首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water quality monitoring using fish and crayfish as bio-indicators requires an understanding of the state of pollution of waters, choice of bio-indicators, physiological and behavioral endpoints of fish and crayfish, and principles of the methodology and their potential applications. Here, we discuss telemetry, acoustic monitoring, vision-based monitoring, measures of ventilatory activity, electrocardiography, and fiber-optic plethysmography. Assessment of water quality must be based, not only on physicochemical characteristics of the current environment as determined by chemical analyses, but also on observations of the physiology and behavior of its inhabitants. Real-time biomonitoring is suggested as the most reliable method, since it incorporates living organisms into the system to serve as biosensors. The potential application of the methods discussed includes use at water treatment plants and water supply stations for prevention of hazardous toxicological events, and, for aquaculture, in ponds, lakes, and aquariums for monitoring growth, population size, and behavior traits.  相似文献   

2.
Water quality management plans are an indispensable strategy for conservation and utilization of water resources in a sustainable manner. One common industrial use of water is aquaculture. The present study is an attempt to use statistical analyses in order to prepare an environmental water quality monitoring program for Haraz River, in Northern Iran. For this purpose, the analysis of a total number of 18 physicochemical parameters was performed at 15 stations during a 1-year sampling period. According to the results of the multivariate statistical methods, the optimal monitoring would be possible by only 3 stations and 12 parameters, including NH3, EC, BOD, TSS, DO, PO4, NO3, TDS, temperature, turbidity, coliform, and discharge. In other words, newly designed network, with a total number of 36 measurements (3 stations × 12 parameters = 36 parameters), could achieve exactly the same performance as the former network, designed based on 234 measurements (13 stations × 18 parameters = 234 parameters). Based on the results of cluster, principal component, and factor analyses, the stations were divided into three groups of high pollution (HP), medium pollution (MP), and low pollution (LP). By clustering the stations, it would be possible to track the water quality of Haraz River, only by one station at each cluster, which facilitates rapid assessment of the water quality in the river basin. Emphasizing on three main axes of monitoring program, including measurement parameters, sampling frequency, and spatial pattern of sampling points, the water quality monitoring program was optimized for the river basin based on natural conditions of the study area, monitoring objectives, and required financial resources (a total annual cost of about US $2625, excluding the overhead costs).  相似文献   

3.
A total of 357 water samples were collected from a public beach in northern Taiwan during beach season, and the densities of enterococci were analyzed by Enterolert methods. The mean enterococci level was 356 MPN/100 ml and ranged from <10 to 2,005 MPN/100 ml, which was classified as high contamination level according to the WHO water quality guideline (95 percentile >1,000 MPN/100 ml). Most of the deteriorated water quality conditions occurred during rainfall. By excluding data from the rain days, the overall beach water quality would be considered in the moderate contamination level (95 percentile 200-1,000 MPN/100 ml). Among the selected microbiological parameters tested, the densities of total coliforms and enterococci exhibited the highest correlation (r = 0.449, p = 0.009), followed by the concentrations of total coliforms and fecal coliforms (r = 0.403, p = 0.02). Nonetheless, no significant correlation was found between enterococci and fecal coliform levels (r = 0.197, p = 0.271).  相似文献   

4.
结合和田地区环境监测站环境监测质量管理现状,就提高环境监测质量管理水平,充分发挥其在环境管理中的基础性作用,初步探讨了环境质量管理的必要性和基本思路。  相似文献   

5.
6.
A water quality monitoring network (WQMN) must be designed so as to adequately protect the water quality in a catchment. Although a simulated annealing (SA) method was previously applied to design a WQMN, the SA method cannot ensure the solution it obtained is the global optimum. Therefore, two new linear optimization models are proposed in this study to minimize the deviation of the cost values expected to identify the possible pollution sources based on uniform cost (UC) and coverage elimination uniform cost (CEUC) schemes. The UC model determines the expected cost values by considering each sub-catchment being covered by which station, while the CEUC model determines the coverage of each station by eliminating the area covered by any upstream station. The proposed models are applied to the Derchi reservoir catchment in Taiwan. Results show that the global optimal WQMN can be effectively determined by using the UC or CEUC model, for which both results are better than those from the SA method, especially when the number of stations becomes large.  相似文献   

