首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Soil analyses were conducted on home lawns across diverse ecoregions of the U.S. to determine the soil organic carbon (SOC) sink capacity of turfgrass soils. Establishment of lawns sequestered SOC over time. Due to variations in ecoregions, sequestration rates varied among sites from 0.9 Mg carbon (C) ha?1 year?1 to 5.4 Mg C ha?1 year?1. Potential SOC sink capacity also varied among sites ranging from 20.8 ± 1.0–96.3 ± 6.0 Mg C ha?1. Average sequestration rate and sink capacity for all sites sampled were 2.8 ± 0.3 Mg C ha?1 year?1 and 45.8 ± 3.5 Mg C ha?1, respectively. Additionally, the hidden carbon costs (HCC) due to lawn mowing (189.7 kg Ce (carbon equivalent) ha?1 year?1) and fertilizer use (63.6 kg Ce ha?1 year?1) for all sites totaled 254.3 kg Ce ha?1 year?1. Considering home lawn SOC sink capacity and HCC, mean home lawn sequestration was completely negated 184 years post establishment. The potential SOC sink capacity of home lawns in the U.S. was estimated at 496.3 Tg C, with HCC of between 2,504.1 Gg Ce year?1 under low management regimes and 7551.4 Gg Ce year?1 under high management. This leads to a carbon-positive system for between 66 and 199 years in U.S. home lawns. More efficient and reduction of C-intensive maintenance practices could increase the overall sequestration longevity of home lawns and improve their climate change mitigation potential.  相似文献   

2.
This paper examines the economic value of selected ecosystem services of Corbett Tiger Reserve, India. The direct cost was derived from secondary sources, and indirect and opportunity costs through socioeconomic surveys. For recreational value the individual approach to travel cost method was used, and to assess carbon sequestration the replacement cost method was used. The maintenance cost of the reserve was estimated as US $2,153,174.3 year−1. The indirect costs in terms of crop and livestock depredation by wild animals ranged from US $2,153,174.3 year−1. The indirect costs in terms of crop and livestock depredation by wild animals ranged from US 2,408 to US $37,958 village−1 over a period of 5 years. The dependence of local communities was for fuel wood (US $37,958 village−1 over a period of 5 years. The dependence of local communities was for fuel wood (US 7,346 day−1), fodder (US $5,290 day−1), small timber, and other nontimber forest products. The recreational value of the reserve was estimated as US $5,290 day−1), small timber, and other nontimber forest products. The recreational value of the reserve was estimated as US 167,619 year−1. With the cost per visitor being US $2.5, the consumers’ surplus was large, showing the willingness of visitors to pay for wildlife recreation. The forests of the reserve mitigate carbon worth US $2.5, the consumers’ surplus was large, showing the willingness of visitors to pay for wildlife recreation. The forests of the reserve mitigate carbon worth US 63.6 million, with an annual flow of US $65.0 ha−1 year−1. The other benefits of the reserve include US $65.0 ha−1 year−1. The other benefits of the reserve include US 41 million through generation of electricity since 1972. The analysis reveals that, though the benefits outweigh costs, they need to be accrued to local communities so as to balance the distribution of benefits and costs.  相似文献   

3.
This article investigated public preferences for forest biomass based liquid biofuels, particularly ethanol blends of 10% (E10) and 85% (E85). We conducted a choice experiment study in three southern states in the United States: Arkansas, Florida, and Virginia. Reducing atmospheric CO2, decreasing risk of wildfires and pest outbreaks, and enhancing biodiversity were presented to respondents as attributes of using biofuels. Results indicated that individuals had a positive extra willingness to pay (WTP) for both ethanol blends. The extra WTP was greater for higher blends that offered larger environment benefits. The WTPs for E10 were $0.56 gallon?1, $0.58 gallon?1, and $0.48 gallon?1, and for E85 they were $0.82 gallon?1, $1.17 gallon?1, and $1.06 gallon?1 in Arkansas, Florida, and Virginia, respectively. Although differences in WTP for E10 were statistically insignificant among the three states, significant differences were found in the WTP for E85 between AR and FL and between AR and VA. Preferences for the environmental attributes appeared to be heterogeneous, as respondents’ were willing to pay a premium for E10 in all three states to facilitate the reduction of CO2 and the improvement of biodiversity but were not willing to pay more for E85 in order to enhance biodiversity.  相似文献   

