首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial variations in the N2O emissions and denitrification potential of riparian buffer strips (RBS) in a polluted river were examined. The river received large pollutant inputs from urban runoff and wastewater discharge, resulting in impaired water quality in the river and downstream reservoir. The potential for nitrogen removal by RBS was evaluated by measuring in situ N2O emission fluxes in static closed chambers and sediment denitrification potentials with acetylene inhibition techniques. The results showed that N2O emission fluxes decreased from the upstream (16.39 μg/(m2·h)) to downstream (0.30 μg/(m2·h)) sites and from the water body to upland sites. The trend in decreasing N2O emission fluxes in the downstream direction was mainly associated with sediment/soil textures (clay loam→sandy soil) and sediment/soil water contents and was also related to the vegetation along the RBS and nutrients in the sediments/soils. The correlation coefficient was highest (r=0.769) between the N2O emission flux and sediment/soil water content. Sediment/soil denitrification potentials under N-amended and ambient conditions were higher (highest 32.86 mg/(kg·h)) for the upstream sites, which were consistent with in situ N2O flux rates.  相似文献   

2.
The ecological security of urban surface water is subject to significant risk due to rapid urbanization. Pollutant discharge and accumulation are among the most critical stressors endangering urban surface water and affecting the normal operation of urban aquatic ecosystem services. In this study, we assessed how pollutant accumulation stresses water purification systems, which perform important urban ecosystem services. First, we applied a water environmental capacity model to calculate thresholds of urban surface water environmental capacity under a given water quality target. Second, based on a stepwise regression method, an equation was used to describe the relationship between stressor factors (pollutant accumulation) and measurable socioeconomic indicators. Third, an ecological risk index was used as an assessment endpoint indicator to assess the negative ecological effect of pollutant accumulation. Finally, risk level was classified according to the risk quotient method. Taking Xiamen City as an example, we analyzed the contribution of different sources of pollutants and evaluated the urban ecological risk posed by two major contaminants present in the environment by measuring chemical oxygen demand (COD) and ammonium nitrogen (NH4+-N). The results show that the ecological risk indexes of both COD and NH4+-N are expected to decrease from 2020 to 2030; that of COD is expected to fall from medium to low, whereas that of NH4+-N is expected to fall from high to medium. These findings demonstrate that the ecological risk posed to the surface water in Xiamen City can be reduced by controlling population growth, optimizing industrial structure, and promoting economic development.  相似文献   

3.
ABSTRACT

Treatment with nitrification inhibitors, such as dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) have been strongly indicated to increase grassland biomass and mitigate soil N2O emission rates. However, the responses of both alpine meadow aboveground biomass and N2O emission rates to nitrification inhibitors remains unclear. We separately applied three doses of DCD and DMPP to alpine grassland soils with three duplicates. The biomass and N2O emission rates were subsequently measured by a clear-cut method and in-situ static chamber gas chromatography during the growing season. Our findings indicated that aboveground biomass increased significantly, and N2O emission rate decreased significantly at 6.8?kg?ha?1 DCD and DMPP. Furthermore, the biomass increase effect was more significant than the N2O emission rate mitigation effect (p?<?0.05). The highest ratios of DCD treatments on meadow production increase and N2O emission rate decrease were 27.2% and 36.3%, respectively. Our findings provide insight into the enhanced grassland primary production and decreased N2O flux by nitrification inhibitor treatment in alpine meadows, which may be beneficial to help mitigate global warming.  相似文献   

4.
The effects and mechanism of chemical oxygen demand (COD), nitrogen, and phosphorus concentration removal by an integrated vertical-flow constructed wetland were studied in the wetland system during one inlet–outlet operating period, in two typical stages (each stage is connective 24 h, sampled once every 4 h). The concentration of ammonia decreased along the flow direction in the system, while levels of nitrate (NO3?-N) increased. In one operating period, total nitrogen (TN) concentration fell with rising operation time due to evacuative reoxygenation. The TN and NH3-N removal rates in the system were 26.6% and 97.5%, respectively. COD decreased rapidly in the early stages and more gradually in the direction of water flow of the wetland system. Average total phosphorus (TP) removal rate was 20.71%. TN and NO3?-N levels in water of the wetland had a tendency to decline gradually with increasing operation time. Ammonia concentrations displayed only a small variation with operation time. The results also indicated that the wetland was able to maintain its temperature. The oxygen content differed during the various operating stages and exerted a marked influence on COD, TP, and TN removal.  相似文献   

