首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Various industrial facilities in the city of Varanasi discharge their effluent mixed with municipal sewage into the River Ganges at different discharge points. In this study, chemometric tools such as cluster analysis and box–whisker plots were applied to interpret data obtained during examination of River Ganges water quality. Specifically, we investigated the temperature (T), pH, total alkalinity, total acidity, electrical conductivity (EC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), nitrate nitrogen (N), phosphate (PO 4 2? ), copper (Cu), cadmium (Cd), chromium (Cr), nickel (Ni), iron (Fe), lead (Pb), and zinc (Zn) in water samples collected from six sampling stations. Hierarchical agglomerative cluster analysis was conducted using Ward’s method. Proximity distance between EC and Cr was the smallest revealing a relationship between these parameters, which was confirmed by Pearson’s correlation. Based on proximity distances, EC, Cr, Ni, Fe, N, COD, temperature, BOD, and total acidity comprised one group; Zn, Pb, Cd, total alkalinity, Cu, and phosphate (PO 4 2? ) were in another group; and DO and pH formed a separate group. These groups were confirmed by Pearson’s correlation (r) values that indicated significant and positive correlation between variables in the same group. Box–whisker plots revealed that as we go downstream, the pollutant concentration increases and maximum at the downstream station Raj Ghat and minimum at the upstream station Samane Ghat. Seasonal variations in water quality parameters signified that total alkalinity, total acidity, DO, BOD, COD, N, phosphate (PO 4 2? ), Cu, Cd, Cr, Ni, Fe, Pb, and Zn were the highest in summer (March–June) and the lowest during monsoon season (July–October). Temperature was the highest in summer and the lowest in winter (November–February). DO was the highest in winter and the lowest in summer season. pH was observed to be the highest in monsoon and the lowest in summer season.  相似文献   

2.
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L?1; Zn = 5.00 μg L?1; Pb = 0.03 μg L?1; Cd = 0.05 μg L?1; Hg = 0.05 μg L?1); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.  相似文献   

3.
Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P?+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), total Kjeldahl nitrogen (TKN), phosphate (PO4 3?), sulfate (SO4 2?), ferrous (Fe2+), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn), in both seasons. The contents of Cr, Cu, Mn, and Zn except Cd were found to be below the maximum levels permitted for soils in India. The agronomic performance of P. vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.  相似文献   

4.
Ambient air samples were collected at two different locations between 2011 and 2012 in Zhengzhou, China in order to assess the concentration level, health risks, as well as the sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM2.5). The mean annual levels of PM2.5 observed at industry site and residential site were 172?±?121 and 160?±?72 μg m?3, respectively, which were about five times the annual value of proposed PM2.5 standard (35 μg m?3) in China. The PM2.5 in all daily samples (n?=?47) exceeds the proposed PM2.5 standard in China (75 μg m?3) at both industrial and residential sites. Seasonal variations of PM2.5 showed a clear trend of winter?>?autumn?>?spring?>?summer at both sites. The total concentrations of 16 PM2.5-associated PAHs ranged from 61?±?51 to 431?±?281 and 38?±?25 to 254?±?189 ng m?3, with mean value of 176?±?233 and 111?±?146 ng m?3 at industry and residential sites, respectively. The major species were fluoranthene, pyrene, chrysene, benzo[b]fluoranthene and benzo[k]fluoranthene, and the concentration levels of PAHs in PM2.5 were higher in winter than those of other seasons at both sites. The annual mean values of toxicity equivalency concentrations of ∑16PAHs in PM2.5 were 22.8 and 13.5 ng m?3 in industry and residential area, respectively. In this study, the risk level of adult citizens through inhalation exposure to PAHs was calculated. The average estimates of lifetime inhalation cancer risks were approximately 8.9?×?10?7 and 6.3?×?10?7 for industry and residential sites, respectively. The main sources of 16 PAHs from both diagnostic ratios and principle component analysis identified as vehicular emissions and coal combustion.  相似文献   

5.
In an effort to assess the potential contamination and determine the environmental risks associated with heavy metals, the surface sediments in Liaodong Bay, northeast China, were systematically sampled and analyzed for the concentrations of Cu, Pb, Zn, Cr, Ni, As, and Hg. The metal enrichment factor (EF) and geoaccumulation index (I geo) were calculated to assess the anthropogenic contamination in the region. Results showed that heavy metal concentrations in the sediments generally met the criteria of China Marine Sediment Quality (GB18668-2002); however, both EF and I geo values suggested the elevation of Pb concentration in the region. Based on the effect-range classification (TEL-PEL SQGs), Cu, Pb, Ni, and As were likely to pose environment risks, and the toxic units decreased in the order: Ni?>?Pb?>?Cr?>?Zn?>?As?>?Cu?>?Hg. The spatial distribution of ecotoxicological index (mean-ERM-quotient) suggested that most of the surface sediments were “low–medium” priority zone. Multivariate analysis indicated that the sources of Cr, Ni, Zn, Cu, and Hg resulted primarily from parent rocks, and Pb or As were mainly attributed to anthropogenic sources. The results of this study would provide a useful aid for sustainable marine management in the region.  相似文献   

