首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Annual growth rings sampled from three free-standing trees (Platanus hybrida sp.), grew in the metropolitan area of Palermo (Italy) and covering a 118 years time span (1880–1998), have been studied for their 13C/12C carbon isotope ratios. It has been found that the 13C/12C tree ring record, during the study time interval, decreased of −3.6‰, from −26.4‰ in 1880 to −30‰ in 1998. Such a progressive depletion has been attributed to the addition of anthropogenic 13C depleted carbon dioxide to the local atmosphere. The observed 13C/12C decrease has been used to infer some possible pathways of atmospheric CO2 change in the study urban area.  相似文献   

2.
In arid and semi-arid environments, artificial recharge or reuse of wastewater may be desirable for water conservation, but NO3 contamination of underlying aquifers can result. On the semi-arid Southern High Plains (USA), industrial wastewater, sewage, and feedlot runoff have been retained in dozens of playas, depressions that focus recharge to the regionally important High Plains (Ogallala) aquifer. Analyses of ground water, playa-basin core extracts, and soil gas in an 860-km2 area of Texas suggest that reduction during recharge limits NO3 loading to ground water. Tritium and Cl concentrations in ground water corroborate prior findings of focused recharge through playas and ditches. Typical δ15N values in ground water (>12.5‰) and correlations between δ15N and ln CNO3–N suggest denitrification, but O2 concentrations ≥3.24 mg l−1 indicate that NO3 reduction in ground water is unlikely. The presence of denitrifying and NO3-respiring bacteria in cores, typical soil–gas δ15N values <0‰, and decreases in NO3–N/Cl and SO42−/Cl ratios with depth in cores suggest that reduction occurs in the upper vadose zone beneath playas. Reduction may occur beneath flooded playas or within anaerobic microsites beneath dry playas. However, NO3–N concentrations in ground water can still exceed drinking-water standards, as observed in the vicinity of one playa that received wastewater. Therefore, continued ground-water monitoring in the vicinity of other such basins is warranted.  相似文献   

3.
Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon mixture contains about 30% (volume) organic carbon (composted leaf mulch) and 70% (volume) sand and gravel. The Fe0-bearing organic carbon mixture contains 10% (volume) zero-valent iron, 20% (volume) organic carbon, 10% (volume) limestone, and 60% (volume) sand and gravel. Simulated groundwater containing 380 ppm sulfate, 5 ppm As, and 0.5 ppm Sb was passed through the columns at flow rates of 64 (the OC column) and 62 (the FeOC column) ml d− 1, which are equivalent to 0.79 (the OC column) and 0.78 (the FeOC column) pore volumes (PVs) per week or 0.046 m d− 1 for both columns. The OC column showed an initial sulfate reduction rate of 0.4 µmol g (OC)− 1 d− 1 and exhausted its capacity to promote sulfate reduction after 30 PVs, or 9 months of flow. The FeOC column sustained a relatively constant sulfate reduction rate of 0.9 µmol g (OC)− 1 d− 1 for at least 65 PVs (17 months). In the FeOC column, the δ34S values increase with the decreasing sulfate concentration. The δ34S fractionation follows a Rayleigh fractionation model with an enrichment factor of 21.6‰. The performance decline of the OC column was caused by the depletion of substrate or electron donor. The cathodic production of H2 by anaerobic corrosion of Fe probably sustained a higher level of SRB activity in the FeOC column. These results suggest that zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs. A sharp increase in the δ13C value of the dissolved inorganic carbon and a decrease in the concentration of HCO3 indicate that hydrogenotrophic methanogenesis is occurring in the first 15 cm of the FeOC column.  相似文献   

4.
A study on tropospheric aerosols involving Fe particles with an industrial origin is tackled here. Aerosols were collected at the largest exhausts of a major European steel metallurgy plant and around its near urban environment. A combination of bulk and individual particle analysis performed by SEM–EDX provides the chemical composition of Fe-bearing aerosols emitted within the factory process (hematite, magnetite and agglomerates of these oxides with sylvite (KCl), calcite (CaCO3) and graphite carbon). Fe isotopic compositions of those emissions fall within the range (0.08‰ < δ56Fe < +0.80‰) of enriched ores processed by the manufacturer (−0.16‰ < δ56Fe < +1.19‰). No significant evolution of Fe fractionation during steelworks processes is observed. At the industrial source, Fe is mainly present as oxide particles, to some extent in 3–4 μm aggregates. In the close urban area, 5 km away from the steel plant, individual particle analysis of collected aerosols presents, in addition to the industrial particle type, aluminosilicates and related natural particles (gypsum, quartz, calcite and reacted sea salt). The Fe isotopic composition (δ56Fe = 0.14 ± 0.11‰) measured in the close urban environment of the steel metallurgy plant appears coherent with an external mixing of industrial and continental Fe-containing tropospheric aerosols, as evidenced by individual particle chemical analysis. Our isotopic data provide a first estimation of an anthropogenic source term as part of the study of photochemically promoted dissolution processes and related Fe fractionations in tropospheric aerosols.  相似文献   

