苯.(3)东营市夏秋季O3生成均处于VOCs...  相似文献   

7.
为全面认识减排过程中华北平原城市大气复合型污染变化特征,本文利用最近6年(2017—2022)山东省德州市环境-气象监测资料,分析关键大气复合污染物PM2.5和O3的季节特征及其相互作用,探究东亚季风气候背景下冬夏季PM2.5和O3的相互作用机理.德州市近6年城市环境PM2.5和O3超标率分别为20.22%和23.56%,O3污染凸显.环境大气PM2.5和O3在夏季表现为显著正相关,相关系数高达0.53(p<0.01),而冬季则呈显著负相关,相关系数为-0.30 (p<0.01),两者具有明显“夏正冬负”的相反季节变化特征.环境气象机理分析表明,夏季高温及强太阳辐射的气象条件促进光化学反应生成O3,加大大气氧化性的增强二次颗粒物生成,导致PM2.5浓度升高;冬季低温及弱太阳辐射气象背景下,高浓度PM2.5的局地累积...  相似文献   

8.
基于2013~2020年江苏13个城市的大气污染和气象观测数据,分析了江苏PM2.5-O3复合污染物的分布特征及其与气象条件的关系.结果表明:江苏复合污染物以轻度污染组合为主,南部多于北部,东南部最多,主要在4~10月,下午至傍晚最高,且该时段O3平均浓度高于单一O3污染;复合污染在O3超标中平均占比15.7%,2014年高达65.8%,且在2015年后明显下降;PM2.5和O3二者在暖季O3污染期正相关,PM2.5污染期为弱相关或负相关;复合污染气象条件更为严格,气温、相对湿度、风速和逆温条件均介于单一O3和单一PM2.5污染之间,且多在4m/s以下和ENE—S区间,与单一O3污染相比,气温和风速略低,相对湿度和逆温强度略高;出现复合污染的主要地面形势为均压场和低压(底)前部,其次是入海高压后部和高压底部;通过后向轨迹聚类分...  相似文献   

9.
通过2013~2017年徐州市环境监测资料分析季风影响下主要大气复合污染物PM2.5和O3的相关性,并基于气象观测资料进一步探究PM2.5和O3相互作用机制的季节变化特征.结果表明:夏季风季节,PM2.5和O3呈正相关,相关系数高达0.56;冬季风季节,PM2.5和O3呈负相关,相关系数为-0.34,均通过了99%的置信检验,表明徐州市PM2.5和O3相互作用呈现相反的季节变化.夏季风季节,太阳辐射强,气温较高,大气氧化性较强,O3主导大气氧化性,大气氧化性通过促进二次颗粒物生成使得PM2.5浓度升高,夏季风季节以O3对PM2.5的促进作用主导城市大气复合污染变化;冬季风季节,太阳辐射弱,气温较低,大气氧化性较弱,高浓度的PM2.5削弱太阳辐射抑制大气光化学,导致O3生成率降低,冬季风季节以PM2.5对O3的抑制作用主导城市大气复合污染变化.  相似文献   

10.
为了解《打赢蓝天保卫战三年行动计划》期间(2018—2020年)以及之后(2021年)我国重点污染区域空气质量情况,并区分排放源控制与气象条件的贡献,本文利用逐小时监测的PM2.5、O3浓度以及气象要素数据,研究了2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征,结合KZ (Kolmogorove Zurbenko)滤波方法定量分析了排放源与气象条件对PM2.5与O3浓度长期趋势的贡献. 结果表明:①2018—2021年“2+26”城市PM2.5浓度年均值与O3-8 h-90th浓度(O3日最大8 h平均浓度的第90百分位数)均呈逐年下降趋势. 2018—2021年PM2.5浓度年均值分别为60、57、51和45 μg/m3,河北省南部、河南省与山东省南部PM2.5浓度年均值均较高;O3-8 h-90th浓度分别为198、195、179和171 μg/m3,2018年保定市、石家庄市、聊城市与晋城市的O3-8 h-90th浓度(>210 μg/m3)均较高,而2021年太原市O3-8 h-90th浓度(192 μg/m3)较高. ②PM2.5与O3-8 h浓度(O3日最大8 h平均浓度)的长期分量在大部分城市受气象条件影响较为明显. 受气象条件影响的PM2.5浓度长期分量在2018—2020年无明显趋势,在2021年呈下降趋势;受排放源影响的PM2.5浓度长期分量在2018—2020年呈下降趋势,在2021年无明显趋势. 受气象条件影响的O3-8 h浓度长期分量在2018—2020年呈下降趋势,在2021年呈上升趋势;受排放源影响的O3-8 h浓度长期分量在2018年呈下降趋势,在2019—2021年无明显趋势. ③11个气象因子中,温度和相对湿度对PM2.5与O3-8 h浓度变化的影响较大,当温度与相对湿度均比前一天升高时,更有利于PM2.5与O3-8 h浓度的同时升高. 研究显示,“2+26”城市PM2.5与O3污染受气象条件影响显著,温度与相对湿度的变化对判定PM2.5与O3-8 h浓度同时升高的现象有一定积极意义.   相似文献   

