首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plankton respiration is commonly measured in terms of oxygen uptake, usually employing the Winkler method, much less commonly the polarographic method. Both methods produce results that can be misinterpreted when H2O2 production and decomposition are ignored. This paper: (1) presents experimental evidence of significant H2O2 involvement during plankton incubation in dark bottles, (2) explains how results differ between the Winkler and polarographic methods in the presence of H2O2, (3) discusses how this difference is clouded by side issues of variability inherent in the Winkler technique and the use of different bottle sizes, and (4) shows that unexpected and variable results of light-/dark-bottle incubations can all be explained by a theory of H2O2 production and decomposition. During an initial period in the dark, when plankton respiration has been poisoned by mercuric chloride or chloroform, O2 increase can be measured with a polarographic oxy‐gen sensor (POS). The trend in O2 changes is linear for several days when only respiration is occurring, but curvilinear when there is concurrent O2 production. O2 production in the dark and H2O2 decomposition are one and the same process. Measurement of oxygen by Winkler analysis and POS produce different results when H2O2 is present because the former method measures oxidizing equivalent while a POS measures O2 pressure. A real difference in results between the two methods is prima facie evidence that H2O2 is involved. The synthesis of this new empirical evidence with diverse knowledge from various fields shows that the common practice of estimating gross community primary production from oxygen changes in light and dark bottles is based on untenable assumptions. Received: 15 April 1997 / Accepted: 17 June 1997  相似文献   

2.
Both climate change and the adverse effects of chemical use on human and environmental health are recognized as serious issues of global concern. Nowhere is this more apparent than in the agricultural sector where release of greenhouse gases such as carbon dioxide, nitrous oxide and methane continues to be problematic and where use of nitrogen fertilizer is responsible for negative impacts on both human populations and ecosystems. The manipulation of biological nitrogen fixation (BNF) could help alleviate part of the difficulty by decreasing the need for nitrogen fertilizers, which require huge quantities of fossil fuel to produce and contribute to the release of nitrous oxide from soil as well as being responsible for the contamination of drinking water systems and natural habitats. BNF is performed by a variety of microorganisms. One of the most studied examples is the BNF carried out by rhizobial bacteria in symbiosis with their plant hosts such as pea and soybean. Hydrogen gas is an energy-rich, obligate by-product of BNF. Legume symbioses with rhizobia lacking hydrogenase enzymes (which can recycle hydrogen) have traditionally been viewed as energetically inefficient. However, recent studies suggest hydrogen release to soil may be beneficial, increasing soil carbon sequestration and promoting growth of hydrogen-oxidizing bacteria beneficial to plant growth; the alleged superiority of symbiotic performance in rhizobia possessing functional hydrogenases (HUP+) over those rhizobia without functional hydrogenases (HUP) has also not been conclusively shown. The structure of the iron-molybdenum cofactor or FeMo-co of nitrogenase (the active site of the enzyme) has been elucidated through X-ray crystallography but the mechanism of nitrogen fixation remains unknown. However, studies of effects of hydrogen production on BNF have revealed potential candidate intermediates involved in the nitrogenase reaction pathway and have also shown the role of hydrogen as a competitive inhibitor of N2, with hydrogen now considered to be the primary regulator of the nitrogenase electron allocation coefficient. The regulation of oxygen levels within legume root nodules is also being investigated; nitrogen fixation is energetically expensive, requiring a plentiful oxygen supply but too high an oxygen concentration can irreversibly damage nitrogenase, so some regulation is needed. There is evidence from gas diffusion studies suggesting the presence of a diffusion barrier in nodules; leghaemoglobin is another potential O2 regulator. Possible functions of hydrogenases include hydrogen recycling, protection of nitrogenase from damaging O2 levels and prevention of inhibitory H2 accumulation; there is evidence for H2 recycling only in studies where H2 uptake has been strongly coupled to ATP production and where this is not the case, it is believed that the hydrogenase acts as an O2 scavenger, lowering O2 concentrations. The distribution of hydrogenases in temperate legumes has been found to be narrow and root and shoot grafting experiments suggest the host plant may exert some influence on the expression of hydrogenase (HUP) genes in rhizobia that possess them. Many still believe that HUP+ rhizobia are superior in performance to HUP species; to this end, many attempts to increase the relative efficiency of nitrogenase through the introduction of HUP genes into the plasmids or chromosomes of HUP rhizobia have been carried out and some have met with success but many other studies have not revealed an increase in symbiotic performance after successful insertion of HUP genes so the role of HUP in increasing parameters such as N2 fixation and plant yield is still unclear. One advantage of the hydrogen production innate to BNF is that the H2 evolved can be used to measure N2 fixation using new open-flow gas chamber techniques seen as superior to the traditional acetylene reduction assay (ARA) conducted in closed chambers, although H2 cannot be used for field studies yet as the ARA can. However, the ARA is now believed to be unreliable in field studies and it is recommended that other measures such as dry weight, yield and total nitrogen content are more accurate, especially in determining real food production, particularly in the developing nations. Another potential benefit of H2 release from root nodules is that it stays in the soil and has been found to be consumed by H2-oxidizing bacteria, many of which show plant growth–promoting properties such as the inhibition of ethylene biosynthesis in the host plant, leading to root elongation and increased plant growth; they may well be promising as biofertilizers if they can be successfully developed into seed inoculants for non-leguminous crop species, decreasing the need for chemical fertilizers. It has been suggested that rhizobia can produce nitrous oxide through denitrification but this has never been shown; it is possible that hydrogen release may provide more ideal conditions for denitrifying, free-living bacteria and so increase production of nitrous oxide that way and this issue will require more study. However, it seems unlikely that a natural system would release nitrous oxide to the same degree that chemical fertilizers have been shown to do.  相似文献   