5.
An increasing percentage of agricultural land in Germany is used for oil seed plants. Hence, rape has become an important agricultural plant (in Saxony 1998: 12% of the farmland) in the recent years. During flowering of rape along with intensive radiation and high temperatures, a higher production and emission of biogenic VOC was observed. The emissions of terpenes were determined and more importantly, high concentrations of organic carbonyl compounds were observed during this field experiment. All measurements of interest have been carried out during two selected days with optimal weather conditions. It is found that the origin or the mechanism of formation of different group of compounds had strong influence on the day to day variation of their concentrations. The emission flux of terpenes from flowering rape plants was determined to be 16–32 μg h−1 m−2 (30–60 ng h−1 per g dry plant––540–1080 ng h−1 per plant), in total. Limonene, α-thujene and sabinene were the most important compounds (about 60% of total terpenes). For limonene and sabinene reference emission rates (MS) and temperature coefficients were determined: βlimonene=0.108 K−1 and MS=14.57 μg h−1 m−2; βsabinene=0.095 K−1 and MS=5.39 μg h−1 m−2.The detected carbonyl compound concentrations were unexpectedly high (maximum formaldehyde concentration was 18.1 ppbv and 3.4 ppbv for butyraldehyde) for an open field. Possible reasons for these concentrations are the combination of primary emission from the plants induced by high temperature and high ozone stress, the secondary formation from biogenically and advected anthropogenically emitted VOC at high radiation intensities and furthered by the low wind speeds at this time.  相似文献   

6.
Smog chamber/FTIR techniques were used to study the relative reactivity of OH radicals with methanol, ethanol, phenol, C2H4, C2H2, and p-xylene in 750 Torr of air diluent at 296±2 K. Experiments were performed with, and without, 500–8000 μg m−3 (4000–50 000 μm2 cm−3 surface area per volume) of NaCl, (NH4)2SO4 or NH4NO3 aerosol. In contrast to the recent findings of Oh and Andino (Atmospheric Environment 34 (2000) 2901, 36 (2002) 149; International Journal of Chemical Kinetics 33 (2001) 422) there was no discernable effect of aerosol on the rate of loss of the organic compounds via reaction with OH radicals. Gas kinetic theory arguments cast doubt upon the findings of Oh and Andino. The available data suggest that the answer to the title question is “No”. As part of this work the rate constants for reactions of OH radicals with methanol, ethanol, and phenol in 750 Torr of air at 296 K were determined to be: kOH+CH3OH=(8.12±0.54)×10−13, kOH+C2H5OH=(3.47±0.32)×10−12 and kOH+phenol=(3.27±0.31)×10−11 cm3 molecule−1 s−1.  相似文献   

7.
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis–Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d− 1 and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d− 1. Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of kmax = 0.1 µg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d− 1. The stable isotope-based biodegradation rate constant of 0.0027 d− 1 was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d− 1. With MM-kinetics a maximum degradation rate of kmax = 12 µg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor εfield of − 1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.  相似文献   

8.
Diffusion coefficients (T=23±2 °C) and accessible porosities for HTO, 36Cl and 125I were measured on Opalinus Clay (OPA) samples from the Mont Terri Underground Rock Laboratory (URL) using the through-diffusion technique. The direction of transport (diffusion) was perpendicular to bedding. Special cells that allowed the application of confining pressure were designed and constructed. The pressures ranged from 1 to 5 MPa, the latter value simulating the overburden at the Mont Terri URL (about 200 m). The test solution used in the experiments was a synthetic version of the Opalinus Clay pore water, which has Na+ and Cl as the main components (I=0.42 M).The measured values of the effective diffusion coefficients (De) and rock capacity factors (α) are: De=1.2–1.5×10−11 m2 s−1 and α=0.09–0.11 for HTO, De=4.0–5.5×10−12 m2 s−1 and α=0.05 for 36Cl and De=3.2–4.6×10−12 m2 s−1 and α=0.07–0.10 for 125I. For non-sorbing tracers (HTO, 36Cl) the rock capacity factor α is equal to the diffusion-accessible porosity . The experimental results showed that pressure only had a small effect on the value of the diffusion coefficients. Increasing the pressure from 1 to 5 MPa resulted in a decrease of the diffusion coefficient of 17% for HTO, 28% for 36Cl and 30% for 125I. Moreover, the diffusion coefficients for 36Cl and 125I are smaller than for HTO, which is consistent with an effect arising from anion exclusion.The diffusion coefficients of HTO and 125I measured in this study are in good agreement with recent measurements at three other laboratories performed within the framework of a laboratory comparison exercise. The values of the diffusion-accessible porosities show a larger degree of scatter.  相似文献   

