首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对内蒙古农村地区高腐殖酸地下水的处理问题,分别对(pH调节)-PAC强化混凝、高锰酸钾预氧化/混凝、活性炭吸附/混凝、Fenton氧化等技术处理的可行性进行了研究,同时利用三维荧光和高效体积排阻色谱分析处理前后水中有机物的组成变化特征。有机分析结果显示,水中的有机物为腐殖酸类物质,分子量分别为1600和3500,腐殖酸类物质为水中色度的主要贡献者。原水PAC强化混凝、高锰酸钾预氧化/PAC混凝对有机物的去除效果不佳,处理前后水样DOC浓度无明显变化,而pH调节.PAC强化混凝、微米活性炭吸附和Fenton氧化均能有效去除有机物。将原水pH调节至6.5,经300mg/LPAC混凝后出水DOC降至5.99mg/L。活性炭投加量为0.6g/L时,DOC降至7.6mg/L,然后采用60mg/LPAC混凝出去高度分散而不易沉降的小颗粒活性炭。此外,当反应初始pH值为3,过氧化氢投加量为0.5%(v/v),亚铁和双氧水摩尔比为0.05时,出水DOC降至5.6mg/L,氧化后有小分子有机物生成。  相似文献   

2.
以黄浦江上游水源地突发苯酚污染为背景,重点考察了粉末活性炭(PAC)吸附、高锰酸钾(KMnO4)氧化及两者联用技术的除酚效能。结果表明,活性炭及氧化剂种类的选择是影响处理效果的重要因素,微孔发达、比表面积巨大的竹炭对苯酚的去除效果明显优于煤质炭、椰壳炭和木质炭;KMnO4对苯酚的氧化能力强于次氯酸钠和高铁酸钾。增大PAC和KMnO4的投加量,可有效提高对苯酚的去除率;PAC吸附-KMnO4氧化联用技术可大大提高除酚效能,投加50mg/LPAC,2mg/LKMnO4可将初始浓度为250/μg/L和500/μg/L的含酚原水分别处理至18μg/L和66/μg/L,是应对高浓度苯酚突发污染的有效应急措施。  相似文献   

3.
分别从水样浓度、pH、反应时间、药剂投加量以及两者联用时的投加顺序等方面研究了粉末活性炭、高锰酸钾以及两者联合使用时对苯胺的去除效果.结果表明,当污染发生时,高锰酸钾和粉末活性炭联用处理技术是可行的;先投加粉末活性炭再加高锰酸钾处理比先投加高锰酸钾再投加活性炭的去除效果好;当水样pH在中性条件下,粉末活性炭和高锰酸钾联用处理技术的去除效果好;应急处理的反应时间是30 min.  相似文献   

4.
Fenton氧化-活性炭吸附耦合处理焦化废水生化尾水的研究   总被引:4,自引:0,他引:4  
研究了Fenton氧化、活性炭吸附、Fenton氧化一活性炭吸附等方法,对焦化废水生化尾水的处理效果,分析了Fenton氧化一活性炭吸附法处理焦化废水生化尾水的工艺条件。结果表明,Fenton氧化与活性炭吸附耦合处理焦化废水生化尾水的最优条件是:H2O2投加量为5mL/L,FeSO4·7H2O投加量为200mg/L,活性炭投加量为2g/L,反应pH=4.0,反应时间为20min。在此条件下,COD去除率可达82.6%,出水水质符合《污水综合排放标准》(GB8978--1996)一级标准。  相似文献   

5.
铬(Ⅵ)是突发性水污染常见污染物之一。研究表明,我国给水厂常规工艺出水铬(VI)超标风险较高,当污染强度为0.20m∥L时,投加混凝剂(PAFC)100mg/L,出水铬(VI)浓度为0.10mg/L,无法满足《生活饮用水卫生标准》(GB5749.2006)0.05mg/L的要求。活性炭吸附法不是理想的铬(Ⅵ)应急处理方法,当污染强度为0.114~0.794mg/L时,在未调节原水pH(7~8)的条件下,增加活性炭投加量,去除效果无明显改善,出水铬(Ⅵ)浓度大于0.05mg/L。硫酸亚铁还原沉淀法是可行的铬(Ⅵ)污染应急处理方法,当铬(Ⅵ)污染强度为2.00mg/L,pH为7~8时,投加硫酸亚铁16mg/L,铬(Ⅵ)去除率达99.1%,出水铬(VI)与铁浓度分别为0.019和0.021mg/L,满足标准要求,改变硫酸亚铁投加量可满足不同污染强度下应急处理的需要。  相似文献   