11.
采用中国地面气象观测站网2007~2016年的辐射日值数据集和中国空气质量在线监测平台2014~2016年逐日观测数据,分析了京津冀、长三角和珠三角近10a太阳总辐射年际和季节变化,近3a臭氧日最大8h平均(O3_8h_max)和细颗粒物(PM2.5)的污染过程频次变化,通过不同因子及其不同强度等级的分型统计,探讨PM2.5、O3_8h_max与太阳总辐射的关系.结果表明:京津冀近10a太阳总辐射显著上升,京津冀春季和珠三角夏季太阳总辐射显著上升.三大经济区PM2.5污染过程年频次均呈现逐年递减,且从北到南递减;O3污染过程年频次时间上呈现先减后增,空间上京津冀多于长三角和珠三角.三大经济区O3_8h_max与太阳总辐射相关系数均在0.71以上,有较强的正相关;而PM2.5与太阳总辐射的相关性具有区域差异性.三大经济区不同季节不同太阳总辐射下O3_8h_max与PM2.5的相关关系差异显著,其中京津冀春夏秋三季O3_8h_max与PM2.5在强太阳总辐射下有较好的正相关,冬季则存在一定的负相关;长三角四季两者相关性均较弱;珠三角夏季两者正相关最为显著;不同PM2.5浓度下O3_8h_max与太阳总辐射的线性拟合效果较好,体现出较强的正相关关系,各经济区拟合曲线的倾向率均随PM2.5升高而增大.PM2.5>75μg/m3时拟合优度均达到最大.  相似文献   

12.
为了解福州市大气颗粒物污染状况,利用中国环境监测总站发布的实时大气环境监测资料,结合气象资料和HYSPLIT4轨迹模式,分析了2015年福州市大气颗粒物污染特征和典型污染过程.结果表明:2015年福州市ρ(PM10)、ρ(PM2.5)年均值分别为55.8和29.2μg/m3,均低于GB 3095-2012《环境空气质量标准》二级标准限值.颗粒物浓度季节性变化特征明显,表现为冬春季高、夏秋季低的变化特征. ρ(PM2.5)/ρ(PM10)为52%,普遍低于我国东部其他大中城市;日际变化明显,受混合层高度日变化和机动车排放的影响,呈双峰形态. ρ(PM2.5)/ρ(PM10)日变化趋势与ρ(PM10)日变化特征相反,即ρ(PM10)高时ρ(PM2.5)所占比例低,ρ(PM10)低时ρ(PM2.5)所占比例高,表明早晚高峰机动车排放所造成的颗粒物污染以粗颗粒物贡献为主.福州市颗粒物污染天气成因主要有"积累型"和"输送型"污染. 2015年1月5-6日发生的污染过程,是在一次静稳、高湿天气形势下,本地排放的污染物在不利于扩散的气象条件下聚集、二次转化,导致颗粒物浓度升高、能见度降低. 2015年1月17-19日的污染过程主要是北方污染物随冷空气输送南下,导致本地颗粒物浓度迅速升高、能见度迅速降低.研究显示,福州市PM10和PM2.5优良率较高,颗粒物污染主要发生于冬季,污染成因包括局地累积和区域输送.   相似文献   

13.
采用COST733软件将北京地区2007~2016年的大气环流总体分为T1~T9种类型,研究其与霾日的关联性,并结合PM2.5和臭氧地面观测,分析不同天气型对应的污染特征及气象参数分布规律.2007~2016年霾日发生概率21.5%,T4和T9型下霾日最多,T5和T8型最不利于霾日发生.9类天气型下霾日变化具有阶段性,2007~2012年(阶段一)霾日少且年际差异小,2013~2016年(阶段二)霾日增多.对9类天气型下霾日PM2.5及臭氧变化进行分析,T1、T3、T4和T9型霾日多出现在秋冬季,PM2.5日变化为逐时增加态势,4类天气型在第一阶段的白天有浓度波动增长形成的小峰值,但第二阶段减弱消失.大部分天气型的霾日,阶段二的PM2.5浓度较阶段一降低,T7和T9型表现为增加,增幅分别为23.7%和3.9%.所有天气型霾日的臭氧日变化均为单峰型,峰值出现在下午,臭氧日均浓度最高为T8型.此外,阶段二与阶段一相比,T3、T5和T6型臭氧平均浓度增加,其中T5型增幅达到49.8%.将霾日与近地面气象要素关联分析,平均气温、风向、风速可以较好的解释臭氧浓度变化,而PM2.5的变化特征不仅与气象要素相关,在一定程度上也体现了污染排放及区域联动减排的贡献,需两者结合才能更好探究PM2.5浓度整体特征及细节变化.  相似文献   

