首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
National fuel-reduction programs aim to reduce the risk of wildland fires to human communities and to restore forest and rangeland ecosystems to resemble their historical structure, function, and diversity. There are a number of factors, such as seed bank dynamics, post-treatment climate, and herbivory, which determine whether this latter goal may be achieved. Here, we examine the short-term (2 years) vegetation response to fuel-reduction treatments (mechanical mastication, broadcast burn, and pile burn) and seeding of native grasses on understory vegetation in an upland piñon–juniper woodland in southeast Utah. We also examine how wildlife herbivory affects the success of fuel-reduction treatments. Herbaceous cover increased in response to fuel-reduction treatments in all seeded treatments, with the broadcast burn and mastication having greater increases (234 and 160 %, respectively) in herbaceous cover than the pile burn (32 %). In the absence of seeding, herbaceous cover only increased in the broadcast burn (32 %). Notably, fuel-reduction treatments, but not seeding, strongly affected herbaceous plant composition. All fuel-reduction treatments increased the relative density of invasive species, especially in the broadcast burn, which shifted the plant community composition from one dominated by perennial graminoids to one dominated by annual forbs. Herbivory by wildlife reduced understory plant cover by over 40 % and altered plant community composition. If the primary management goal is to enhance understory cover while promoting native species abundance, our study suggests that mastication may be the most effective treatment strategy in these upland piñon–juniper woodlands. Seed applications and wildlife exclosures further enhanced herbaceous cover following fuel-reduction treatments.  相似文献   

2.
Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment into mountain big sagebrush (Artemisia tridentata spp. vaseyana (Rydb.) Beetle) steppe has reduced livestock forage production, increased erosion risk, and degraded sagebrush-associated wildlife habitat. Western juniper has been successfully controlled with partial cutting followed by prescribed burning the next fall, but the herbaceous understory and sagebrush may be slow to recover. We evaluated the effectiveness of seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlled by partially cutting and prescribed burning. Treatments tested at each site included an unseeded control, herbaceous seed mix (aerially seeded), and the herbaceous seed mix plus sagebrush seed. In the third year post-treatment, perennial grass cover and density were twice as high in plots receiving the herbaceous seed mix compared to the control plots. Sagebrush cover and density in the sagebrush seeded plots were between 74- and 290-fold and 62- and 155-fold greater than the other treatments. By the third year after treatment, sagebrush cover was as high as 12 % in the sagebrush seeded plots and between 0 % and 0.4 % where it was not seeded. These results indicate that aerial seeding perennial herbaceous vegetation can accelerate the recovery of perennial grasses which likely stabilize the site. Our results also suggest that seeding mountain big sagebrush after prescribed burning encroaching juniper can rapidly recover sagebrush cover and density. In areas where sagebrush habitat is limited, seeding sagebrush after juniper control may increase sagebrush habitat and decrease the risks to sagebrush-associated species.  相似文献   

3.
Vegetation Response to Western Juniper Slash Treatments   总被引:2,自引:0,他引:2  
The expansion of piñon–juniper woodlands the past 100 years in the western United States has resulted in large scale efforts to kill trees and recover sagebrush steppe rangelands. It is important to evaluate vegetation recovery following woodland control to develop best management practices. In this study, we compared two fuel reduction treatments and a cut-and-leave (CUT) treatment used to control western juniper (Juniperus occidentalis spp. occidentalis Hook.) of the northwestern United States. Treatments were; CUT, cut-and-broadcast burn (BURN), and cut-pile-and-burn the pile (PILE). A randomized complete block design was used with five replicates of each treatment located in a curl leaf mahogany (Cercocarpus ledifolius Nutt. ex Torr. & A. Gray)/mountain big sagebrush (Artemisia tridentata Nutt. spp. vaseyana (Rydb.) Beetle)/Idaho fescue (Festuca idahoensis Elmer) association. In 2010, 4 years after tree control the cover of perennial grasses (PG) [Sandberg’s bluegrass (Poa secunda J. Pres) and large bunchgrasses] were about 4 and 5 % less, respectively, in the BURN (7.1 ± 0.6 %) than the PILE (11.4 ± 2.3 %) and CUT (12.4 ± 1.7 %) treatments (P < 0.0015). In 2010, cover of invasive cheatgrass (Bromus tectorum L.) was greater in the BURN (6.3 ± 1.0 %) and was 50 and 100 % greater than PILE and CUT treatments, respectively. However, the increase in perennial bunchgrass density and cover, despite cheatgrass in the BURN treatment, mean it unlikely that cheatgrass will persist as a major understory component. In the CUT treatment mahogany cover increased 12.5 % and density increased in from 172 ± 25 to 404 ± 123 trees/ha. Burning, killed most or all of the adult mahogany, and mahogany recovery consisted of 100 and 67 % seedlings in the PILE and BURN treatments, respectively. After treatment, juniper presence from untreated small trees (<1 m tall; PILE and CUT treatments) and seedling emergence (all treatments) represented 25–33 % of pre-treatment tree density. To maintain recovery of herbaceous, shrub, and mahogany species additional control of reestablished juniper will be necessary.  相似文献   