5.
人工湿地系统对含沼液畜禽废水净化效果试验研究   总被引:1,自引:0,他引:1  
为了考察人工湿地处理含沼液畜禽废水的可行性,采用水平潜流人工湿地对含沼液畜禽废水进行处理实验。试验结果表明:在进水流量1.5 m3.d-1,水平潜流人工湿地系统对含沼液畜禽废水具有较好的处理效果。废水中COD、TP、TN和NH4+-N浊度平均去除率分别为59.21%、53.80%、55.09%和55.57%.另外,通过对人工湿地沿程的污染物变化试验分析表明,人工湿地系统对污染物的降解是沿人工湿地水流方向逐渐降低的。  相似文献   

6.
Since the ammonia in the effluent of the traditional water purification process could not meet the supply demand, the advanced treatment of a high concentration of NH4 +-N micro-polluted source water by biological activated carbon filter (BACF) was tested. The filter was operated in the downflow manner and the results showed that the removing rate of NH4 +-N was related to the influent concentration of NH4 +-N. Its removing rate could be higher than 95% when influent concentration was under 1.0 mg/L. It could also decrease with the increasing influent concentration when the NH4 +-N concentration was in the range from 1.5 to 4.9 mg/L and the dissolved oxygen (DO) in the influent was under 10 mg/L, and the minimum removing rate could be 30%. The key factor of restricting nitrification in BACF was the influent DO. When the influent NH4 +-N concentration was high, the DO in water was almost depleted entirely by the nitrifying and hetetrophic bacteria in the depth of 0.4 m filter and the filter layer was divided into aerobic and anoxic zones. The nitrification and degradation of organic matters existed in the aerobic zone, while the denitrification occurred in the anoxic zone. Due to the limited carbon source, the denitrification could not be carried out properly, which led to the accumulation of the denitrification intermediates such as NO2 ?. In addition to the denitrification bacteria, the nitrification and the heterotrophic bacteria existed in the anoxic zone.  相似文献   

7.
Nitrous oxide (N2O) is a greenhouse gas that can be released during biological nitrogen removal from wastewater. N2O emission from a sequencing batch reactor (SBR) for biological nitrogen and phosphorus removal from wastewater was investigated, and the aims were to examine which process, nitrification or denitrification, would contribute more to N2Oemission and to study the effects of heterotrophic activities on N2O emission during nitrification. The results showed that N2O emission was mainly attributed to nitrification rather than to denitrification. N2O emission during denitrification mainly occurred with stored organic carbon as the electron donor. During nitrification, NaO emission was increased with increasing initial ammonium or nitrite concentrations. The ratio of N2O emission to the removed ammonium nitrogen (N2O- N/NH4-N) was 2.5% in the SBR system with high heterotrophic activities, while this ratio was in the range from 0.14% to 1.06% in batch nitrification experiments with limited heterotrophic activities.  相似文献   

8.
This article aims to determine the significant differences of the seasonal changes of pH, chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS) parameters in a wastewater stabilization pond. The variation of these parameters followed the seasonal pattern of temperature. The mean seasonal pH of the influent wastewater ranged between 7.8 (in spring) and 7.9 (in summer), while in the final effluents it was between 7.9 (in winter) and 8.3 (in summer). The mean seasonal COD of the influent wastewater ranged between 650?mg?L?1 in spring and 600?mg?L?1 in autumn, whereas in the effluents it was between 150?mg?L?1 in autumn and 270?mg?L?1 in spring. The mean seasonal BOD5 of the influent wastewater ranged between 360?mg?L?1 in autumn and 390?mg?L?1 in winter, whereas in the effluents it was between 66?mg?L?1 in summer and 130?mg?L?1 in winter. The results showed that the percent removals of COD, BOD5 and TSS from final effluents were maximum in summer for COD and BOD5 (76%), summer (83%) and for TSS in winter (78%), respectively. Data analysis showed that there were significant differences between parameters of pH, COD, BOD5 and TSS at four different seasons (p?相似文献   