4.
Prescribed fire is a common site preparation practice in forest management in southern China. However, the effect of fire on soil properties and N transformations is still poorly understood in this region. In this study, soil properties and N transformations in burned and unburned site of two vegetation types (Eucalyptus plantation and shrubland) were compared in rainy and dry seasons after 2 years’ prescribed fire. Soil pH and soil NH4-N were all higher in the burned site compared to the unburned control. Furthermore, burned sites had 30–40 % lower of soil total phosphorus than conspecific unburned sites. There was no difference in soil organic matter, total N, soil exchangeable cations, available P or NO3-N. Nitrogen mineralization rate of 0–5 cm soil in the unburned site ranged from 8.24 to 11.6 mg N kg?1 soil month?1 in the rainy season, compared to a lower level of 4.82–5.25 mg N kg?1 soil month?1 in the burned sites. In contrast, 0–5 cm layer nitrification rate was overall 2.47 mg N kg?1 soil month?1 in the rainy season, and was not significantly affected by burning. The reduced understory vegetation coverage after burning may be responsible for the higher soil NH4-N in the burned site. This study highlights that a better understanding the effect of prescribed burning on soil nutrients cycling would provide a critical foundation for management decision and be beneficial to afforestation in southern China.  相似文献   

5.
We present here a method to integrate geologic, topographic, and land-cover data in a geographic information system to provide a fine-scale, spatially explicit prediction of sediment yield to support management applications. The method is fundamentally qualitative but can be quantified using preexisting sediment-yield data, where available, to verify predictions using other independent data sets. In the 674-km2 Sespe Creek watershed of southern California, 30 unique “geomorphic landscape units” (GLUs, defined by relatively homogenous areas of geology, hillslope gradient, and land cover) provide a framework for discriminating relative rates of sediment yield across this landscape. Field observations define three broad groupings of GLUs that are well-associated with types, relative magnitudes, and rates of erosion processes. These relative rates were then quantified using sediment-removal data from nearby debris basins, which allow relatively low-precision but robust calculations of both local and whole-watershed sediment yields, based on the key assumption that minimal sediment storage throughout most of the watershed supports near-equivalency of long-term rates of hillslope sediment production and watershed sediment yield. The accuracy of these calculations can be independently assessed using geologically inferred uplift rates and integrated suspended sediment measurements from mainstem Sespe Creek, which indicate watershed-averaged erosion rates between about 0.6–1.0 mm year?1 and corresponding sediment yields of about 2 × 103 t km?2 year?1. A spatially explicit representation of sediment production is particularly useful in a region where wildfires, rapid urban development, and the downstream delivery of upstream sediment loads are critical drivers of both geomorphic processes and land-use management.  相似文献   

6.
This paper estimates the environmental impacts and damage costs (‘external costs’) of synthetic nitrogen fertilizer and discusses options for reducing these impacts, including their consequences for farmers and for producers of fertilizer. The damage costs of the fertilizer life cycle that could be estimated are large, about 0.3 [euro]/kgN (compared to the current market price of about 0.5 [euro]/kgN); much of that is due to global warming by N2O and CO2 emissions during fertilizer production and N2O emissions from fertilized fields. Policy options for internalizing these costs are discussed, and the consequences of reduced fertilizer input on crop yield are explored. If the damage costs were internalized by a pollution tax or tradable permits that are auctioned by the government, the economic consequences would be heavy, with a large revenue loss for farmers. However, if it is internalized by tradable permits that are given out free, the revenue loss for farmers is small. The loss for fertilizer producers increases linearly with the amount of external cost that is internalized, by contrast to the loss for farmers which increases quadratically but is very small for a damage cost of 0.3 [euro]/kgN. Expressed as a change in the fertilizer-dependent part of the farmers' revenue (crop yield × crop price – fertilizer used× fertilizer price), the decrease is less than 0.5% for most crops; the losses are larger only for crops with low [euro]/ha revenue. Averaged over wheat, barley, potatoes, sugar beet and rapeseed, the loss to farmers is about 0.1% in the UK and 0.4% in Sweden. The revenue loss for fertilizer producers is larger, about 8% in the UK and 14% in Sweden.  相似文献   