7.
The concept that a few well chosen, strategically placed, water quality stations can provide valuable scientific information to water managers is common to many countries. Historically within Canada, water quality regional networks (Great Lakes network, Prairie Provinces Water Board network, Long Range Transport of Airborne Pollutants network, etc.) have been successfully operating for many years. This paper will describe the difficulties associated with developing a national water quality network for a country the size of Canada. In particular, it will describe some of the statistical tools presently being used in regional networks which are suitable for a national network, and discuss the need to develop new statistical tools for environmental monitoring in the 1990's.  相似文献   

8.
The awareness regarding quality assurance (QA) and quality control (QC) for environmental monitoring has considerably increased in the past few years, especially with respect to the determination of chemical species, since errors occurring at various levels may considerably affect the interpretation of results (e.g. studies of toxic impact, geochemical pathways, etc.). QA for environmental analysis covers a broad range of activities from sample collection to laboratory work and the approach for ensuring quality data should be considered in a global context. However, whereas great emphasis has been placed on QA within the laboratory, there have been few systematic attempts to evaluate risks of discrepancies related, for example, to field manipulations. The situation is even worse when monitoring is applied to relatively new fields such as chemical speciation. This paper outlines some of the main aspects of quality control of environmental analysis, including the validation of methods, sampling and sample handling, storage, etc., with special emphasis on the monitoring of chemical forms of elements (e.g. species of tin, mercury, lead and selenium).  相似文献   

9.
Water quality monitoring network design has historically tended to use experience, intuition and subjective judgement in locating monitoring stations. Better design procedures to optimize monitoring systems need to simultaneously identify significant planning objectives and consider a number of social, economic and environmental constraints. The consideration of multiple objectives may require further decision analysis to determine the preference weights associated with the objectives to aid in the decision-making process. This may require the application of an optimization study to extract such information from decision makers or experts and to evaluate the overall effectiveness of locating strategies. This paper assesses the optimal expansion and relocation strategies of a water quality monitoring network using a two-stage analysis. The first stage focuses on the information retrieval of preference weights with respect to the designated planning objectives. With the aid of a pre-emptive goal programming model, data analysis is applied to obtain the essential information from the questionnaire outputs. The second stage then utilizes a weighted multi-objective optimization approach to search for the optimal locating strategies of the monitoring stations in the river basin. Practical implementation is illustrated by a case study in the Kao-Ping River Basin, south Taiwan.  相似文献   

10.
Royal Commission Environmental Control Department (RC-ECD) at Yanbu industrial city in Kingdom of Saudi Arabia has established a well-defined monitoring program to control the pollution from industrial effluents. The quality of effluent from each facility is monitored round the clock. Different strategic measures have been taken by the RC-ECD to implement the zero discharge policy of RC. Industries are required to pre-treat the effluent to conform pretreatment standards before discharging to central biological treatment plant. Industries are not allowed to discharge any treated or untreated effluent in open channels. After treatment, reclaimed water must have to comply with direct discharge standards before discharge to the sea. Data of industrial wastewater collected from five major industries and central industrial wastewater treatment plant (IWTP) is summarized in this report. During 5-year period, 3,705 samples were collected and analyzed for 43,436 parameters. There were 1,377 violations from pretreatment standards from all the industries. Overall violation percentage was 3.17%. Maximum violations were recorded from one of the petrochemical plants. The results show no significant pollution due to heavy metals. Almost all heavy metals were within RC pretreatment standards. High COD and TOC indicates that major pollution was due to hydrocarbons. Typical compounds identified by GC-MS were branched alkanes, branched alkenes, aliphatic ketones, substituted thiophenes, substituted phenols, aromatics and aromatic alcohols. Quality of treated water was also in compliance with RC direct discharge standards. In order to achieve the zero discharge goal, further studies and measures are in progress.  相似文献   

11.
An innovative framework for optimising investments in water quality monitoring has been developed for use by water and environmental agencies. By utilising historical data, investigating the accuracy of monitoring methods and considering the risk tolerance of the management agency, this new methodology calculates optimum water quality monitoring frequencies for individual water bodies. Such information can be applied to water quality constituents of concern in both engineered and natural water bodies and will guide the investment of monitoring resources. Here we present both the development of the framework itself and a proof of concept by applying it to the occurrence of hazardous cyanobacterial blooms in freshwater lakes. This application to existing data demonstrates the robustness of the approach and the capacity of the framework to optimise the allocation of both monitoring and mitigation resources. When applied to cyanobacterial blooms in the Swan Coastal Plain of Western Australia, we determined that optimising the monitoring regime at individual lakes could greatly alter the overall monitoring schedule for the region, rendering it more risk averse without increasing the amount of monitoring resources required. For water resources with high-density temporal data related to constituents of concern, a similar reduction in risk may be observed by applying the framework.  相似文献   