6.
活性炭吸附-Fenton氧化处理高盐有机废水   总被引:2,自引:0,他引:2  
采用活性炭吸附-Fenton氧化耦合工艺处理高盐度难降解有机废水的性能。考察了不同工艺参数对活性炭吸附及Fenton氧化对高盐有机废水处理效率的影响。结果表明,采用活性炭单独处理时,在pH=6.0,活性炭投加量为9.0g/L,吸附时间为60 min条件下,COD去除率最大,达到47.5%。活性炭吸附处理后,废水再采用Fenton氧化处理,在FeSO4.7H2O投加量为3.0 g/L,H2O2投加量为4.7 g/L,反应时间为30 min条件下,COD去除率最大,达到84.4%。整体而言,经过活性炭吸附和Fenton氧化处理后,废水COD由初始浓度13 650 mg/L降至560 mg/L,去除率达到95.9%。活性炭吸附-Fenton氧化耦合工艺适合高盐度难降解有机废水的处理。  相似文献   

7.
为了研究微波强化Fenton/活性炭工艺处理高浓度制药废水的影响因素,以阜新某集团公司生产制药原料排出的废水为研究对象,利用静态实验,采用混凝-微波强化Fenton/活性炭工艺对高浓度制药废水进行实验。实验用水为100 mL、COD为576~1 440 mg/L的制药废水,当活性炭投加量为2 g,H2O2投加量为3/4Qth,pH值为5,微波辐照功率和时间分别为500 W和7 min时,COD去除率可达到92.6%,出水COD在42.6~106.6 mg/L范围内。实验结果表明,活性炭的投加量、H2O2的投加量、pH值、微波辐照功率和辐照时间对微波强化Fenton/活性炭工艺的处理效果影响都较显著。  相似文献   

8.
采用臭氧/活性炭联合工艺对焦化废水A2/O出水进行深度处理。考察了溶液初始pH值、臭氧投加量、活性炭投加量及使用次数、反应时间对焦化废水处理效果的影响。实验结果表明,活性炭的使用可显著提高臭氧对焦化废水COD的去除率,在溶液初始pH值为10.25、臭氧投加量为7.5 mg/min、活性炭投加量50 g/L、反应时间为30 min条件下,COD去除率达到73.51%。同时,在活性炭重复使用10次时,COD去除率为70.85%,仅降低了2.66%。  相似文献   

9.
廖伟  陆少鸣 《环境工程学报》2011,5(9):2013-2017
在给水曝气生物滤池内置粉末活性炭,对比分析其对各工艺单元水质净化效果的影响,确定给水曝气生物滤池内置粉末活性炭的作用与最佳投加量,研究表明,给水曝气生物滤池将活性炭截留在滤池内,大幅度提高了粉末活性炭利用率,部分未饱和粉末活性炭通过反冲洗排入后续常规处理系统,作为生物载体仍能够进一步发挥生物强化作用。当粉末活性炭的投加量为8 mg/L时,砂滤出水氨氮、CODMn、浊度和色度均值分别为:0.02 mg/L,1.82 mg/L0,.46 NTU和6度,去除率分别达到99.6%、71.2%、99.1%和80.6%,出水指标达到《生活饮用水卫生标准(》GB5749-2006)和《饮用净水水质标准(》CJ94-2005)规定的标准。与常规工艺相比,投加量降低了20%~60%。  相似文献   

10.
TiO_2/活性炭光催化技术在印染废水深度处理中的应用研究   总被引:1,自引:0,他引:1  
通过TiO2/活性炭光催化剂的光催化氧化作用,对印染废水的生化处理出水进行深度处理。实验考察了pH值、催化剂负载次数、光照时间、催化剂投加量等因素对处理效果的影响。实验结果表明:催化剂负载次数为4次,光照时间30min,催化剂投加量为3g时,处理效果最佳。此时出水COD达到50mg/L,色度为2,达到印染行业回用水的标准。  相似文献   