9.
Atmospheric concentration of nitrous oxide (N2O), a greenhouse gas (GHG), is rising largely due to agriculture. At the plot scale, N2O emissions from crops are known to be controlled by local agricultural practices such as fertilisation, tillage and residue management. However, knowledge of greenhouse gas emissions at the scale of the cropping system is scarce, notably because N2O monitoring is time consuming. Strategies to reduce impact of farming on climate should therefore be sought at the cropping system level. Agro-ecosystem models are simple alternative means to estimate N2O emissions. Here, we combined ecosystem modelling and field measurements to assess the effect of agronomic management on N2O emissions. The model was tested with series of daily to monthly N2O emission data. It was then used to evaluate the N2O abatement potential of a low-emission system designed to halve greenhouse gas emissions in comparison with a system with high productivity and environmental performance. We found a 29 % N2O abatement potential for the low-emission system compared with the high-productivity system. Among N2O abatement options, reduction in mineral fertiliser inputs was the most effective.  相似文献   

10.
Diurnal variation of nitrogen cycling in coastal,marine sediments   总被引:6,自引:0,他引:6  
A closed chamber technique was developed to determine the emission of microbially produced N2O from an estuarine sediment. A diurnal variation was observed; maximum emissions of 0.4 to 4.0 mol N2O–N m-2 h-1 were recorded at night whereas the rates were low or even negative, -0.4 to 0.4 mol N2O–N m-2 h-1, during the day. The bacterial denitrification located in the uppermost centimeter was apparently the major source of the emitted N2O. The diurnal emission pattern was thus inversely related to the O2 availability at the sediment surface; in the dark, the lack of O2 production by benthic photosynthesis allowed the denitrification to occur closer to the sediment-water interface and was likely to enhance the release of N2O to the water. The daily averages for the emission were about 40 mol N2O–N m-2 d-1 for three investigation periods in autumn (November), winter (February) and spring (April), whereas no significant emission was recorded in the NO 3 - -depleted sediment in early summer (June). In this estuary, the N2O emissions from the sediment were significant contributions to the overall release of N2O to the atmosphere.  相似文献   

11.
ABSTRACT

Farmland size is a key factor in debates over agricultural land use, food security, agrochemical pollution, and the future of smallholder systems. This paper examines relationships between farmland size, chemical fertilizers and irrigation management, and maize and wheat yield in Mexico. We used agricultural census data to estimate the mean farmland areas and crop yields of 5.5 million farms and nine million agricultural plots in 2,455 Mexican municipalities. We also derived indices of socio-environmental and management factors to examine relationships with yield. Using multiple regression models, we found that although mean farmland area positively relates to maize and wheat yield, the relationships depend critically on the management contexts of chemical fertilizers and irrigation, which vary widely across farm size gradients. Smallholder yield gaps were associated with deficits in irrigation, rather than chemical inputs. Findings highlight the growing need for expanded irrigation access and/or water management assistance for smaller farms.  相似文献   

12.
In order to investigate the temporal and spatial variations of 14 physical and chemical surface water parameters in the Nhue and Day sub-river systems of Vietnam, surface water samples were taken from 43 sampling sites during the dry and rainy seasons in 2007. The results were statistically examined by Mann–Whitney U-test and hierarchical cluster analysis. The results show that water quality of the Day River was significantly improved during the rainy season while this was not the case of the Nhue River. However, the river water did not meet the Vietnamese surface water quality standards for dissolved oxygen (DO), biological oxygen demand (BOD5), chemical oxygen demand (COD), nutrients, total coliform, and fecal coliform. This implies that the health of local communities using untreated river water for drinking purposes as well as irrigation of vegetables may be at risk. Forty-three sampling sites were grouped into four main clusters on the basis of water quality characteristics with particular reference to geographic location and land use and revealed the contamination levels from anthropogenic sources.  相似文献   