14.
京津冀及周边地区“2+26”城市为京津冀大气污染传输通道城市,也是我国空气污染最严重的区域之一.针对京津冀及周边地区“2+26”城市,利用中国环境监测总站公布的PM2.5、PM10、SO2、NO2、O3和CO数据,对2013—2019年京津冀及周边地区“2+26”城市大气污染特征进行分析,并探讨影响其空气质量变化的因素.研究表明:①2013—2019年京津冀及周边地区“2+26”城市空气质量总体向好,2019年ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(CO)和ρ(NO2)比2013年分别下降了50%、41%、79%、49%和20%,ρ(O3-8 h-90per)(臭氧日最大8 h平均值第90百分位数)比2013年升高了21%.②2013—2019年京津冀及周边地区“2+26”城市重污染天数持续减少,2019年比2013年下降67%,严重污染天数下降尤为明显,降幅达90%.优良天数比例虽然增加,但2016年以后基本稳定在50%左右,没有持续增加的趋势.③ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的最大值均出现在1月,ρ(O3-8 h)(臭氧日最大8 h平均值)的最大值出现在6月.ρ(PM2.5)越高,PM2.5/PM10和SO2/NO2越大,表明二次污染源和燃煤源的贡献越大.④就空间分布而言,ρ(PM2.5)和ρ(PM10)高值区主要集中在区域中南部太行山脉山前的平原地区,低值区主要集中在区域北部.⑤地理位置、气象条件、产业结构、能耗消耗以及减排政策是影响2013—2019年京津冀及周边地区“2+26”城市空气质量变化的重要因素.研究显示,随着大气污染防治减排措施实施的力度逐渐加大,政策影响已成为京津冀及周边地区“2+26”城市空气质量持续改善的最重要手段.   相似文献   

15.
京津冀地区细颗粒物(PM2.5)浓度改善速度放缓,而臭氧(O3)污染不断加剧,PM2.5和O3的协同控制对于京津冀地区空气质量持续改善十分关键且紧迫. 通过构建京津冀地区城市层面可计算一般均衡模型(CGE),模拟了PM2.5和O3的共同前体物—NOx和VOCs的边际减排成本曲线,进而构建了京津冀地区PM2.5和O3协同控制评估模型,确定了在不同空气质量目标下减排成本最小的NOx和VOCs协同减排方案. 结果表明:减排成本最小的情景下,京津冀各城市PM2.5和O3浓度达到《环境空气质量标准》(GB 3095—2012)二级标准限值时;NOx和VOCs的排放量需较2017年分别降低25%~67%和22%~60%,需要投入的总减排成本为992.9×108元. 研究显示,基于京津冀地区城市政策仿真平台构建的PM2.5和O3协同控制评估模型,可为京津冀地区PM2.5和O3协同控制方案的制定提供参考.   相似文献   

16.
北京市传统春节假期空气质量特征研究   总被引:3,自引:0,他引:3  
利用2013~2020年北京市传统春节假期期间主要污染物浓度?PM2.5主要离子组分浓度及气象数据,研究近年烟花爆竹集中燃放对北京市空气质量的影响.结果表明,自2018年北京市加强对烟花爆竹燃放的管控后,空气质量显著改善,其中2019年传统春节假期中共7个优良天,占比达87.5%,且未出现中度及以上级别污染天;近3年除...  相似文献   