11.
对含有表面活性剂的废水(以下简称表活废水)进行了傅里叶红外光谱分析(FTIR),结果表明,废水中所含表面活性剂主要为环烷酸钠。采用次氯酸钙(Ca(ClO)2)和活性炭-Ni催化氧化处理,在Ca(ClO)2投加量为4 500 mg/L,活性炭-Ni投加量为7 000 mg/L时,反应90 min,出水COD为158.91 mg/L,去除率达62.92%。催化氧化出水经沸石吸附处理,在pH为6.85,吸附时间为2 h,沸石投加量为17 g/L的条件下,吸附出水COD和油含量分别为88.92 mg/L和2.53mg/L,去除率分别为45.65%和90.02%,均达到《污水综合排放标准(GB8978-1996)》的一级标准要求。催化剂活性炭-Ni和吸附剂沸石均具有较稳定的活性,在重复使用20次后,出水COD的去除率仅分别降低了1.16%和1.32%。  相似文献   

12.
聚合氯化铝与粉末活性炭联合强化混凝处理垃圾渗滤液   总被引:1,自引:0,他引:1  
研究了联合粉末活性炭与聚合氯化铝(PAC)强化混凝对垃圾渗滤液原水的处理效果。结果表明,在原水COD为4 100 mg/L、浊度为147 NTU、UV254为20的条件下,粉末活性炭的加入可以有效增加垃圾渗滤液中有机物的去除率,PAC投加量为0.6 g/L时,投加0.6 g/L粉末活性炭,COD的去除率由21.6%提高到29.1%,UV254去除率由29.8%提高到39.9%,剩余浊度由138 NTU降到133 NTU。该强化混凝过程使原水中溶解性小分子有机物的去除率提高显著,PAC投加量为0.6 g/L时,投加0.6 g/L粉末活性炭,在分子量小于1 kDa的范围内,UV254去除率由2.9%上升为10%。  相似文献   

13.
采用UV/Fenton高级氧化技术对酸性红B模拟废水进行处理,当进水浓度为400mg/L时,确定了各影响因素的最佳投加量:H2O2投加量为2mL/L,Fe^2+投加量为0.08g/L,最佳pH值为4;并采用一级动力学公式对酸性红B降解速率进行拟合,研究了反应条件对速率常数的影响。最后通过对单独UV法、单独Fenton法和UV/Fenton法3种处理方法效果的比较,发现UV与Fenton试剂具有协同作用。  相似文献   

14.
Fenton氧化-活性炭吸附协同深度处理垃圾渗滤液的研究   总被引:2,自引:0,他引:2  
以上海某垃圾填埋场垃圾渗滤液为研究对象,采用Fenton氧化-活性炭吸附协同处理工艺对其处理效果进行研究。探讨了投加方式以及H2O2浓度、Fe2+浓度、活性炭投加量、温度、pH等因素对COD去除率的影响。结果表明:采用先投加活性炭吸附30 min后投加Fenton试剂反应150 min的方式能够获得最好的COD去除效果。正交实验表明各因素对COD去除的主次关系为:活性炭投加量Fe2+浓度反应温度H2O2浓度pH值;其最优化条件为:活性炭投加量为16g/L,Fe2+浓度为29 mmol/L,反应温度为60℃,H2O2浓度为78 mmol/L,pH值为3。  相似文献   

15.
UV/Fenton法预处理橡胶促进剂生产废水   总被引:2,自引:0,他引:2  
采用UV/Fenton法对橡胶促进剂废水进行预处理。当原水COD约为3000mg/L时,COD去除率可达65%以上,并得到最佳操作条件为:H2O2投加量为8mL/L,Fe^2+投加量为0.8g/L,反应时间为30rain,pH=5;同时得到Fenton试剂处理该废水的最佳条件为:H2O2投加量为10mL/L,Fe^2+投加量为0.966g/L,反应时间为30min,pH=5;单独UV作用的最佳工艺条件为:反应时间为20min,pH=5;并就3种处理方法进行了比较,发现UV对Fenton试剂处理橡胶促进剂废水具有一定促进作用。反应前后的紫外光谱说明,经UV/Fenton或Fenton反应后原水中的苯胺、硝基苯等物质已得到了彻底的氧化分解。  相似文献   