3.
The photocatalytic formation of hydrogen peroxide over ZnO and TiO2thin films has been investigated in aqueous phase in the presence of molecular oxygen as an electron acceptor. These films are highly porous and showed enhanced catalytic activity in the photochemical formation of hydrogen peroxide. The amount of H2O2formed during 2 hour light illumination is 4–6 μM and the rates of formation of hydrogen peroxide of both the films are almost comparable. The yield of hydrogen peroxide increases with the increase in irradiation time and a trend of steady state concentration of H2O2is observed in the case of TiO2thin film. Photodissolution of ZnO particles is observed in some extent during the process of prolonged UV light illumination.  相似文献   

4.
● SMX promotes hydrogen production from dark anaerobic sludge fermentation. ● SMX significantly enhances the hydrolysis and acidification processes. ● SMX suppresses the methanogenesis process in order to reduce hydrogen consumption. ● SMX enhances the relative abundance of hydrogen-VFAs producers. ● SMX brings possible environmental risks due to the enrichment of ARGs. The impact of antibiotics on the environmental protection and sludge treatment fields has been widely studied. The recovery of hydrogen from waste activated sludge (WAS) has become an issue of great interest. Nevertheless, few studies have focused on the impact of antibiotics present in WAS on hydrogen production during dark anaerobic fermentation. To explore the mechanisms, sulfamethoxazole (SMX) was chosen as a representative antibiotic to evaluate how SMX influenced hydrogen production during dark anaerobic fermentation of WAS. The results demonstrated SMX promoted hydrogen production. With increasing additions of SMX from 0 to 500 mg/kg TSS, the cumulative hydrogen production elevated from 8.07 ± 0.37 to 11.89 ± 0.19 mL/g VSS. A modified Gompertz model further verified that both the maximum potential of hydrogen production (Pm) and the maximum rate of hydrogen production (Rm) were promoted. SMX did not affected sludge solubilization, but promoted hydrolysis and acidification processes to produce more hydrogen. Moreover, the methanogenesis process was inhibited so that hydrogen consumption was reduced. Microbial community analysis further demonstrated that the introduction of SMX improved the abundance of hydrolysis bacteria and hydrogen-volatile fatty acids (VFAs) producers. SMX synergistically influenced hydrolysis, acidification and acetogenesis to facilitate the hydrogen production.  相似文献   