9.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

10.
The effective diffusivity of uranium(VI) in Inada granite has been determined by through-diffusion. Experiments were performed at room temperature (20–25°C) in a 0.1 mol 1−1 KCl solution where uranium is present predominantly as the poorly sorbing UO22+. An effective diffusivity (De) of (3.6 ± 1.6) × 10−14 m2 s−1 was obtained, close to that for uranine (nonsorbing organic tracer), but one order of magnitude lower than those obtained for Sr2+ and NpO2+, and two orders of magnitude lower than that obtained for I. According to well established theory, a proportional relationship exists between De and the diffusivity in the bulk of the solution (Dv). The effective diffusivity obtained in granite was not proportional to Dv. This agrees with results obtained for effective diffusivity in a Swedish granite. The ratio De/Dv was found to be not constant but increased with De or Dv. This result suggests a limit to the application of the theory.  相似文献   

11.
The quantum yield of the phototransformation of 4-nitrophenol has been evaluated as 4.5×10−5±0.6×10−5 at pH=2; at 3.0×10−5±0.6×10−5 at pH=5.5; 1.8×10−5±0.5×10−5 at pH=8.3. However the half-life is relatively low and no accumulation of aromatic or quinonic products was observed. Hydroquinone (QH2) is the main organic primary product formed when an air-saturated or degassed solution was irradiated in 365 nm monochromatic light (about 80% of the 4-nitrophenol initially converted at pH=5.5 in the absence of oxygen). In air-saturated neutral or acidic solution, the formation of NO3 ions accounted for about 80% of the 4-nitrophenol converted, but in degassed medium a mixture NO : NO2 : NO3 is formed. An heterolytical mechanism of photohydrolysis with primary formation of QH2 and HNO2 is suggested. Several by-products as benzoquinone, 4-nitrosophenol, 4-nitrocatechol and nitrohydroquinone are formed according to the conditions. Many secondary reactions are involved as the disproportionation or the oxidation of HNO2, the oxidation of QH2 by HNO2 and oxidations induced by excitation of NO2 and NO3.  相似文献   

12.
Because investigations of PAN at higher southern latitudes are very scarce, we measured surface PAN concentrations for the first time in Antarctica. During the Photochemical Experiment at Neumayer (PEAN'99) campaign mean surface PAN mixing ratios of 13±7 pptv and maximum values of 48 pptv were found. When these PAN mixing ratios were compared to the sum of NOx and inorganic nitrate they were found to be equal or higher. Low ambient air temperatures and low PAN concentrations caused a slow homogeneous PAN decomposition rate of approximately 5×10−2 pptv h−1. These slow decay rates were not sufficient to firmly establish the simultaneously observed NOx concentrations. In addition, low concentration ratios of [HNO3]/[NOx] imply that the photochemical production of NOx within the snow pack can influence surface NOx mixing ratios in Antarctica. Alternate measurements of PAN mixing ratios at two different heights above the snow surface were performed to derive fluxes between the lower troposphere and the underlying snow pack using calculated friction velocities. Most of the concentration differences were below the precision of the measurements. Therefore, only an upper limit for the PAN flux of ±1×1013 molecules m−2 s−1 without a predominant direction can be estimated. However, PAN fluxes below this limit can still influence both the transfer of nitrogen compounds between atmosphere and ice, and the PAN budget in higher southern latitudes.  相似文献   