4.
Shrub-Steppe Early Succession Following Juniper Cutting and Prescribed Fire   总被引:1,自引:0,他引:1  
Pinus-Juniperus L. (Piñon-juniper) woodlands of the western United States have expanded in area nearly 10-fold since the late 1800’s. Juniperus occidentalis ssp. occidentalis Hook. (western juniper) dominance in sagebrush steppe has several negative consequences, including reductions in herbaceous production and diversity, decreased wildlife habitat, and higher erosion and runoff potentials. Prescribed fire and mechanical tree removal are the main methods used to control J. occidentalis and restore sagebrush steppe. However, mature woodlands become difficult to prescribe burn because of the lack of understory fuels. We evaluated partial cutting of the woodlands (cutting 25–50% of the trees) to increase surface fuels, followed by prescribed fire treatments in late successional J. occidentalis woodlands of southwest Idaho to assess understory recovery. The study was conducted in two different plant associations and evaluated what percentage of the woodland required preparatory cutting to eliminate remaining J. occidentalis by prescribed fire, determined the impacts of fire to understory species, and examined early post-fire successional dynamics. The study demonstrated that late successional J. occidentalis woodlands can be burned after pre-cutting only a portion of the trees. Early succession in the cut-and-burn treatments were dominated by native annual and perennial forbs, in part due to high mortality of perennial bunchgrasses. By the third year after fire the number of establishing perennial grass seedlings indicated that both associations would achieve full herbaceous recovery. Cutting-prescribed fire combinations are an effective means for controlling encroaching late successional J. occidentalis and restoring herbaceous plant communities. However, land managers should recognize that there are potential problems associated with cutting-prescribed fire applications when invasive weeds are present.  相似文献   

5.
Prescribed fire is a common site preparation practice in forest management in southern China. However, the effect of fire on soil properties and N transformations is still poorly understood in this region. In this study, soil properties and N transformations in burned and unburned site of two vegetation types (Eucalyptus plantation and shrubland) were compared in rainy and dry seasons after 2 years’ prescribed fire. Soil pH and soil NH4-N were all higher in the burned site compared to the unburned control. Furthermore, burned sites had 30–40 % lower of soil total phosphorus than conspecific unburned sites. There was no difference in soil organic matter, total N, soil exchangeable cations, available P or NO3-N. Nitrogen mineralization rate of 0–5 cm soil in the unburned site ranged from 8.24 to 11.6 mg N kg?1 soil month?1 in the rainy season, compared to a lower level of 4.82–5.25 mg N kg?1 soil month?1 in the burned sites. In contrast, 0–5 cm layer nitrification rate was overall 2.47 mg N kg?1 soil month?1 in the rainy season, and was not significantly affected by burning. The reduced understory vegetation coverage after burning may be responsible for the higher soil NH4-N in the burned site. This study highlights that a better understanding the effect of prescribed burning on soil nutrients cycling would provide a critical foundation for management decision and be beneficial to afforestation in southern China.  相似文献   