17.
武汉市夏冬季典型大气污染过程的成因与来源分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解武汉市夏冬季大气污染特征、成因及来源,基于武汉市20个监测点的观测数据,针对2017年7月21-31日及2018年1月13-25日两段典型大气污染过程分别展开研究.结果表明:武汉市大气污染呈现明显的季节性变化特征,夏季空气质量最优,春秋次之,冬季相对较差,夏冬季分别呈现明显的O3和PM2.5污染特征.夏季大气污染过程中平均ρ(O3-8 h)为151.6 μg/m3,高温、低湿的气象条件有利于前体物VOCs和NOx向O3的转化,O3的生成主要受VOCs控制,其中芳香烃和烯烃对O3生成潜势的贡献较大,相对贡献率分别为43.7%和35.6%.冬季污染过程中平均ρ(PM2.5)为129.1 μg/m3,静稳、高湿的气象条件会促进PM2.5的吸湿增长及二次生成,二次离子和有机碳的贡献显著,约占ρ(PM2.5)总量的72.4%.随着污染程度的加重,二次离子的转化程度及VOCs对SOA的生成潜势都逐渐增大,重度污染天气下前体物的二次转化程度约为非污染期的2.1~11.4倍.源解析结果显示,武汉市夏季大气污染过程受溶剂涂料使用、机动车尾气排放和工业排放VOCs的影响较大;冬季则受二次气溶胶源、燃煤工业源及机动车源的影响更大,三者平均贡献率分别为40.5%、30.0%和25.2%.区域传输对武汉市污染天气的发生也有一定影响,夏冬季的污染气团分别来自湖北省东南和西北方向.研究显示,受到不同的气象条件影响,武汉市夏季及冬季分别表现出O3和PM2.5污染特征,两段污染过程的发生均与污染前体物较高的二次转化程度和不利的污染扩散条件相关,污染来源呈现一定差异,但均受到区域传输作用的影响.   相似文献   

18.
我国大气污染协同防控理论框架初探   总被引:3,自引:0,他引:3       下载免费PDF全文
我国大气污染防治工作在“十三五”期间取得了可喜成绩,PM2.5浓度及重污染天数大幅降低,与此同时,我国城市地区臭氧(O3)污染问题凸显,说明我国大气污染格局发生了深刻变化. 当前,PM2.5与O3成为影响我国城市和区域空气质量的主要因子,二者的协同控制是我国持续改善空气质量的焦点,也成为我国“十四五”期间大气污染防治工作的重点. 本文通过对国内外PM2.5和O3协同控制进展的梳理,总结我国大气复合污染协同治理的现状与挑战,从协同防控目标、核心协同任务、重点支撑保障等角度提出大气复合污染协同治理的理论框架,并对我国PM2.5与O3协同控制工作提出以下几点建议:①坚持科学精准治气;②坚持综合系统治气;③坚持严格依法治气;④坚持多维协同治气.   相似文献   

19.
为研究厦门市冬季不同PM2.5污染情境与气象条件和气团轨迹路径特征的关系,结合PM2.5观测数据,使用AGAGE(Advanced Global Atmospheric Gases Experiment)统计方法识别2014—2018年冬季厦门市PM2.5观测值、基线值和污染值情境,通过气象数据统计和气团后向轨迹聚类对不同PM2.5污染情境下气象条件和气团轨迹路径特征进行探究.结果表明:①厦门市冬季不同PM2.5污染情境下,ρ(PM2.5)及PM2.5污染值情境时长占比均呈波动中下降的趋势,具体表现为冬季PM2.5观测值、污染值和基线值情境下,ρ(PM2.5)平均值分别从2014年的42.2、90.7、16.4 μg/m3降至2018年的26.3、56.9、8.8 μg/m3,冬季PM2.5污染值情境时长占比从2014年的10.2%降至2018年的3.0%.②冬季PM2.5污染值情境下气象要素呈低风速、低气压、高温度、高相对湿度的特征.③冬季到达厦门市的气团轨迹路径中,局地路径由于大气条件稳定易累积形成PM2.5污染;偏北路径和西北路径易从临近省份携带污染物输入导致PM2.5污染,属于重要的外源污染输入路径;沿海路径和偏西路径均属于清洁路径,但沿海路径易在福建省北部与偏北路径重合形成污染输入,加强了偏北路径的污染物输送能力.研究显示,近年来厦门市冬季PM2.5污染有明显减弱趋势,但不利的气象条件和外来污染输入仍会造成PM2.5污染的发生.   相似文献   

20.
探究细颗粒物(PM2.5)和臭氧(O3)污染的时间变化特征,阐明PM2.5和O3复合污染过程中不同阶段环境空气污染物及气溶胶粒径分布的详细演变过程,对南京及长三角地区的大气污染防治具有重要指导意义.本文使用2015—2021年南京市环境空气污染物小时浓度数据,分析了该地区多年大气污染演变过程,并选取2015年10月12—17日时间段作为复合污染典型个例,对其生消过程和内在机理进行了详细分析.结果表明:(1)2015—2021年南京市各种大气污染物的变化特征具有明显差异. PM2.5、PM10和SO2浓度的年下降率分别为8.9%、6.2%和15.4%,O3浓度变化较小. CO浓度在2016年达峰后以每年7.6%的速率下降.NO2浓度在2015—2019年呈增加趋势.(2)2015—2021年污染特征发生较大变化,由PM2.5为主导变为由O3为主导的大...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号