6.
Even though the Selenga is the main tributary to Lake Baikal in Russia, the largest part of the Selenga River basin is located in Mongolia. It covers a region that is highly diverse, ranging from almost virgin mountain zones to densely urbanized areas and mining zones. These contrasts have a strong impact on rivers and their ecosystems. Based on two sampling campaigns (summer 2014, spring 2015), we investigated the longitudinal water quality pattern along the Selenga and its tributaries in Mongolia. While headwater regions typically had a very good water quality status, wastewater from urban areas and impacts from mining were found to be main pollution sources in the tributaries. The highest nutrient concentrations in the catchment were found in Tuul River, and severely elevated concentrations of trace elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn), nutrients (NH4 +, NO2 ?, NO3 ?, PO4 3?), and selected major ions (SO4 2?) were found in main tributaries of Selenga River. Moreover, trace element concentrations during spring 2015 (a time when many mines had not yet started operation) were markedly lower than in summer 2014, indicating that the additional metal loads measured in summer 2014 were related to mining activities. Nevertheless, all taken water samples in 2014 and 2015 from the main channel of the Mongolian Selenga River complied with the Mongolian standard (MNS 1998) for the investigated parameters.  相似文献   

7.
The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu?>?Pb?>?Cd?>?Zn?>?Ni?>?Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg?1 for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.  相似文献   

8.
The concentrations of selected heavy metals in the soil and vegetation in the immediate vicinity of a metal scrap recycling factory were determined in the dry and wet seasons using the Atomic Absorption Spectrophotometer. The results showed that the soil pH in all the sites indicated slight acidity (from 5.07 to 6.13), high soil organic matter content (from 2.08 to 5.60 %), and a well-drained soil of sandy loam textural composition. Soil heavy metal content in the dry season were 0.84–3.12 mg/kg for Pb, 0.26–0.46 mg/kg for Cd, 9.19–24.70 mg/kg for Zn, and 1.46–1.97 mg/kg for Cu. These values were higher than those in the wet season which ranged from 0.62–0.69 mg/kg for Pb, 0.67–0.78 mg/kg for Cd, 0.84–1.00 mg/kg for Zn, and 1.26–1.45 mg/kg for Cu. Except for cadmium in the dry season, the highest concentrations occurred in the northern side of the factory for all the elements in both seasons. An increase in the concentrations of the elements up to 350 m in most directions was also observed. There was no specific pattern in the level of the metals in the leaves of the plant used for the study. However, slightly elevated values were observed in the wet season (Pb 0.53 mg/kg, Cd 0.59 mg/kg, Cu 0.88 mg/kg) compared with the dry season values (Pb 0.50 mg/kg, Cd 0.57 mg/kg, Cu 0.83 mg/kg). This study showed that the elevated concentrations of these metals might be associated with the activities from the recycling plant, providing the basis for heavy metal pollution monitoring and control of this locality that is primarily used for agricultural purposes.  相似文献   

9.
The ability of Quercus crassipes acorn shells (QCS) to remove Cr(VI) and total chromium from aqueous solutions was investigated as a function of the solution pH, ionic strength, and background electrolytes. It was found that Cr(VI) and total chromium removal by QCS depended strongly on the pH of the solution. Cr(VI) removal rate increased as the solution pH decreased. The optimum pH for total chromium removal varied depending on contact time. NaCl ionic strengths lower than 200 mM did not affect chromium removal. The presence of 20 mM monovalent cations and anions, and of divalent cations, slightly decreased the removal of Cr(VI) and total chromium by QCS; in contrast, divalent anions (SO4 2?, PO4 2?, CO3 2?) significantly affected the removal of Cr(VI) and total chromium. The biosorption kinetics of chromium ions followed the pseudo-second-order model at all solution pH levels, NaCl ionic strengths and background electrolytes tested. Results suggest that QCS may be a potential low-cost biosorbent for the removal of Cr(VI) and total chromium from aqueous solutions containing various impurities.  相似文献   