12.
遥感技术在大气环境监测中的应用综述   总被引:7,自引:2,他引:5  
综合论述了近20多年来国内外对大气环境遥感监测的研究现状,介绍了应用于大气环境遥感监测的多种方法并着重阐述了被动式空基遥感和主动式地基遥感在大气环境遥感中的应用以及探测气溶胶的卫星传感器的发展历程和特点。最后,对我国大气环境遥感研究中存在问题和发展前景进行了讨论。  相似文献   

13.
The effectiveness of different monitoring methods in detecting temporal changes in water quality depends on the achievable sampling intervals, and how these relate to the extent of temporal variation. However, water quality sampling frequencies are rarely adjusted to the actual variation of the monitoring area. Manual sampling, for example, is often limited by the level of funding and not by the optimal timing to take samples. Restrictions in monitoring methods therefore often determine their ability to estimate the true mean and variance values for a certain time period or season. Consequently, we estimated how different sampling intervals determine the mean and standard deviation in a specific monitoring area by using high frequency data from in situ automated monitoring stations. Raw fluorescence measurements of chlorophyll a for three automated monitoring stations were calibrated by using phycocyanin fluorescence measurements and chlorophyll a analyzed from manual water samples in a laboratory. A moving block bootstrap simulation was then used to estimate the standard errors of the mean and standard deviations for different sample sizes. Our results showed that in a temperate, meso-eutrophic lake, relatively high errors in seasonal statistics can be expected from monthly sampling. Moreover, weekly sampling yielded relatively small accuracy benefits compared to a fortnightly sampling. The presented method for temporal representation analysis can be used as a tool in sampling design by adjusting the sampling interval to suit the actual temporal variation in the monitoring area, in addition to being used for estimating the usefulness of previously collected data.  相似文献   

14.
通过对当前环境监测质量管理体系日常运行及维护过程进行汇总分析,探讨质量管理体系具体实施过程中易产生疏忽的部分关键环节,对出现的一些共性问题进行归纳,并提出相应预防及纠正措施,为进一步规范环境质量监测活动提供参考和借鉴。  相似文献   

15.
Worldwide, decision-makers and nongovernment organizations are increasing their use of citizen volunteers to enhance their ability to monitor and manage natural resources, track species at risk, and conserve protected areas. We reviewed the last 10 years of relevant citizen science literature for areas of consensus, divergence, and knowledge gaps. Different community-based monitoring (CBM) activities and governance structures were examined and contrasted. Literature was examined for evidence of common benefits, challenges, and recommendations for successful citizen science. Two major gaps were identified: (1) a need to compare and contrast the success (and the situations that induce success) of CBM programs which present sound evidence of citizen scientists influencing positive environmental changes in the local ecosystems they monitor and (2) more case studies showing use of CBM data by decision-makers or the barriers to linkages and how these might be overcome. If new research focuses on these gaps, and on the differences of opinions that exist, we will have a much better understanding of the social, economic, and ecological benefits of citizen science.  相似文献   

16.
The long-term water quality monitoring program implemented by the Massachusetts Water Resources Authority in 1992 is extensive and has provide substantial understanding of the seasonality of the waters in both Boston Harbor and Massachusetts Bay and the response to improvements in effluent quality and offshore transfer of the effluent in September 2000. The monitoring program was designed with limited knowledge of spatial and temporal variability and long-term trends within the system. This led to an extensive spatial and temporal sampling program. The data through 2003 showed high correlation within physical parameters measured (e.g., salinity, dissolved oxygen) and in biological measures such as chlorophyll fluorescence. To address the potential sampling redundancies in the measurement program, an assessment of the impact of reduced levels of monitoring on the ability to make water quality decisions was completed. The optimization was conducted by applying statistical models that took into account whether there was evidence of a seasonal pattern in the data. The optimization used model survey average readings to identify temporal fixed effects, model survey-average-corrected individual station readings to identify spatial fixed effects, corrected the individual station readings for temporal and spatial fixed effects and derived a correlation model for the corrected data, and applied the correlation model to characterize the correlation of annual average readings from reduced monitoring programs with true parameter levels. Reductions in the number of sampling stations were found less detrimental to the quality of the data for annual decision-making than reductions in the number of surveys per year, although there is less of a difference in this regard for dissolved oxygen than there is for chlorophyll. The analysis led to recommendations for a substantially lower monitoring effort with minimal loss of information. The recommendation supported an annual budget savings of approximately $183,000. Most of the savings was from fewer surveys as approximately $21,000 came from the reduction in the number of stations monitored from 21 to 7 and associated laboratory analytical costs.  相似文献   