5.
The successful operation of any type of hydrogen-producing bioreactor depends on the performance of the microorganisms present in the system. Both substrate and partial gas pressures are crucial factors affecting dark fermentation metabolic pathways. The main objective of this study was to evaluate the impact of both factors on hydrogen production using anaerobic granular sludge as inoculum and, secondly, to study the metabolic shifts of an anaerobic community subjected to low partial gas pressures. With this goal in mind, seven different wastewater (four synthetic media, two industrial wastewater, and one domestic effluent) and the effect of applying vacuum on the systems were analyzed. The application of vacuum promoted an increase in the diversity of hydrogenproducing bacteria, such as Clostridium, and promoted the dominance of acetoclastic- over hydrogenotrophic methanogens. The application of different media promoted a wide variety of metabolic pathways. Nevertheless, reduction of the hydrogen partial pressure by application of vacuum lead to further oxidation of reaction intermediates irrespective of the medium used, which resulted in higher hydrogen and methane production, and improved the COD removal. Interestingly, vacuum greatly promoted biogenic hydrogen production from a real wastewater, which opens possibilities for future application of dark fermentation systems to enhance biohydrogen yields.  相似文献   

6.
We examined quantitative changes in the metabolism of the coral Galaxea fascicularis caused by increases in both hydrogen peroxide (H2O2) concentration and seawater temperature. Seawater temperatures were maintained at 27 or 31°C in a well-controlled incubation chamber, and three levels of H2O2 concentration (0, 0.3, 3.0 μM) were used in experimental treatments. Gross primary production, calcification rates and respiration rates were all affected by increased H2O2 concentrations and high seawater temperatures. Individual treatments of high H2O2 or elevated seawater temperature alone caused significant declines in coral photosynthesis and calcification rates within the 3-day incubation period. The synergistic effect of high H2O2 combined with high seawater temperature resulted in a 134% increase in respiration rates, which surpassed the effect of either H2O2 or high seawater temperature alone. Our results suggest that both high H2O2 concentrations and elevated temperatures in seawater can strongly affect coral metabolism; however, these effects cannot be estimated by simply summing the effects of individual stress parameters.  相似文献   

7.
In this study, zinc-contaminated soils were chosen as a candidate material for the removal of hydrogen sulfide (H2S) from hot coal-derived gas. Laboratory experiments showed that H2S was decreased to less than 10 ppm when the zinc-contaminated soils were reacted with H2S. The best removal temperature of H2S was found to be at 550°C in the operating conditions. In addition to zinc species, free iron oxides in contaminated soils also performed an active species to react with H2S and enhanced the sulfur capacity. Through the XPS analysis, iron sulfide (FeS) and zinc sulfide (ZnS) were the major products after removal experiments. Regeneration experimental results indicated that the zinc-contaminated soils can be regenerated by pass diluted air and thus be reused on the removal of H2S for many times.  相似文献   

8.
To decompose efficiently hydrogen cyanide (HCN) in exhaust gas, g-Al2O3-supported bimetallicbased Cu–Ni catalyst was prepared by incipient-wetness impregnation method. The effects of the calcination temperature, H2O/HCN volume ratio, reaction temperature, and the presence of CO or O2 on the HCN removal efficiency on the Cu–Ni/g-Al2O3 catalyst were investigated. To examine further the efficiency of HCN hydrolysis, degradation products were analyzed. The results indicate that the HCN removal efficiency increases and then decreases with increasing calcination temperature and H2O/HCN volume ratio. On catalyst calcined at 400°C, the efficiency reaches a maximum close to 99% at 480 min at a H2O/HCN volume ratio of 150. The HCN removal efficiency increases with increasing reaction temperature within the range of 100°C–500°C and reaches a maximum at 500°C. This trend may be attributed to the endothermicity of HCN hydrolysis; increasing the temperature favors HCN hydrolysis. However, the removal efficiencies increases very few at 500°C compared with that at 400°C. To conserve energy in industrial operations, 400°C is deemed as the optimal reaction temperature. The presence of CO facilitates HCN hydrolysis andincreases NH3 production. O2 substantially increases the HCN removal efficiency and NO x production but decreases NH3 production.
  相似文献   