6.
Fire and grazing are common management schemes of grasslands globally and are potential drivers of reptilian and amphibian (herpetofauna) metacommunity dynamics. Few studies have assessed the impacts of fire and cattle grazing on herpetofauna assemblages in grasslands. A patch-burn grazing study at Osage Prairie, MO, USA in 2011–2012 created landscape patches with treatments of grazing, fire, and such legacies. Response variables were measured before and after the application of treatments, and I used robust-design occupancy modeling to estimate patch occupancy and detection rate within patches, and recolonization and extinction (i.e., dispersal) across patches. I conducted redundancy analysis and a permuted multivariate analysis of variance to determine if patch type and the associated environmental factors explained herpetofauna assemblage. Estimates for reptiles indicate that occupancy was seasonally constant in Control patches (ψ ~ 0.5), but declined to ψ ~ 0.15 in patches following the applications of fire and grazing. Local extinctions for reptiles were higher in patches with fire or light grazing (ε ~ 0.7) compared to the controls. For the riparian herpetofaunal community, patch type and grass height were important predictors of abundance; further, the turtles, lizards, snakes, and adult amphibians used different patch types. The aquatic amphibian community was predicted by watershed and in-stream characteristics, irrespective of fire or grazing. The varying responses from taxonomic groups demonstrate habitat partitioning across multiple patch types undergoing fire, cattle grazing, and legacy effects. Prairies will need an array of patch types to accommodate multiple herpetofauna species.  相似文献   

7.
Ecological conditions following removal of exotic plants are a key part of comprehensive environmental management strategies to combat exotic plant invasions. We examined ecological conditions following removal of the management-priority buffelgrass (Pennisetum ciliare) in Saguaro National Park of the North American Sonoran Desert. We assessed soil, vegetation, and soil seed banks on seven buffelgrass site types: five different frequencies of buffelgrass herbicide plus hand removal treatments (ranging from 5 years of annual treatment to a single year of treatment), untreated sites, and non-invaded sites, with three replicates for each of the seven site types. The 22 measured soil properties (e.g., pH) differed little among sites. Regarding vegetation, buffelgrass cover was low (≤1 % median cover), or absent, across all treated sites but was high (10–70 %) in untreated sites. Native vegetation cover, diversity, and composition were indistinguishable across site types. Species composition was dominated by native species (>93 % relative cover) across all sites except untreated buffelgrass sites. Most (38 species, 93 %) of the 41 species detected in soil seed banks were native, and native seed density did not differ significantly across sites. Results suggest that: (1) buffelgrass cover was minimal across treated sites; (2) aside from high buffelgrass cover in untreated sites, ecological conditions were largely indistinguishable across sites; (3) soil seed banks harbored ≥12 species that were frequent in the aboveground vegetation; and (4) native species dominated post-treatment vegetation composition, and removing buffelgrass did not result in replacement by other exotic species.  相似文献   

8.
Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the Relative differenced Normalized Burn Ratio, a satellite image-based change detection procedure commonly used to map burn severity, with output from the Fire Hazard and Risk Model, a simulation model that estimates fire effects at a landscape scale. Using 285 Composite Burn Index (CBI) plots in Washington and Montana as ground reference, we found that an integrated model explained more variability in CBI (R 2 = 0.47) and had lower mean squared error (MSE = 0.28) than image (R 2 = 0.42 and MSE = 0.30) or simulation-based models (R 2 = 0.07 and MSE = 0.49) alone. Overall map accuracy was also highest for maps created with the Integrated Model (63 %). We suspect that Simulation Model performance would greatly improve with higher quality and more accurate spatial input data. Results of this study indicate the potential benefit of combining satellite image-based methods with a fire effects simulation model to create improved burn severity maps.  相似文献   

9.
Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100–1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.  相似文献   