10.
Biochemical constituents and master elements (Pb, Cr, Cd, Fe, Cu, Zn, Hg, B, Al, SO4 2?, Na, K, Li, Ca, Mg, and F) were investigated in six different seaweed species from Abu Qir Bay in the Egyptian Mediterranean Sea coast. The moisture level ranged from 30.26% in Corallina mediterranea to 77.57% in Padina boryana. On dry weight basis, the ash contents varied from 25.53% in Jania rubens to 88.84% in Sargassum wightii. The protein contents fluctuated from 8.26% in S. wightii to 28.01% in J. rubens. Enteromorpha linza showed the highest lipids (4.66%) and carbohydrate contents (78.95%), whereas C. mediterranea had the lowest lipid (0.5%), and carbohydrate contents (38.12%). Chlorophylls and carotenoid contents varied among the species. Total antioxidant capacity of the tested green seaweeds had the highest activities followed by brown and red seaweeds which had a similar trend of phenol and tannins contents. High reducing power was observed in all tested seaweeds extract except Ulva lactuca. Brown species had the highest amount of elements followed by red and green seaweeds. Notably, SO4 2? recorded the highest level in the tested green species (108.05 mg/g dry weight (DW)). The Ca/Mg and K/Na ratios reflected highly significant difference between seaweed species. This study keeps an eye on 29 parameters and by applying stepwise multiple regression analysis, prospective equations have been set to describe the interactions between these parameters inside seaweeds. Accordingly, the tested seaweeds can be recommended as a source of healthy food with suitable ion quotient and estimated daily intake values.  相似文献   

11.
Owing to the importance of clean and fertile agricultural soil for the continued existence of man, this study investigated the concentrations of total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs) and some heavy metals in soils and selected commonly consumed vegetables and tubers from oil-polluted active agricultural farmland in Gokana of Ogoniland, Rivers State, Nigeria. Samples from Umuchichi, Osisioma Local Government Area in Abia State, Nigeria, a non-oil-polluted area constituted the control. In test and control, up to 3,830?±?19.6 mgkg?1 dw and 6,950?±?68.3 mgkg?1 dw (exceeding DPR set limits) and 11.3?±?0.04 mgkg?1 dw and 186?±?0.02 mgkg?1 dw for TPH and PAHs, respectively, were recorded in test soil and plant samples, respectively. Among the metals studied (Pb, Cd, Cr, Mn, Fe and Zn), Pb and Cr uptake exceeded WHO set limits for crops in test samples. Combined sources of pollution were evident from our studies. Bitterleaf and Waterleaf could be tried as bioindicators owing to expressed contaminants uptake pattern.  相似文献   

12.
Quercetin (3,3,4,5,7-pentahydroxyflavone) chemically bonded through pyran rearrangement on modified controlled pore silica glass (QCPSG) with a capacity 0.213 mmol/g was used for solid phase extraction of some toxic metal and metalloid ions. The newly designed QCPSG quantitatively sorbs As(V), Cd(II), Hg(II), and Pb(II) at the pH range 7.5–8.5 after 10 min of stirring. HCl (1 mol L???1) instantaneously elutes all the metal ions. The sorption capacity of the ion collector is 0.42, 0.46, 0.53, and 0.49 mmol g???1 for As(V), Cd(II), Hg(II), and Pb(II), respectively, whereas the preconcentration factor is 200. The effect of NaCl, Na2SO4, NaF, NaBr, Na3PO4, and other interfering salts on the sorption of metal ions (50 μg L???1) was reported. Analytical detection limits of As(V), Cd(II), Hg(II), and Pb(II) were 4.18, 2.44, 15.86, and 25.00 pg mL???1, respectively. QCPSG was used in the separation of the investigated metal ions from some natural water samples collected from diverse origins followed by determination by inductively coupled plasma–mass spectrometry. The data were compared with those obtained by the standard methods of determination using atomic absorption (hydride generation, HGAAS and after solvent extraction with ammonium pyrolidine dithiocarbamate/methyl isobutyl ketone). The suggested solid phase extraction method was found accurate with no random error.  相似文献   