9.
The influence of energetic heterocyclic high-nitrogen salts on microbial activity in soil enrichment was investigated. 5-Aminotetrazole, a sodium salt of 5-aminotetrazole, ammonium azotetrazolate, sodium azotetrazolate, guanidinium azotetrazolate, triaminoguanidine azotetrazolate and triaminoguanidine hydrochloride were examined. Respiration tests determined the amount and rate of production of CO2, H2 and H2S from microbial activity. Aminotetrazoles, triaminoguanidine azotetrazolate and triaminoguanidine hydrochloride substantially reduced the amount and rate of microbial CO2 production. The total amount of CO2 produced in the soil enrichments was affected by the cation from the azotetrazole salt, whereas the azotetrazolate anion did not seem to inhibit microbial CO2 production. In contrast, all applied compounds stopped the production of H2S completely and modified the rate of H2 production in the cultures compared with the control. The influence of ammonium azotetrazolate and sodium azotetrazolate on the activity of isolated sulfate-reducing bacteria was also determined. The compounds did not have bactericidal activity towards sulfate-reducing bacteria, but the compounds decreased the amount of H2S produced or slowed the growth of these bacteria in comparison with the control.  相似文献   

10.
The oxidation of soil organic matter (SOM) and total petroleum hydrocarbon were investigated in two soils at eight different hydrogen peroxide (H2O2) concentrations to determine the optimal H2O2 dosage for the efficient remediation of soils contaminated by crude oil with minimal SOM removal. In our study, H2O2 concentrations up to 1100 mM increased the SOM destruction up to 10%–15% in the two soils while no improvement of the crude oil removal efficiencies was observed. The results indicate that the destruction of SOM significantly limits the oxidation of crude oil because SOM might consume H2O2 more effectively than crude oil at H2O2 concentrations above 1100 mM. In addition, H2O2 concentrations higher than 1100 mM were not expected for both soils because of the extremely rapid H2O2 decomposition, and low H2O2 utilization, of both soils.  相似文献   

11.
N2 fixation (C2H2 reduction) associated with the leaves of the sea grass Thalassia testudinum was investigated at 5 sites in South Florida (Biscayne Bay) and one site in the Bahamas (Bimini Harbor). Significant activities were correlated with the occurrence of a heterocystous blue-green alga (Calothrix sp.) on the leaves. C2H2 reduction was not stimulated by organic compounds, either aerobically or anaerobically in the light or dark. Therefore, other physiological types of microbes were not important in N2 fixation. Diurnal and seasonal variations in N2 fixation occurred, with maximal rates during the daytime and in the late spring and early summer. N2 fixation was negligible at four stations in Biscayne Bay. At the fifth station, near Fowey Rock, about 5 kg N ha-1 year-1 was fixed. In the summer, the N2 fixed per day (4–5 mg N m-2) could provide 4 to 23% of the foliar productivity demands of T. testudinum at this site and the station in Bimini Harbor. N2 fixation at the periphery of a sea-grass patch, near Fowey Rock, could provide 8 to 38% of the daily nitrogen requirement for leaf production, and thereby might compensate for a less effective trapping and recycling of nitrogen from dead leaves in such regions.  相似文献   

12.
2H-1,4-Benzoxazines are major heterocyclic compounds with interesting biological and synthetic applications. Therefore, it would be very interesting to develop new efficient methods for their synthesis. Here, we synthesized 2H-1,4-benzoxazines in one pot using K2CO3/H2O in the ionic liquid of choice, [omim][BF4]. After reactions, products are extracted from [omim][BF4] by Et2O and the ionic liquid is recovered and successfully reused over several recycles. Results show that high yields of 3-aryl-2H-1,4-benzoxazine derivatives are obtained chemoselectively at room temperature from their corresponding o-aminophenols and phenacyl bromides. To our knowledge, our method represents the most efficient and straightforward route for the synthesis of 3-aryl-2H-1,4-benzoxazine derivatives in short times and under environmentally benign conditions.  相似文献   