10.
In the Southwestern United States, increasing demand for firewood has quickly promoted pinyon-juniper woodlands to commercial status. Slow recovery rates for pinyon and juniper and inadequate mensuration data present significant obstacles to predictive management efforts. Many National Forest districts have witnessed continued fuel use for at least the past 100 years. To explore the need for long-term analysis at the district level, we have developed FORMAN I, a computer simulation written in FORTRAN IV that models prolonged fuel harvesting and its impact on pinyon-juniper woodlands. The technique is well-suited for historical analyses and we comply with an initial application that involves the suggested impact of prehistoric peoples on a marginal woodland in Chaco Canyon, New Mexico. To accentuate the significance of the simulation, we have deliberately overestimated woodland parameters while maintaining conservative annual rates for firewood procurement. A low-density woodland (less than 14.8 cords/ha) is completely depleted within 200 years when subjected to tenth-through-twelfth century estimates of human demography for the canyon. Interesting conclusions are drawn from the lack of pinyon-juniper recovery at Chaco over the past millennium. Traditional assumptions, such as the pristine state of Southwestern vegetation prior to historic settlement and subsequent invasion of marginal grasslands by pinyon and juniper, are questioned.  相似文献   

11.
Western North America is experiencing a dramatic expansion of piñon (Pinus spp.) and juniper (Juniperus spp.) (P-J) trees into shrub-steppe communities. Feature extracted data acquired from remotely sensed imagery can help managers rapidly and accurately assess this land cover change in order to manage rangeland ecosystems at a landscape-scale. The objectives of this study were to: (1) develop an effective and efficient method for accurately quantifying P-J tree canopy cover and density directly from high resolution photographs and (2) compare feature-extracted data to typical in-situ datasets used by land managers. Tree cover was extracted from aerial-photography using Feature Analyst®. Tree density was calculated as the sum of the total number of individual polygons (trees) within the tree cover output file after isolation using a negative buffer post-processing technique. Feature-extracted data were compared to ground reference measurements from Utah’s Division of Wildlife Resources Range Trend Project (DWR-RTP). We found that the proposed feature-extraction techniques used for measuring cover and density were highly correlated to ground reference and DWR-RTP datasets. Feature-extracted measurements of cover generally showed a near 1:1 relationship to these data, while tree density was underestimated; however, after calibration for juvenile trees, a near 1:1 relationship was realized. Feature-extraction techniques used in this study provide an efficient method for assessing important rangeland indicators, including: density, cover, and extent of P-J tree encroachment. Correlations found between field and feature-extracted data provide evidence to support extrapolation between the two approaches when assessing woodland encroachment.  相似文献   

12.
Historic land use changes and subsequent river channelization created deeply incised, unstable stream channels largely devoid of natural cover throughout the Yazoo River basin, Mississippi, USA. Large trash (e.g., televisions, toilets, car parts) dumped in streams provided shelter for some aquatic fauna. To determine whether trash served as a surrogate for natural cover, I examined crayfish use of both cover types. I sampled crayfishes by kick-seining 2 × 1-m plots in three cover classes: trash, natural cover, and no cover. I captured 415 crayfishes from 136 of the 294 plots. Most crayfishes were in natural cover (253), followed by trash (154), and no-cover (8) plots. Trash use varied by crayfish genus and size. Frequencies of all size classes of Procambarus and of the smallest Cambarus were higher in natural cover than trash. Many of the smallest individuals were found in live root mats. As Cambarus and Orconectes grew, they shifted more toward trash, and the largest Orconectes size class was significantly more abundant than expected in trash. Trash served as “artificial reefs,” providing cover for crayfishes and other fauna, but functioned differently than the remaining natural cover. The results confirmed that stream substrate did not provide adequate instream cover for crayfishes in the study area and suggested that high-quality natural cover for large crayfishes was in short supply, at least for some species. Land management that provides for abundant, ongoing input and retention of complex cover, such as trees and live roots, to stream channels should be beneficial for crayfish assemblages.  相似文献   

13.
Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r 2 = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400–500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.  相似文献   