7.
There is renewed interest in re-establishing trees on 0.6 million ha of mining-disturbed lands in the Appalachian mountains of Eastern United States. Many coal-mined lands reclaimed to meet requirements of US federal law have thick herbaceous vegetation and compacted soils which impede tree establishment. Mitigation practices were applied on three mine sites and evaluated for success in enabling planted trees to become established. Eastern white pine (Pinus strobus), hybrid poplar (Populus deltoids × Populus trichocarpa), and mixed Appalachian hardwoods were established using weed control only and weed control with subsoil ripping. Trees were measured in October of 2008 after 5 years of growth. Subsoil ripping increased mixed hardwood survival from 43 to 71 %, hybrid poplar biomass index from 1.51 to 8.97 Mg ha?1, and Eastern white pine biomass index from 0.10 to 0.32 Mg ha?1. When restoring trees to unused mined sites, subsoil ripping can aid survival and growth to an extent that will result in a valuable forest.  相似文献   

8.
This work illustrates the result of a study on earthworm abundance, seasonal population dynamics and casting activities under Bermuda grass cover in a semiarid tropical part of Rajasthan, India. The earthworm abundance and their casting activities showed the drastic variation during different seasons. The maximum density (individual m?2) of earthworms was recorded in autumn (87.0?±?7.2) and minimum in winter (5.3?±?3.2) season in grassland. There was also variation in temperature and moisture of canopy soil in different seasons of the experimental year. The casting activities of earthworm also showed variations among different seasons. The maximum cast production rate was recorded during autumn (690.0?±?78.0?g?m?2) while in winter (17.3?±?5.1?g?m?2), earthworms showed the lowest cast production rate. The chemical composition of worm casts and parental soil layers (topsoil: 0?C10?cm depth and subsoil: 10?C25?cm depth) in grassland ecosystem was also monitored. The earthworm casts collected during winter showed the maximum level of total N (0.890?g?kg?1), available P (0.373?g?kg?1), exchangeable K (0.835?g?kg?1), exchangeable Ca (7.10?g?kg?1) and exchangeable Mg level (5.93?g?kg?1) while the maximum organic C content (5.27?g?kg?1) was recorded in surface casts deposited in rainy season. The level of major soil nutrients was also high in worm casts than parental soil and indicates the earthworm-mediated nutrient mineralization and organic matter transformation. Results thus clearly suggest the major role of earthworm in soil nutrient transformation in semiarid ecosystem.  相似文献   

9.
The storage of fresh agricultural products is not easy because of its high moisture. Dehydration is an efficient preservation method. The investigation of drying modeling and transfer characteristics are important for selecting operating conditions and equipment design. The drying behavior of Lactuca sativa slices, with the thickness of 2 mm, was investigated at 60.0–80.0°C and 0.60–1.04 m sec?1 velocity in a convective hot air drier. The mass transfer during the drying process was described using six thin drying models. The convective heat transfer coefficient α and mass transfer coefficient kH were finally calculated. The results showed that the drying process could be separated into three stages including accelerating rate, constant rate, and falling rate period, which was influenced by hot air temperature and velocity, and the Modi?ed Page model agreed well with the experimental data. When the operating temperature was increased from 60.0°C to 80.0°C, α was found increased from 88.07 to 107.93 W·m?2·K?1, and kH increased from 46.32 × 10–3 to 68.04 × 10–3 kg·m?2·sec?1·ΔH?1. With the increase of air velocity from 0.60 to 1.04 m·sec?1, α was increased from 78.85 to 101.35 W·m?2·K?1, and kH was enhanced from 51.78 × 10–3 to 65.85 × 10–3 kg·m?2·sec?1·ΔH?1.  相似文献   