13.
《Ecological modelling》2005,181(4):581-589
Chlorophyll-a is a well-accepted index for phytoplankton abundance and population of primary producers in an aquatic environment. The relationships between Chlorophyll-a and 16 chemical, physical and biological water quality variables in Çamlıdere reservoir (Ankara, Turkey) were studied by using principal component scores (PCS) in multiple linear regression analysis (MLR) to predict Chlorophyll-a levels. Principal component analysis was used to simplify the complexity of relations between water quality variables. Score values obtained by PC scores were used as independent variables in the multiple linear regression models. Two approaches were used in the present statistical analysis. In the first approach, only five selected score values obtained by PC analysis were used for the prediction of Chlorophyll-a levels and predictive success (R2) of the model found as 56.3%. In the second approach, where all score values obtained from the PC analysis were used as independent variables, predictive power was turned out to be 90.8%. Both approaches could be used to predict Chlorophyll-a levels in reservoirs successfully.  相似文献   

14.
QUAL2E模型在大沽河干流青岛段水质模拟中的应用   总被引:2,自引:0,他引:2  
采用QUAL2E模型对大沽河干流青岛段的水质进行了模拟和预测。针对大沽河的具体情况,选用BOD5、COD和氮作为模拟预测指标,用实验模拟方法、模型率定法并参考相关文献确定了BOD耗氧系数k1、BOD复氧系数k2、BOD沉降系数k3、COD耗氧系数和弥散系数等水质参数,并对模拟结果进行了验证,表明预测值和实测值的相关性较好;对BOD5、k1、k2和Q(流量)进行了灵敏度分析,结果表明对大沽河DO浓度影响敏感的参数依次是:Q、k2、BOD、k1,即流量Q是模型最敏感的参数,说明河流的水力学参数对DO影响较大。  相似文献   

15.
Nitrous oxide (N2O), a potent greenhouse gas, is emitted during nitrogen removal in wastewater treatment, significantly contributing to greenhouse effect. Nitrogen removal generally involves nitrification and denitrification catalyzed by specific enzymes. N2O production and consumption vary considerably in response to specific enzyme-catalyzed nitrogen imbalances, but the mechanisms are not yet completely understood. Studying the regulation of related enzymes’ activity is essential to minimize N2O emissions during wastewater treatment. This paper aims to review the poorly understood related enzymes that most commonly involved in producing and consuming N2O in terms of their nature, structure and catalytic mechanisms. The pathways of N2O emission during wastewater treatment are briefly introduced. The key environmental factors influencing N2O emission through regulatory enzymes are summarized and the enzyme-based mechanisms are revealed. Several enzymebased techniques for mitigating N2O emissions directly or indirectly are proposed. Finally, areas for further research on N2O release during wastewater treatment are discussed.
  相似文献   

16.
Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were employed to evaluate the Nitrous oxide (N2O) production in biological aerated filters (BAFs) under varied dissolved oxygen (DO) concentrations during treating wastewater under laboratory scale. The average yield of gasous N2O showed more than 4-fold increase when the DO levels were reduced from 6.0 to 2.0 mg?L–1, indicating that low DO may drive N2O generation. PCR-DGGE results revealed that Nitratifractor salsuginis were dominant and may be responsible for N2O emission from the BAFs system. While at a low DO concentration (2.0 mg?L–1), Flavobacterium urocaniciphilum might play a role. When DO concentration was the limiting factor (reduced from 6.0 to 2.0 mg?L–1) for nitrification, it reduced NO 2 - -N oxidation as well as the total nitrification. The data from this study contribute to explain how N2O production changes in response to DO concentration, and may be helpful for reduction of N2O through regulation of DO levels.
  相似文献   