13.
Properties related to sorption and transport of organic compounds have been determined on 126 sections of 17 cores taken in an aquifer at Columbus Air Force Base in Columbus, MS. Each core section was homogenized prior to analysis. Organic carbon content (OC), specific surface area (SA), distribution coefficient (Kd) for naphthalene, and particle size distribution were measured on each section. Hydraulic conductivity (Kh) for each section was calculated from the particle size distributions. Kh values obtained were comparable with those from earlier borehole flowmeter and pulse tracer tests. Frequency distributions for all properties were lognormal. The arithmetic means and standard deviations for all samples are: OC=0.028% (+0.031, −0.015), SA=4.02 m2/g (+3.95, −1.99), Kd=0.198 l/kg (+0.195, −0.098), Kh=0.00033 m/s (+0.00051, −0.00020). These standard deviations are asymmetrical about the mean because statistics were calculated using log-transformed data, and antilogarithms then taken to obtain the results in the units of property measurement. Variabilities, expressed as coefficients of variation, were similar for all properties. Correlations between the properties were investigated. A good correlation between naphthalene Kd and OC (r=0.78) was found, and other correlations were weak, thus indicating that organic carbon content may control sorption of nonpolar organic solutes in this low carbon aquifer. Autocorrelation (variogram) analysis indicated that, for all properties, correlation lengths were less than the distance between sample points, which were separated by about 20 m horizontally and 1 m vertically. Separate statistical analysis of two widely separated groups of wells showed the groups similar in all properties, except organic carbon. Large-scale inhomogeneity was not detected, although earlier tracer tests produced irregular plumes indicating inhomogeneity in observed solute transport. Implications of the results to site characterization, in situations where aquifers are heterogeneous on short length scales, are discussed.  相似文献   

14.
The atmospheric reaction of the methylthiyl radical (CH3S) with O3 was investigated as a function of temperature (259–381 K), in the pressure range of 25–300 Torr, using the technique of laser photolysis/laser-induced fluorescence. The resulting Arrhenius expression, with an uncertainty of ±2σ, was k1(T=259–381 K)=(1.02±0.30)×10−12 exp[(432±77) K/T] cm3 molecule−1 s−1. The obtained rate constant k1 was independent of pressure over the limited range employed. Our results are compared with the previous studies carried out, at single temperature and as a function of temperature, by different techniques.  相似文献   

15.
Numerical sensitivity tests and four months of complete model runs have been conducted for the Routine Deposition Model (RDM). The influence of individual model inputs on dry deposition velocity as a function of land-use category (LUC) and pollutant (SO2, O3, SO2−4 and HNO3) were examined over a realistic range of values for solar radiation, stability and wind speed. Spatial and temporal variations in RDM deposition velocity (Vd) during June – September 1996 time period generated using meteorological input from a mesoscale model run at 35 km resolution over north-eastern North America were also examined. Comparison of RDM Vd values to a variety of measurements of dry deposition velocities of SO2, O3, SO2−4 and NHO3 that have been reported in the literature demonstrated that RDM produces realistic results. Over northeastern NA RDM monthly averaged dry deposition velocities for SO2 vary from 0.2 to 3.0 cm s−1 with the highest deposition velocities over water surfaces. For O3, the monthly averaged dry deposition velocities are from 0.05 to 1.0 cm s−1 with the lowest values over water surfaces and the highest over forested areas. For HNO3, the monthly averaged dry deposition velocities have the range of 0.5 to 6 cm s−1, with the highest values for forested areas. For SO2−4, they range from 0.05–1.5 cm s−1, with the lowest values over water and the highest over forest. The monthly averaged dry deposition velocities for SO2 and O3 are higher in the growing season compared to the fall, but this behaviour is not apparent for HNO3 and sulphate. In the daytime, the hourly averaged dry deposition velocities for SO2, O3, SO2−4 and HNO3 are higher than that in the nighttime over most of the vegetated area. The diurnal variation is most evident for surfaces with large values for leaf area index (LAI), such as forests. Based on the results presented in this paper, it is concluded that RDM Vd values can be combined with measured air concentrations over hourly, daily or weekly periods to determine dry deposition amounts and with wet deposition measurements to provide seasonal estimates of total deposition and estimates of the relative importance of dry deposition.  相似文献   

16.
A mathematical model describing the dissolution of nuclear glass directly disposed in clay combines a first-order dissolution rate law with the diffusion of dissolved silica in clay. According to this model, the main parameters describing the long-term dissolution of the glass are ηR, the product of the diffusion accessible porosity η and the retardation factor R, and the apparent diffusion coefficient Dapp of dissolved silica in clay.For determining the migration parameters needed for long-term predictions, four Through-Diffusion (T-D) experiments and one percolation test have been performed on undisturbed clay cores. In the Through-Diffusion experiments, the concentration decrease after injection of 32Si (radioactive labelled silica) was measured in the inlet compartment. At the end of the T-D experiments, the clay cores were cut in thin slices and the activity of labelled silica in each slice was determined. The measured activity profiles for these four clay cores are well reproducible.Since no labelled silica could be detected in the outlet compartments, the Through-Diffusion experiments are fitted by two In-Diffusion models: one model assuming linear and reversible sorption equilibrium and a second model taking into account sorption kinetics. Although the kinetic model provides better fits, due to the sufficiently long duration of the experiments, both models give approximately similar values for the fit parameters. The single percolation test leads to an apparent diffusion coefficient value about two to three times lower than those of the Through-Diffusion tests.Therefore, dissolved silica appears to be strongly retarded in Boom Clay. A retardation factor R between 100 and 300 was determined. The corresponding in situ distribution coefficient Kd is in the range 25–75 cm3 g−1. The apparent diffusion coefficient of dissolved silica in Boom Clay is estimated between 2×10−13 and 7×10−13 m2 s−1. The pore diffusion coefficient is in the range from 6×10−11 to 1×10−10 m2 s−1.  相似文献   