16.
三维电极-好氧生物法联合处理酸性染料废水模拟研究   总被引:1,自引:0,他引:1  
采用电解-好氧生物法联合处理酸性大红G模拟废水,三维电解反应器填料为活性炭与玻璃珠混合物,平板电极材料为石墨,通过正交实验确定的最佳实验条件为:电解时间150min,活性炭/玻璃珠体积比为2:1,槽电压20V、pH为5、Na2SO4投加量1.5g/L,进水初始浓度2000mg/L。此时COD去除率及色度去除率分别可达49.78%和81.45%,废水BOD,/COD由0.12提高到0.42。电解后的废水采用生物接触氧化法处理12h后,出水COD为48mg/L,色度120倍,达到综合污水排放二级标准。  相似文献   

17.
采用BBD(box—behnken design)法对微生物絮凝剂MBFGAl捕集25mg/L含铜模拟废水中cu(Ⅱ)的过程进行了优化,设定5个影响因子分别为pH值、MBFGAl投加量、CaCl,投加量、搅拌速度和搅拌时间,响应值为cu(II)的去除率,并利用傅里叶红外光谱仪对捕集机理进行了研究。结果表明,影响MBFGAI捕集Cu(Ⅱ)的显著性因素为MBFGAl投加量和搅拌速度;当pH为7.23,MBFGAl投加量为24.75mg/L,CaCl2投加量为29.25mg/L,搅拌速度为130.90r/min和搅拌时间为47.79S时,MBFGAl对Cu(Ⅱ)捕集的效果达到最佳,Cu(Ⅱ)的实测浓度为0.08mg/L,去除率达99.68%,捕集容量为303.43mg/g。最后结合FTIR图,对捕集机理进行了初步探讨,MBFGAI中起捕集作用的基团主要是羟基、羰基和乙酰基。研究表明,微生物絮凝剂MBFGAl对水中Cu(Ⅱ)具有良好的捕集效果,是一种很有潜力的环境友好型微生物重金属处理剂。  相似文献   

18.
沸石联合生物吸附再生工艺可行性研究   总被引:1,自引:0,他引:1  
对沸石联合生物吸附再生工艺用于城市污水脱氮的可行性进行了系统的研究。研究结果表明,对于城市污水,在3h的水力停留时间下,当沸石投加量为120mg/L时,平均出水氨氮为3.18mg/L,总氮为16.3mg/L,COD为29.2mg/L。在硝化细菌的作用下沸石粉能够得到有效的生物再生,试验中再生率达到了80%。  相似文献   

19.
水枝锦活性炭对孔雀石绿的吸附性能研究   总被引:2,自引:1,他引:1  
以水枝锦为原料,采用磷酸活化法制备成水枝锦活性炭,通过静态实验研究其对孔雀石绿的吸附性能.考察了水枝锦活性炭投加量、接触时间、pH和孔雀石绿初始浓度对孔雀石绿吸附效果的影响.结果表明,在温度为723 K、活化时间为1 h条件下,水枝锦活性炭得率为36.7%,比表面积为1 223m2/g;在298K、孔雀石绿初始质量浓度为250mg/L、接触270min条件下,水枝锦活性炭的最佳投加量为0.5 g/L,适宜pH为7~12;吸附量随温度的升高而增大,提高温度有利于吸附的进行;水枝锦活性炭静态吸附孔雀石绿的动力学行为符合伪二级动力学方程.静态吸附动力学研究为投加粉状活性炭的吸附池的设计和污水处理装置的运行提供基础信息,对于去除水中孔雀石绿技术的应用具有重要的实际意义.  相似文献   

20.
炼油高浓度有机废碱水是石化行业中很难降解的废水。本实验用光化学氧化技术对其进行了降解研究,比较了紫外光/空气、紫外光/O3、紫外光/空气/H2O2系统的处理效果。结果表明,光化学氧化技术降解此废水是可行的,紫外光可使废水中COD、油、酚的降解率明显提高。当废水中O3的投加量每小时为22mg/L,或H2O2投加量为1%/L时,UV/O3法与UV/空气/H2O2法的降解效果相近。同时,通过控制O,浓度或H2O2的投加量等条件,可使废水中COD、油、酚和硫化物降解到地方污染物二级排放标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号