17.
One of the most important considerations in many environmental studies is need to allow for correlations among the variables. Monitoring and analyzing relationships between chemical environmental parameters using spatial correlation based regression modelling is the main motivation of this applied study. For this purpose, some noticeable environmental parameters of data sets obtained from two lakes have been considered and the concentrations of chemical variables such as cadmium and nitrate have been appraised by a regression-based geostatistical methodology. The modelling procedure consists of two stages. In the first stage, spatial variables are analyzed via multi-linear regression and some relationships are provided. Next, by using the spatial auto-correlations of the residuals, a type of regression-based kriging procedure is applied. The capacity of the model for appraising the water chemical variables is also tested and performance comparisons with ordinary kriging are conducted. Finally, the applications showed that analyzing water chemical variables with spatially correlated errors is a convenient and applicable approach for assessing the environmental systems.  相似文献   

18.
水肥管理对稻田土壤甲烷和氧化亚氮排放的影响   总被引:2,自引:0,他引:2  
就稻田水肥管理对甲烷和氧化亚氮排放的影响研究进行了综述。文献分析表明,甲烷和氧化亚氮的排放条件存在明显的反位关系,即有利于甲烷排放的水分条件往往不利于氧化亚氮的排放。稻田温室气体的排放与水分管理的历史有明显的关系,不同的肥料施用对甲烷和氧化亚氮排放影响的机制不同。因此,要真正有效地控制温室气体的排放必须首先弄清甲烷和氧化亚氮在不同条件下的排放关系。  相似文献   

19.
A. Migné  D. Davoult 《Marine Biology》1997,127(4):699-704
As part of the evaluation of fluxes between the water column and a rich benthic community of the Dover Strait (Eastern English Channel), laboratory measurements of oxygen consumption were carried out on a common ophiurid, Ophiothrix fragilis (Abildgaard), from February 1993 to February 1995. The mean O2-consumption rate was evaluated at 0.31 mg O2 g−1 h−1 (ash-free dry weight). Simultaneous measurements of O2 consumption and CO2 production using the pH-alkalinity method revealed an average respiratory quotient of 0.69 proved suitable for converting oxygen demand to carbon flux. A seasonal trend in respiration data was demonstrated by sinusoidal curves fitted to O2-uptake and CO2-release data as a function of time. The influence on respiration rate of two seasonal parameters (temperature and food availability) is discussed; linear regression indicated a highly significant relationship between O2 consumption (or CO2 production) and temperature; both O2-consumption and CO2-production rates decreased with starvation. The average O:N ratio was estimated at 8.46, close to the theoretical value when proteins constitute the catabolic substrate. The annual carbon respired by the O. fragilis community examined and the estimated annual primary production by phytoplankton indicate that the respiration of the O. fragilis community could supply 35% of phytoplankton carbon requirements. Received: 1 August 1996 / Accepted: 4 September 1996  相似文献   

20.
A multivariate statistical approach integrating the absolute principal components score (APCS) and multivariate linear regression (APCS-MLR), along with structural equation modeling (SEM), was used to model the influence of water chemistry variables on chlorophyll a (Chl a) in Lake Qilu, a severely polluted lake in southwestern China. Water quality was surveyed monthly from 2000 to 2005. APCS-MLR was used to identify key water chemistry variables, mine data for SEM, and predict Chl a. Seven principal components (PCs) were determined as eigenvalues >1, which explained 68.67% of the original variance. Four PCs were selected to predict Chl a using APCS-MLR. The results showed a good fit between the observed data and modeled values, with R2 = 0.80. For SEM, Chl a and eight variables were used: NH4-N (ammonia-nitrogen), total phosphorus (TP), Secchi disc depth (SD), cyanide (CN), arsenic (As), cadmium (Cd), fluoride (F), and temperature (T). A conceptual model was established to describe the relationships among the water chemistry variables and Chl a. Four latent variables were also introduced: physical factors, nutrients, toxic substances, and phytoplankton. In general, the SEM demonstrated good agreement between the sample covariance matrix of observed variables and the model-implied covariance matrix. Among the water chemistry factors, T and TP had the greatest positive influence on Chl a, whereas SD had the largest negative influence. These results will help researchers and decision-makers to better understand the influence of water chemistry on phytoplankton and to manage eutrophication adaptively in Lake Qilu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号