10.
Proper grazing management practices can generate corresponding compensatory effects on plant community production, which may reduce inter-annual variability of productivity in some grassland ecosystems. However, it remains unclear how grazing influences plant community attributes and the variability of standing crop. We examined the effects of sheep grazing at four stocking rate treatments [control, 0 sheep ha?1 month?1; light (LG), 0.15 sheep ha?1 month?1; moderate (MG), 0.30 sheep ha?1 month?1; and heavy (HG), 0.45 sheep ha?1 month?1] on standing crop at the community level and partitioned by species and functional groups, in the desert steppe of Inner Mongolia, China. The treatments were arranged in a completely randomized block design over a 9-year period. Standing crop was measured every August from 2004 to 2012. Peak standing crop decreased (P < 0.05) with increasing stocking rate; peak standing crop in the HG treatment decreased 40 % compared to the control. May–July precipitation explained at least 76 % of the variation in peak standing crop. MG and HG treatments resulted in a decrease (P < 0.05) in shrubs, semi-shrubs, and perennials forbs, and an increase (P < 0.05) in perennial bunchgrasses compared to the control. The coefficients of variation at plant functional group and species level in the LG and MG treatments were lower (P < 0.05) than in the control and HG treatments. Peak standing crop variability of the control and HG community were greatest, which suggested that LG and MG have greater ecosystem stability.  相似文献   

11.
The Alqueva reservoir created the largest artificial lake of Western Europe in 2010. Since then, the region has faced challenges due to land-use changes that may increase the risk of erosion and shorten the lifetime of the reservoir, increasing the need to promote land management sustainability. This paper investigates the aspect of seasonality of soil erosion using a comprehensive methodology that integrates the Revised Universal Soil Loss Equation (RUSLE) approach, geographic information systems, geostatistics, and remote-sensing. An experimental agro-silvo pastoral area (typical land-use) was used for the RUSLE factors update. The study confirmed the effect of seasonality on soil erosion rates under Mediterranean conditions. The highest rainfall erosivity values occurred during the autumn season (433.6 MJ mm ha?1 h?1), when vegetation cover is reduced after the long dry season. As a result, the autumn season showed the highest predicted erosion (9.9 t ha?1), contributing 65 % of the total annual erosion. The predicted soil erosion for winter was low (1.1 t ha?1) despite the high rainfall erosivity during that season (196.6 MJ mm ha?1 h?1). The predicted annual soil loss was 15.1 t ha?1, and the sediment amount delivery was 4,314 × 103 kg. Knowledge of seasonal variation would be essential to outline sustainable land management practices. This model will be integrated with World Overview of Conservation Approaches and Technologies methods to support decision-making in that watershed, and it will involve collaboration with both local people and governmental institutions.  相似文献   

12.
Forests are socioeconomically and ecologically important ecosystems that are exposed to a variety of natural and anthropogenic stressors. As such, monitoring forest condition and detecting temporal changes therein remain critical to sound public and private forestland management. The National Parks Service’s Vital Signs monitoring program collects information on many forest health indicators, including species richness, cover by exotics, browse pressure, and forest regeneration. We applied a mixed-model approach to partition variability in data for 30 forest health indicators collected from several national parks in the eastern United States. We then used the estimated variance components in a simulation model to evaluate trend detection capabilities for each indicator. We investigated the extent to which the following factors affected ability to detect trends: (a) sample design: using simple panel versus connected panel design, (b) effect size: increasing trend magnitude, (c) sample size: varying the number of plots sampled each year, and (d) stratified sampling: post-stratifying plots into vegetation domains. Statistical power varied among indicators; however, indicators that measured the proportion of a total yielded higher power when compared to indicators that measured absolute or average values. In addition, the total variability for an indicator appeared to influence power to detect temporal trends more than how total variance was partitioned among spatial and temporal sources. Based on these analyses and the monitoring objectives of the Vital Signs program, the current sampling design is likely overly intensive for detecting a 5 % trend·year?1 for all indicators and is appropriate for detecting a 1 % trend·year?1 in most indicators.  相似文献   

13.
The Opuha Dam was designed for water storage, hydropower, and to augment summer low flows. Following its commissioning in 1999, algal blooms (dominated first by Phormidium and later Didymosphenia geminata) downstream of the dam were attributed to the reduced frequency and magnitude of high-flow events. In this study, we used a 20-year monitoring dataset to quantify changes associated with the dam. We also studied the effectiveness of flushing flows to remove periphyton from the river bed. Following the completion of the dam, daily maximum flows downstream have exceeded 100 m3 s?1 only three times; two of these floods exceeded the pre-dam mean annual flood of 203 m3 s?1 (compared to 19 times >100 m3 s?1 and 6 times >203 m3 s?1 in the 8 years of record before the dam). Other changes downstream included increases in water temperature, bed armoring, frequency of algal blooms, and changes to the aquatic invertebrate community. Seven experimental flushing flows resulted in limited periphyton reductions. Flood wave attenuation, bed armoring, and a shortage of surface sand and gravel, likely limited the effectiveness of these moderate floods. Floods similar to pre-dam levels may be effective for control of periphyton downstream; however, flushing flows of that magnitude are not possible with the existing dam infrastructure. These results highlight the need for dams to be planned and built with the capacity to provide the natural range of flows for adaptive management, particularly high flows.  相似文献   