17.
辽宁大伙房水库水质生态学监测的研究   总被引:4,自引:2,他引:4  
1961~1996年对大伙房水库6个站进行了不同季节浮游植物、底栖动物群落特征的生态调查.共发现藻类8门,174种,底栖动物34种,分析了水生生物种类组成,数量变化和生物演替.水质生态学评价结果表明,大伙房水库只受到轻度污染,水质等级为2级.  相似文献   

18.
Surface water quality has increasing importance worldwide and is particularly relevant in the semiarid North-Central Chile, where agriculture and mining activities are imposing heavy pressure on limited water resources. The current study presents the application of a water quality index in four watersheds of the 29°-33°S realm for the period 1999-2008, based on the Canadian Council of Ministers for the Environment approach and the Chilean regulation for irrigation water quality. In addition, two modifications to the index are tested and a comprehensive characterization of the existing monitoring network is performed through cluster analysis. The basins studied show fairly good water quality in the overall, specially the Limarí basin. On the other hand, the lower index values were obtained for the headwaters of Elqui, associated with the El Indio mining district. The first modification of the indicator (i.e., to consider parameters differentially according to their effect on human health or the environment) did not produce major differences with respect to the original index, given the generally good water quality. The second modification (i.e., to consider as threshold values the more restrictive figures derived from a set of regulations) yielded important differences in the indicator values. Finally, an adequate characterization of the monitoring network was obtained. The results presented spatial coherence and the information can be used as a basis for the optimization of the monitoring network if required.  相似文献   

19.
The design of a water quality monitoring network is considered as the main component of water quality management including selection of the water quality variables, location of sampling stations and determination of sampling frequencies. In this study, an entropy-based approach is presented for design of an on-line water quality monitoring network for the Karoon River, which is the largest and the most important river in Iran. In the proposed algorithm of design, the number and location of sampling sites and sampling frequencies are determined by minimizing the redundant information, which is quantified using the entropy theory. A water quality simulation model is also used to generate the time series of the concentration of water quality variables at some potential sites along the river. As several water quality variables are usually considered in the design of water quality monitoring networks, the pair-wise comparison is used to combine the spatial and temporal frequencies calculated for each water quality variable. After selecting the sampling frequencies, different components of a comprehensive monitoring system such as data acquisition, transmission and processing are designed for the study area, and technical characteristics of the on-line and off-line monitoring equipment are presented. Finally, the assessment for the human resources needs, as well as training and quality assurance programs are presented considering the existing resources in the study area. The results show that the proposed approach can be effectively used for the optimal design of the river monitoring systems.  相似文献   

20.
Before using macroinvertebrates in water quality assessment in the Chusovaya River (Russia, the Urals, 50°55N, 60° E), preliminary results of three sampling methods were compared: handnet, circular shovel and a standardized artificial substrate sampler. The artificial substrate consisted of glass marbles ( 20 mm). To compare the efficiency of these sampling methods the total numbers of taxa found at each location per sampling data were considered to be 100%. The highest efficiency was reached with the artificial substrate sampler. 75–100% of the taxa at the different locations were collected with this sampler. Only 5–19% and 10–20% of the taxa at each location per sampling date were collected with the circular shovel in the sand and gravel substrate respectively, being the lowest efficiency. Intermediate results were obtained with the hand net. 23–38% of the taxa were collected with this net. Based on these results and requirements placed upon sampling methods in general, the standardized artificial substrate sampler has been considered to be an optimal sampling device for macroinvertebrates in biological monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号