13.
Synthesis and characterization of Cu(II), Ni(II), and Zn(II) Schiff bases complexes resulted from the condensation of salicylaldehyde derivatives with o-amino phenol were discussed using elemental analysis (carbon, hydrogen, and nitrogen), molar conductance, magnetic measurements, mass spectra, and electronic spectra. The essential bands of infrared, 1HNMR, and UV-Vis spectra as well as thermogravimetric analysis corresponding to the active groups within the three ligands and their complexes were interpreted. The dehydration and decomposition processes of the [Cu(H2L1)(H2O)](OAc)2, [Ni(H2L1)(H2O)]SO4 · H2O, [Zn(H2L1)(H2O)]SO4 · H2O, [Cu(H2L2)(H2O)](OAc)2, [Ni(H2L2)(H2O)]SO4 · H2O, [Zn(H2L2)(H2O)]SO4 · 2H2O, [Cu(H2L3)(H2O)](OAc)2 · H2O, [Ni(H2L3)(H2O)]SO4 · 2H2O, [Zn(H2L3)(H2O)]SO4 complexes were studied thermodynamically using the integral method applying the Coats–Redfern and Horowitz–Metzger equations and the thermodynamic parameters were calculated. It was found from the elemental analysis and the thermal studies, that the ligand behaves as tridentate ligand forming chelates with 1 : 1 (metal : ligand) stoichiometrically. The molar conductance measurements of the complexes in dimethyl sulfoxide solvent indicate that the complexes have an electrolytic nature. The biological activities of the three ligands in comparison with metal(II) complexes were studied against different Gram positive and Gram negative bacteria.  相似文献   

14.
In a continuing investigation of dark CO2 uptake by nitrogen-limited cultures of the marine diatom Chaetoceros simplex (Bbsm), we expanded on several of our earlier conclusions regarding the potential application of this physiological response for measuring the degree and type of nitrogen limitation in phytoplankton populations. First, the duration over which the maximal enhancement of dark 14CO2 uptake was sustained after NH 4 + enrichment was a function both of the concentration of added NH 4 + and the standing crop of phytoplankton nitrogen — in effect, the total N demand. Second, pulsing with NH 4 + for a given degree of N-limitation always produced the same level of enhanced dark CO2 uptake regardless of whether the cultures were preconditioned with oxidized or reduced nitrogen. In contrast, urea pulsing led to reduced dark CO2 uptake, but the effect was most pronounced in cells grown on NO 3 . And third, the assay could be used to distinguish readily between no, moderate, and severe N limitation. The degree of severe N limitation was quantitatively correlated with the degree of enhanced dark CO2 uptake, but this relationship was not so clear in the region of moderate N limitation. The main advantage of the assay is that it is a relatively simple and effective alternative to more complicated techniques for gauging the degree and form of N limitation in phytoplankton. Further evaluation will be required, both in the laboratory and field, before the assay can be calibrated for quantitative use.Contribution No. 5982 from the Woods Hole Oceanographic Institution  相似文献   

15.
This paper presents pilot‐scale membrane treatment results performed on biologically treated effluents from fermentation industry and ozone oxidation on concentrates from the same membrane treatment system. The results obtained from the ultrafiltration (UF) and/or the reverse osmosis (RO) systems indicate that membrane treatment are very effective for COD, Color, NH3‐N and conductivity removal. Ozone oxidation of the membrane concentrates was tested to increase biodegradability of the wastes. The initial ratios of Biochemical oxygen demand (BOD5) to Chemical oxygen demand (COD) were increased significantly by applying chemicaloxidation with O3 and O3 + H2O2.  相似文献   

16.
The acetylene blockage technique was evaluated for measurement of denitrification in salt-marsh sediments (near Halifax, Nova Scotia, Canada). N2O in the gas phase of closed Spartina alterniflora marsh-sediment systems was analyzed with use of a thermal conductivity gas chromatograph sensitive to approximately 0.1 nmoles ml-1 gas. No N2O was detected for unfertilized sediment samples taken through the growing season and incubated in sealed buckets with 10% C2H2. For sediment samples amended with nitrate and for enrichments, initial rates of N2O evolution were higher in the presence of 10% C2H2 than in the absence of C2H2, but after longterm incubation N2O was consumed in some samples containing C2H2 as well as in samples without C2H2. In addition, total gaseous nitrogen (N2 and N2O) production in the absence of C2H2 was higher than in the presence of C2H2. Acetylene appears to be an inconsistent inhibitor of N2O reduction in salt-marsh sediments. The usefulness of the acetylene-denitrification technique in this habitat is, therefore, questionable.  相似文献   