14.
Waste from wastewater treatment plants (WWTP) for Helianthus annuus L. production may be a viable solution to obtain biodiesel. This study achieved two objectives: assess the agronomical viability of waste (wastewater and sludge) from the Alcázar de San Juan WWTP in central Spain for H. annuus L. production; use H. annuus L. seeds grown in this way to obtain biodiesel. Five study plots, each measuring 6 m × 6 m (36 m2), were set up on the agricultural land near the Alcázar de San Juan WWTP. Five fertilizer treatment types were considered: drinking water, as the control; treated wastewater; 10 t ha?1 of air-dried sewage sludge; 20 t ha?1 of air-dried sewage sludge; 0.6 t ha?1 of commercial inorganic fertilizer. Soil, irrigation water, sewage sludge, crop development and fatty acid composition in achenes oil were monitored. The 20 t ha–1 dose of sewage sludge proved effective to grow H. annuus L. with similar results to those grown with a commercial fertilizer. However, precautions should be taken when irrigating with wastewater because of high salinity and nutrient deficiency. Sunflower oil was composed mostly of linoleic and oleic acid. The remaining fatty acids were linolenic, estearic, nervonic, palmitoleic, and palmitic.  相似文献   

15.
Forest management certification is assumed to promote sustainable forest management, but there is little field-based evidence to support this claim. To help fill this gap, we compared a Forest Stewardship Council (FSC)-certified with an adjacent uncertified, conventionally logged concession (CL) in Gabon on the basis of logging damage, above-ground biomass (AGB), and tree species diversity and composition. Before logging, we marked, mapped, and measured all trees >10 cm dbh in 20 and twelve 1-ha permanent plots in the FSC and CL areas, respectively. Soil and tree damage due to felling, skidding, and road-related activities was then assessed 2–3 months after the 508 ha FSC study area and the 200 ha CL study area were selectively logged at respective intensities of 5.7 m3/ha (0.39 trees/ha) and 11.4 m3/ha (0.76 trees/ha). For each tree felled, averages of 9.1 and 20.9 other trees were damaged in the FSC and CL plots, respectively; when expressed as the impacts per timber volume extracted, the values did not differ between the two treatments. Skid trails covered 2.9 % more of the CL surface, but skid trail length per unit timber volume extracted was not greater. Logging roads were wider in the CL than FSC site and disturbed 4.7 % more of the surface. Overall, logging caused declines in AGB of 7.1 and 13.4 % at the FSC and CL sites, respectively. Changes in tree species composition were small but greater for the CL site. Based on these findings and in light of the pseudoreplicated study design with less-than perfect counterfactual, we cautiously conclude that certification yields environmental benefits even after accounting for differences in logging intensities.  相似文献   

16.
Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a?1 and 5254.4 tons P a?1, and annual area-specific nutrient loads were 1.94 tons N km?2 and 0.31 tons P km?2. Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.  相似文献   

17.
Detailed studies on pollutants genesis, path and transformation are needed in agricultural catchments facing coastal areas. Here, loss of nutrients should be minimized in order to protect valuable aquatic ecosystems from eutrophication phenomena. A soil system N budget was calculated for a lowland coastal area, the Po di Volano basin (Po River Delta, Northern Italy), characterized by extremely flat topography and fine soil texture and bordering a network of lagoon ecosystems. Main features of this area are the scarce relevance of livestock farming, the intense agriculture, mainly sustained by chemical fertilizers, and the developed network of artificial canals with long water residence time. Average nitrogen input exceeds output terms by ~60 kg N ha?1 year?1, a relatively small amount if compared to sub-basins of the same hydrological system. Analysis of dissolved inorganic nitrogen in groundwater suggests limited vertical loss and no accumulation of this element, while a nitrogen mass balance in surface waters indicates a net and significant removal within the watershed. Our data provide multiple evidences of efficient control of the nitrogen excess in this geographical area and we speculate that denitrification in soil and in the secondary drainage system performs this ecosystemic function. Additionally, the significant difference between nitrogen input and nitrogen output loads associated to the irrigation system, which is fed by the N-rich Po River, suggests that this basin metabolizes part of the nitrogen excess produced upstream. The traditionally absent livestock farming practices and consequent low use of manure as fertilizer pose the risk of excess soil mineralization and progressive loss of denitrification capacity in this area.  相似文献   