13.
In this study, we explored the multiple heavy metal-resistant yeast isolated from heavy metal-polluted environment. The isolated yeast showed maximum growth at 30 °C, pH 7.0, and the strain was identified as Candida tropicalis through 18S ribosomal RNA (rRNA) gene sequence analysis. Yeast cells grew well in medium containing different concentrations of heavy metal ions [CdCl2, Pb(NO3)2, NaAsO2, CuSO4 and K2Cr2O7]. Minimum inhibitory concentration (MIC) against different metal ions was ranged from 5 to 19 mM, and the metal resistance value against each metal observed by yeast cells was 5 mM (Cr), 10 mM (Cd), 15 mM (As), 14 mM (Cu) and 19 mM (Pb) and increased in the following order: Pb > Cu > As ≥ Cd > Cr. The total cellular glutathione, GSH/GSSG redox couple and metallothioneins like protein (MT) were assayed by growing cultures for 24 h and exposed to 100 mg/L of each heavy metal ion. Remarkable increase in γ-glutamylcysteinylglycine (GSH) level was determined in arsenic and cadmium treatment followed by chromium, lead and copper. Stressed cells had much more oxidized GSH than unstressed cells. GSH/GSSG ratio was significantly increased in cadmium and copper treatment in contrast to chromium, arsenic and lead. Statistical analysis revealed significantly higher cysteine level in all metal-treated samples as compared to control. Antioxidant glutathione transferase activity was not detected in metal-treated and untreated yeast samples. One-dimensional electrophoresis of proteins revealed marked differences in banding pattern of heavy metal-exposed yeast samples. A prominent 20 kDa band was observed in all treated samples suggesting that some differential proteins could be over-expressed during heavy metal treatment and might be involved in cell resistance mechanisms.  相似文献   

14.
To investigate seasonal variations of nutrient distribution in the mudflat–shallow water system, we conducted field surveys once a month from August 2007 to July 2008 in the inner area of Ariake Bay (IAB), Japan. The NH4 +–N concentration of the water column increased in autumn because of the high NH4 + release from the sediments, ranging from 850 to 3,001 μmol?m?2?day?1. The NO3 ?–N concentration was maximal in January, which was thought to be caused by NO3 ? release from the oxic sediments and by NO3 ? regeneration due to water column nitrification. The PO4 3?–P concentration of the water column was high in summer–autumn due to the high PO4 3? release from the reduced sediments, ranging from 22 to 164 μmol?m?2?day?1. We estimated the total amounts of DIN and PO4 3?–P release (R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ , respectively) from the muddy sediment area of the IAB. In summer–autumn, R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ corresponded to about 47.7 % of DIN input and about 116.6 % of PO4 3?–P input from the river, respectively. Thus, we concluded that the muddy sediments were an important source of nutrients for the water column of the IAB during summer–autumn. In addition, we found that phosphorus necessary for the growth of Porphyra (Porphyra yezoensis, Rhodophyceae) would be insufficient in the water column when phosphorus during the Porphyra aquaculture period is supplied only from the river. Therefore, the phosphorus release from the muddy sediments was thought to play an important role in the sustainable production of Porphyra in Ariake Bay.  相似文献   

15.
Extracellular polymeric substances (EPS) were extracted from Aspergillus fumigatus using cationic exchange resin technique. The EPS were mainly composed of polysaccharide and low quantities of protein and nucleic acid. Biosorption of Cd(II), Pb(II), and Cu(II) of EPS was investigated as a function of pH using differential pulse polarography and the Ruzic model. Results showed that the EPS biosorption capacity determined using either the direct titration curves i?=?f(C M) or the method proposed by Ruzic (Analytica Chimica Acta 140:99–113, 1982) were coincident. Cu(II) had the highest affinity with EPS followed by Pb(II) and Cd(II). The total number of binding sites for Cu(II) and Cd(II) increased with pH in the range of 4.0–7.0. Similar trend was observed for Pb(II) at pH?4.0–5.0, while precipitates were observed at pH?6.0 and 7.0. The conditional binding constants of these three metals displayed low levels of fluctuation with pH and ranged from 4.02?±?0.02 to 5.54?±?0.05.  相似文献   

16.
The purpose of this paper is to determine the concentrations of dissolved heavy metals namely mercury (Hg), lead (Pb), cadmium (Cd), and copper (Cu) and to investigate the relationships between nutrients (nitrate-nitrogen and phosphate) and dissolved heavy metals. For this purpose, the concentrations of dissolved heavy metals were measured through 51 voyages form 1984 to 2006 in the Yangtze river estuary and its adjacent sea. Results analysis showed that dissolved heavy metals were not the main pollutants in the Yangtze river estuary, and the main source of heavy metal contamination was industrial wastewater from terrestrial pollution during the past 20 years. Heavy metal values showed significant abundance in the south branch of the Yangtze River estuary and Hangzhou Bay. In addition, Pb showed negative correlation with nutrients, while the positive correlations between Hg, Cd, and nutrients were shown. The obtained molar ratios, $\Delta \mbox{Cd}/\Delta \mbox{N} = 1.68 \times 10^{-5}$ and $\Delta \mbox{Cd}/\Delta \mbox{P} = 1.66 \times 10^{-4}$ , are close to those in plankton, showing the biogeochemical behavior and process of dissolved cadmium.  相似文献   