14.
In the coastal temperate rainforest of British Columbia (BC) in western Canada, government policies stipulate that foresters leave unlogged hydroriparian buffer strips up to 25 m on each side of streams to protect wildlife habitat. At present, studies on the effectiveness of these buffers focus on mammals, birds, and amphibians while there is comparably little information on smaller organisms such as liverworts in these hydroriparian buffers. To address this gap of knowledge, we conducted field surveys of liverworts comparing the percent cover and community composition in hydroriparian forested areas (n = 4 sites, n = 32 plots with nested design) to hydroriparian buffer zones (n = 4 sites, n = 32 plots). We also examined how substrate type affected the cover of liverworts. Liverwort communities in buffers were similar to those in riparian forest areas and most liverworts were found on downed wood. Thus, hydroriparian buffers of 25–35 m on each side in a coastal temperate rainforest effectively provide habitat for liverworts as long as downed wood is left intact in the landscape. Because liverworts are particularly sensitive to changes in humidity, these results may indicate that hydroriparian buffers are an effective management strategy for bryophytes and possibly for a range of other riparian species that are particularly sensitive to forestry-related changes in microclimate.  相似文献   

15.
Knowledge of forest fuels and their potential fire behavior across a landscape is essential in fire management. Four customized fire behavior fuel models that differed significantly in fuels characteristics and environmental conditions were identified using hierarchical cluster analysis based on fuels data collected across a boreal forest landscape in northeastern China. Fuel model I represented the dense and heavily branched Pinus pumila shrubland which has significant fine live woody fuels. These forests occur mainly at higher mountain elevations. Fuel model II is applicable to forests dominated by Betula platyphylla and Populus davidiana occurring in native forests on hill slopes or at low mountain elevations. This fuel model was differentiated from other fuel models by higher herbaceous cover and lower fine live woody loading. The primary coniferous forests dominated by Larix gmelini and Pinus sylvestris L. var. mongolica were classified as fuel model III and fuel model IV. Those fuel models differed from one another in average cover and height of understory shrub and herbaceous layers as well as in aspect. The potential fire behavior for each fuel model was simulated with the BehavePlus5.0 fire behavior prediction system. The simulation results indicated that the Pinus pumila shrubland fuels had the most severe fire behavior for the 97th percentile weather condition, and had the least severe fire behavior under 90th percentile weather condition. Fuel model II presented the least severe fire potential across weather conditions. Fuel model IV resulted in greater fire severity than Fuel model III across the two weather scenarios that were examined.  相似文献   

16.
Proper grazing management practices can generate corresponding compensatory effects on plant community production, which may reduce inter-annual variability of productivity in some grassland ecosystems. However, it remains unclear how grazing influences plant community attributes and the variability of standing crop. We examined the effects of sheep grazing at four stocking rate treatments [control, 0 sheep ha?1 month?1; light (LG), 0.15 sheep ha?1 month?1; moderate (MG), 0.30 sheep ha?1 month?1; and heavy (HG), 0.45 sheep ha?1 month?1] on standing crop at the community level and partitioned by species and functional groups, in the desert steppe of Inner Mongolia, China. The treatments were arranged in a completely randomized block design over a 9-year period. Standing crop was measured every August from 2004 to 2012. Peak standing crop decreased (P < 0.05) with increasing stocking rate; peak standing crop in the HG treatment decreased 40 % compared to the control. May–July precipitation explained at least 76 % of the variation in peak standing crop. MG and HG treatments resulted in a decrease (P < 0.05) in shrubs, semi-shrubs, and perennials forbs, and an increase (P < 0.05) in perennial bunchgrasses compared to the control. The coefficients of variation at plant functional group and species level in the LG and MG treatments were lower (P < 0.05) than in the control and HG treatments. Peak standing crop variability of the control and HG community were greatest, which suggested that LG and MG have greater ecosystem stability.  相似文献   

17.
Within the Southeastern (SE) Coastal Plain of the U.S., numerous freshwaters and estuaries experience eutrophication with significant nutrient contributions by agricultural non-point sources (NPS). Riparian buffers are often used to reduce agricultural NPS yet the effect of buffers in the watershed is difficult to quantify. Using corrected Akaike information criterion (AICc) and model averaging, we compared flow-path riparian buffer models with land use/land cover (LULC) models in 24 watersheds from the SE Coastal Plain to determine the ability of riparian buffers to reduce or mitigate stream total nitrogen concentrations (TNC). Additional models considered the relative importance of headwaters and artificial agricultural drainage in the Coastal Plain. A buffer model which included cropland and non-buffered cropland best explained stream TNC (R 2 = 0.75) and was five times more likely to be the correct model than the LULC model. The model average predicted that current buffers removed 52 % of nitrogen from the edge-of-field and 45 % of potential nitrogen from the average SE Coastal Plain watershed. On average, 26 % of stream nitrogen leaked through buffered cropland. Our study suggests that stream TNC could potentially be reduced by 34 % if buffers were adequately restored on all cropland. Such estimates provide realistic expectations of nitrogen removal via buffers to watershed managers as they attempt to meet water quality goals. In addition, model comparisons of AICc values indicated that non-headwater buffers may contribute little to stream TNC. Model comparisons also indicated that artificial drainage should be considered when accessing buffers and stream nitrogen.  相似文献   