18.
Invasive non-native species frequently occur in very high densities. When such invaders present an economic or ecological nuisance, this biomass is typically removed and landfill is the most common destination, which is undesirable from both an economic and ecological perspective. The zebra mussel, Dreissena polymorpha, has invaded large parts of Europe and North America, and is routinely removed from raw water systems where it creates a biofouling nuisance. We investigated the suitability of dried, whole zebra mussels as a supplement to poultry feed, thus providing a more attractive end-use than disposal to landfill. Measurable outcomes were nutrient and energy composition analyses of the feeds and production parameters of the birds over a 14 day period. Zebra mussels were a palatable feed supplement for chickens. The mussel meal contained high levels of calcium (344.9 g kg?1), essential for egg shell formation, which was absorbed and retained easily by the birds. Compared with standard feed, a mussel-supplemented diet caused no significant effects on production parameters such as egg weight and feed conversion ratio during the study period. However, protein and energy levels in the zebra mussel feed were much lower than expected from the literature. In order for zebra mussels to be a viable long-term feed supplement for poultry, flesh would need to be separated from the shells in an economically viable way. If zebra mussels were to be used with the shells remaining, it seems that the resultant mussel meal would be more suitable as a calcium supplement.  相似文献   

19.
Monitoring the dynamics of forest biomass at various spatial scales is important for better understanding the terrestrial carbon cycle as well as improving the effectiveness of forest policies and forest management activities. In this article, field data and Landsat image data acquired in 1999 and 2007 were utilized to quantify spatiotemporal changes of forest biomass for Dongsheng Forestry Farm in Changbai Mountain region of northeastern China. We found that Landsat TM band 4 and Difference Vegetation Index with a 3 × 3 window size were the best predictors associated with forest biomass estimations in the study area. The inverse regression model with Landsat TM band 4 predictor was found to be the best model. The total forest biomass in the study area decreased slightly from 2.77 × 106 Mg in 1999 to 2.73 × 106 Mg in 2007, which agreed closely with field-based model estimates. The area of forested land increased from 17.9 × 103 ha in 1999 to 18.1 × 103 ha in 2007. The stabilization of forest biomass and the slight increase of forested land occurred in the period following implementations of national forest policies in China in 1999. The pattern of changes in both forest biomass and biomass density was altered due to different management regimes adopted in light of those policies. This study reveals the usefulness of the remote sensing-based approach for detecting and monitoring quantitative changes in forest biomass at a landscape scale.  相似文献   

20.
Generation of biodiesel from microalgae has been extensively investigated; however, its quality is often not suitable for use as fuel. Our investigation involved the evaluation of biodiesel quality using a native isolate Chlorella sorokiniana MIC-G5, as specified by American Society for Testing and Materials (ASTM), after transesterification of lipids with methanol, in the presence of sodium methoxide. Total quantity of lipids extracted from dry biomass, of approximately 410–450 mg g?1 was characterized using FTIR and 1H NMR. After transesterification, the total saturated and unsaturated fatty acid methyl esters (FAMEs) were 43% and 57%, respectively. The major FAMEs present in the biodiesel were methyl palmitate (C16:0), methyl oleate (C18:1), and methyl linoleate (C18:2), and the 1H NMR spectra matched with criteria prescribed for high-quality biodiesel. The biodiesel exhibited a density of 0.873 g cm–3, viscosity of 3.418 mm2 s?1, cetane number (CN) of 57.85, high heating value (HHV) of 40.25, iodine value of 71.823 g I2 100 g?1, degree of unsaturation (DU) of 58%, and a cold filter plugging point (CFPP) of –5.22°C. Critical fuel parameters, including oxidation stability, CN, HHV, iodine value, flash point, cloud point, pour point, density, and viscosity were in accordance with the methyl ester composition and structural configuration. Hence, C. sorokiniana can be a promising feedstock for biodiesel generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号