17.
In order to analyze and evaluate different trace metals on surface water of the Changjiang River, concentrations of dissolved trace metals (Cu, Ni, Fe, Co, Sc, Al, Zn, Pb, Cd, Se, As, Cr, and Hg), major elements(Ca and Mg), and nutrient(NO $_{3}^{-})$ were measured. Samples were taken at 76 positions along Changjiang River in flood and dry seasons during 2007?C2008. Spatial distributions identified two main large zones mainly influenced by mineral erosion (sites 1?C22) and anthropogenic action (sites 23?C76), respectively. Principal component analysis (PCA) and hierarchical cluster analysis were used to identify the variance distinguishing the origin of water. Four significant components were extracted by PCA, explaining 74.91% of total variable. Cu, Ni, Fe, Co, Sc, Al, Ca, and Mg were mainly associated with the weathering and erosion of various rocks and minerals, while an anthropogenic source was identified for Cd and As. Although erosion was one source of Pb and Zn, they were also input by atmospheric deposition and industrial pollutions. NO $_{3}^{-}$ and Se were mainly associated with agriculture activities. However, Hg and Cr showed different sources. CA confirmed and completed the results obtained by PCA, classifying the data into two large groups representing different areas. Group 1 referred to the upper reaches which represented samples mainly corresponding to natural background areas. Group 2 referred to the middle and lower reaches including samples under anthropogenic influence. Meanwhile, group 2 was subdivided into three new groups, representing agricultural, industrial, and various artificial pollution sources, respectively.  相似文献   

18.
Natural organic matter (NOM) sorption to nanoparticles (NPs) can influence their transport and bioavailability in the aquatic environment. The sorption affinity of NOM to surfaces including NPs is size dependent, and depending on environmental conditions, NOM may enhance or mitigate NPs toxicity. The aim of this study was to investigate the preferential sorption of different-sized fractions of NOM to titanium dioxide (TiO2) NPs. We specifically investigated the influence of pH, ionic strength, and NOM concentration on the extent of this preferential sorption using a constant sorbent concentration (400 mg/L TiO2 NPs). Additionally, sorption of NOM to TiO2 NPs at varying pH was investigated. The nonsorbed NOM was separated from the sorbed, by 50 nm polycarbonate membrane filters and ultracentrifugation. High-performance size exclusion chromatography (HPSEC) was used to determine the average molecular weights of NOM (MWw). Corroborative evidence of preferential sorption of different-sized molecular weight fractions of NOM was obtained from optical techniques such as absorbance and fluorescence spectrophotometry. The total organic carbon was measured by the Total Organic Carbon Analyzer—Shimadzu (TOC-VCPH). The results indicated that there is preferential sorption of larger sized fractions of NOM to TiO2 NPs irrespective of NOM concentration. It was observed that the sorption of larger sized fractions of NOM was much enhanced at lower pH and at higher ionic strength. Both absorbance and fluorescence spectrophotometric techniques gave credible corroborative evidence on the extent of preferential sorption of lager sized fractions of NOM with respect to pH and ionic strength. The sorption results demonstrated higher sorption at lower pH than at higher pH. Overall, the results of this study suggest that the environmental conditions are key factors that can contribute to NOM’s fractional preferential sorption to NPs in the aquatic environment.  相似文献   

19.
BouIsmail (BIB) and Algiers (AB) are the most important bays in Algeria, where busy shipping activities and various industry complexes introduce different pollutants including heavy metals to the aquatic environment. The main goal of this study was to assess the contamination levels of heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in surface sediments and red mullet (Mullus barbatus) of the BIB and AB and to examine the possibility of the use of their enrichment factors (EFs) to track down the sources of metals (natural processes or human activity). The geoaccumulation index (I geo) was calculated as a criterion to indicate the contamination level for each heavy metal. Moreover, geographical information systems based on spatial analysis methods (inverse distance weighting (IDW)) and statistical approaches (the principal component (PCA)) were performed to assess the spatial influences of multiple anthropogenic sources in different sampled areas. The results of both EF and I geo revealed that the study area is exposed to various anthropogenic activities. The pollution load index (PLI) values of sediment samples in the different sites of Algiers and BIB ranged from 0.2 to 3.4 illustrating highly contaminated sediments. Significant bioaccumulation of Cd, Cu, Hg, Pb, and Zn (bioaccumulation factor >100%) were observed in muscle and liver of red mullet, suggesting potential health risks through consuming this fish species.  相似文献   

20.
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg?1, respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg?1, respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg?1). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg?1, respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号