17.
The junction area of Yunnan, Guizhou, and Sichuan provinces is the heaviest coal-burning endemic fluorosis zones in China. To better understand the pathogenicity of endemic fluorosis in this area, 87 coal samples from the late Permian outcrop or semi-outcrop coal seams were collected in eight counties of the junction area of Yunnan, Guizhou, and Sichuan provinces. The total fluorine and sulfate content, etc. in the coal was determined using combustion-hydrolysis/fluoride-ion-selective electrode method and ion chromatography, respectively. The results show that the total fluorine concentrations in the samples ranged from 44 to 382 µg g?1, with an average of 127 µg g?1. The average pH of the coals is 5.03 (1.86–8.62), and the sulfate content varied from 249 to 64,706 µg g?1 (average 7127 µg g?1). In addition, the coals were medium- and high-sulfur coals, with sulfur mass fraction ranging from 0.08 to 13.41%. By heating the outcrop coals, HF release from the coal was verified quantitatively without exception, while simulated combustion directly confirmed the release of sulfuric acid (H2SO4). The acid in coal may be in the form of acidic sulfate (\({\text{HSO}}_{4}^{ - }\)/H2SO4) because of a positive relationship between pH and \(p\left( {{\text{SO}}_{4}^{2 - } } \right)\) in the acidic coal. The possible reaction mechanism would be that a chemical reaction between the acid (H2SO4 or \({\text{HSO}}_{4}^{ - }\)) and fluorine in the coal occurred, thereby producing hydrogen fluoride (HF), which would be the chemical form of fluorine released from coal under relatively mild conditions. The unique chemical and physical property of HF may bring new insight into the pathogenic mechanism of coal-burning endemic fluorosis. The phenomenon of coal-burning fluorosis is not limited to the study area, but is common in southwest China and elsewhere. Further investigation is needed to determine whether other endemic fluorosis areas are affected by this phenomenon.  相似文献   

18.
Marine organisms inhabiting environments where pCO2/pH varies naturally are suggested to be relatively resilient to future ocean acidification. To test this hypothesis, the effect of elevated pCO2 was investigated in the articulated coralline red alga Corallina elongata from an intertidal rock pool on the north coast of Brittany (France), where pCO2 naturally varied daily between 70 and 1000 μatm. Metabolism was measured on algae in the laboratory after they had been grown for 3 weeks at pCO2 concentrations of 380, 550, 750 and 1000 μatm. Net and gross primary production, respiration and calcification rates were assessed by measurements of oxygen and total alkalinity fluxes using incubation chambers in the light and dark. Calcite mol % Mg/Ca (mMg/Ca) was analysed in the tips, branches and basal parts of the fronds, as well as in new skeletal structures produced by the algae in the different pCO2 treatments. Respiration, gross primary production and calcification in light and dark were not significantly affected by increased pCO2. Algae grown under elevated pCO2 (550, 750 and 1000 μatm) formed fewer new structures and produced calcite with a lower mMg/Ca ratio relative to those grown under 380 μatm. This study supports the assumption that C. elongata from a tidal pool, where pCO2 fluctuates over diel and seasonal cycles, is relatively robust to elevated pCO2 compared to other recently investigated coralline algae.  相似文献   

19.
Al2O3, MgO, SiO2 and ZnO-supported nickel catalysts were prepared and evaluated in the ethanol steam reforming for hydrogen production. It is shown that the catalytic behavior can be influenced depending on the experimental conditions employed and chemical composition of the catalyst.  相似文献   

20.
五氧化二钒类Fenton降解邻苯二甲酸二乙酯的机制研究   总被引:1,自引:0,他引:1  
发展了基于五氧化二钒(V_2O_5)和过氧化氢(H_2O_2)的新型类Fenton体系,探索了此体系产生羟基(·OH)的机制及降解邻苯二甲酸二乙酯(DEP)的效率;并考察了V_2O_5投加量、H_2O_2浓度,以及草酸对DEP降解的影响。结果表明,当V_2O_5投加量为0.1 g·L-1,H_2O_2浓度为2.0 mmol·L-1,反应24 h后,对DEP(25 mg·L-1)的降解率可达61.1%,增加或降低V_2O_5投加量和H_2O_2浓度均不利于DEP的降解。利用电子顺磁共振技术(Electron Paramagnetic Resonance,EPR)耦合5,5-二甲基-1-吡咯啉氮氧化物(DMPO)为捕获剂对反应体系中的主导自由基进行鉴定,发现·OH是体系降解DEP的主要活性物种,利用苯甲酸作为探针分子实现了·OH的间接定量,并初步推测了V_2O_5活化H_2O_2的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号