18.
Land-use change from one type to another affects soil carbon (C) stocks which is associated with fluxes of CO2 to the atmosphere. The 10-years converted land selected from previously cultivated land in hilly areas of Sichuan, China was studied to understand the effects of land-use conversion on soil organic casrbon (SOC) sequestration under landscape position influences in a subtropical region of China. The SOC concentrations of the surface soil were greater (P < 0.001) for converted soils than those for cultivated soils but lower (P < 0.001) than those for original uncultivated soils. The SOC inventories (1.90–1.95 kg m?2) in the 0–15 cm surface soils were similar among upper, middle, and lower slope positions on the converted land, while the SOC inventories (1.41–1.65 kg m?2) in this soil layer tended to increase from upper to lower slope positions on the cultivated slope. On the whole, SOC inventories in this soil layer significantly increased following the conversion from cultivated land to grassland (P < 0.001). In the upper slope positions, converted soils (especially in 0–5 cm surface soil) exhibited a higher C/N ratio than cultivated soils (P = 0.012), implying that strong SOC sequestration characteristics exist in upper slope areas where severe soil erosion occurred before land conversion. It is suggested that landscape position impacts on the SOC spatial distribution become insignificant after the conversion of cultivated land to grassland, which is conducive to the immobilization of organic C. We speculate that the conversion of cultivated land to grassland would markedly increase SOC stocks in soil and would especially improve the potential for SOC sequestration in the surface soil over a moderate period of time (10 years).  相似文献   

19.
Forest fires are an integral part of the ecology of the Mediterranean Basin; however, fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recently published data to calculate the average annual wildfire CO(2) emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of prescribed burning on emissions was calculated for four scenarios of prescribed burning effectiveness based on data from Portugal. Results show that prescribed burning could have a considerable effect on the carbon balance of the land use, land-use change and forestry (LULUCF) sector in Mediterranean countries. However, uncertainty in emission estimates remains large, and more accurate data is needed, especially regarding fuel load and fuel consumption in different vegetation types and fuel layers and the total area protected from wildfire per unit area treated by prescribed burning, i.e. the leverage of prescribed burning.  相似文献   

20.
The wildland–urban interface (WUI) is the region where development meets and intermingles with wildlands. The WUI has an elevated fire risk due to the proximity of development and residents to wildlands with natural wildfire regimes. Existing methods of delineating WUI are typically applied over a large region, use proxies for risk, and do not consider site-specific fire hazard drivers. While these models are appropriate for federal and provincial risk management, municipal managers require models intended for smaller regions. The model developed here uses the Burn-P3 fire behavior model to model WUI from local fire susceptibility (FS) in two study communities. Forest fuel code (FFC) maps for the study communities were modified using remote sensing data to produce detailed forest edges, including ladder fuels, update data currency, and add buildings and roads. The modified FFC maps used in Burn-P3 produced bimodal FS distributions for each community. The WUI in these communities was delineated as areas within community bounds where FS was greater than or equal to ?1 SD from the mean FS value ( ${\text{WUI}} = {\text{FS}} \geqslant - 1 \, [\bar \chi - \sigma ]$ ), which fell in the trough of the bimodal distribution. The WUI so delineated conformed to the definition of WUI. This model extends WUI modeling for broader risk management initiatives for municipal management of risk, as it (a) considers site-specific drivers of fire behavior; (b) models risk, represented by WUI, specific to a community; and, (c) does not use proxies for risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号