17.
n-Alkanes, polynuclear aromatic hydrocarbons and n-alkanoic acids present in the inhalable fraction of airborne particles have been determined at the Italian scientific base sited in the area of Ny Alesund, Spitzbergen Island, Norway. Both the profiles of n-alkane and polynuclear aromatic congeners among the respective classes showed that anthropogenic sources were responsible for the presence of particulate organics in the atmosphere there, since the monomodal distribution of aliphatics and the fresh-emission shape of PAH fraction were observed. The total contents of n-alkanes and PAH ranged from 19 to 97 ng m−3 and from 0.6 to 2.0 ng m−3, respectively; n-alkanoic acids reached 6 ng m−3. The occurrence of nitrated-PAH of photochemical origin at trace extent (i.e. nitrated-fluoranthenes and nitropyrenes) has been also observed. Since the occurrence of OH radicals is required together with NOx for the processes leading to the generation of 2-nitrofluoranthene and 2-nitropyrene would start, the detection of these nitrated species revealed the occurrence of photochemical processes in that region.  相似文献   

18.
Bacteria inactivation and natural organic matter oxidation in river water was simultaneously conducted via photo-Fenton reaction at “natural” pH (6.5) containing 0.6 mg L−1 of Fe3+ and 10 mg L−1 of H2O2. The experiments were carried out by using a solar compound parabolic collector on river water previously filtered by a slow sand filtration system and voluntarily spiked with Escherichia coli. Fifty five percent of 5.3 mg L−1 of dissolved organic carbon was mineralized whereas total disinfection was observed without re-growth after 24 h in the dark.  相似文献   

19.
Larch forests are distributed extensively in the east Eurasian continent and are expected to play a significant role in the terrestrial ecosystem carbon cycling process. In view of the fact that studies on carbon exchange for this important biome have been very limited, we have initiated a long-term flux observation in a larch forest ecosystem in Hokkaido in northern Japan since 2000. The net ecosystem CO2 exchange (NEE) showed large seasonal and diurnal variation. Generally, the larch forest ecosystem released CO2 in nighttime and assimilated CO2 in daytime during the growing season from May to October. The ecosystem started to become a net carbon sink in May, reaching a maximum carbon uptake as high as 186 g C m−2 month−1 in June. With the yellowing, senescing and leaf fall, the ecosystem turned into a carbon source in November. During the non-growing season, the larch forest ecosystem became a net source of CO2, releasing an average of 16.7 g C m−2 month−1. Overall, the ecosystem sequestered 141–240 g C m−2 yr−1 in 2001. The NEE was significantly influenced by environmental factors. Respiration of the ecosystem, for example, was exponentially dependent on air temperature, while photosynthesis was related to the incident PAR in a manner consistent with the Michaelis–Menten model. Although the vapor pressure deficit (VPD) was scarcely higher than 15 hPa, the CO2 uptake rate was also depressed when VPD surpassed 10 hPa.  相似文献   

20.
The association of the direct-acting mutagenicity of soluble organic fraction of airborne particles toward Salmonella typhimurium YG1024 strain with the direct emission was investigated at a roadside and at a residential area in Osaka, Japan. The direct-acting mutagenicity was evaluated as mutagenic activity per unit volume of ambient air (rev m−3) and/or that per airborne particulate weight collected on a filter (rev mg−1). The annual or diurnal changes of the mutagenicity of airborne particles at the residential site showed similar patterns to those of some gaseous pollutants such as NO2 and SO2, which were emitted from combustion processes. This result indicates that the mutagenicity is mainly attributable to the primary emissions. From the analysis of the relationship between the wind sector and the mutagenic intensity, rev m−3 and rev mg−1 values were strongly affected by the emissions from the fixed sources and from the mobile sources, respectively. The rev m−3 value and concentration of 1-nitropyrene (1-NP) in unit per m3 at the roadside were a factor of 2.6 and 2.8 higher than those at the residential site, respectively, but the rev mg−1 value and concentration of 1-NP in unit per mg at the roadside were substantially comparable to those at the residential area. These observations suggest that the characteristics of the airborne particles can be attributed to the automotive emissions even at the suburban area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号