首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用改进液相化学还原法制备纳米Pd/Fe双金属颗粒,研究其钯化率为0.045%和0.135%的条件下分别对3种单氯酚(2-CP、3-CP和4-CP)和3种二氯酚(2,3-DCP、2,4-DCP和2,6-DCP)的脱氯反应。结果表明,合成的纳米Pd/Fe颗粒分散性良好,粒径分布介于25~40nm。纳米Pd/Fe双金属颗粒对单氯酚及二氯酚具有良好的去除效果,3种单氯酚和3种二氯酚的脱氯难易程度分别为2-CP〉4-CP〉3-CP和2,6-DCP〉2,4-DCP〉2,3-DCP,脱氯反应均符合拟一级反应动力学方程。通过还原脱氯实验揭示了分子中氯原子的化学环境对还原脱氯过程具有明显影响。  相似文献   

2.
This study investigated the fate and behaviour of [UL-(14)C] 2,4-dichlorophenol (DCP) in planted (Lolium perenne L.) and unplanted soils over 57 days. Extractability of [UL-(14)C] 2,4-DCP associated activity was measured using calcium chloride (CaCl(2)), acetonitrile-water and dichloromethane (DCM) extractions. Biodegradability of [UL-(14)C] 2,4-DCP associated activity was assessed through measurement of (14)CO(2) production by a degrader inoculum (Burkholderia sp.). Although extractability and mineralisation of [UL-(14)C] 2,4-DCP associated activity decreased significantly in both planted and unplanted soils, plants appeared to enhance the sequestration process. After 57 days, in unplanted soil, 27% of the remaining [UL-(14)C] 2,4-DCP associated activity was mineralised by Burkholderia sp., and 13%, 48%, and 38% of (14)C-activity were extracted by CaCl(2), acetonitrile-water and DCM, respectively. However, after 57 days, in planted soils, only 10% of the [UL-(14)C] 2,4-DCP associated activity was available for mineralisation, whilst extractability was reduced to 2% by CaCl(2), 17% by acetonitrile-water and 11% by DCM. This may be due to the effect of plants on soil moisture conditions, which leads to modification of the soil structure and trapping of the compound. However, the influence of plants on soil biological and chemical properties may also play a role in the ageing process.  相似文献   

3.
The metabolic fate of 2,4-dichlorophenol (DCP) was investigated in six macrophytes representing different life forms. Salvinia natans and Lemna minor were chosen as surface-floating plants, Glyceria maxima and Mentha aquatica as emergent species and Myriophyllum spicatum and Hippuris vulgaris as submerged aquatic plants. After uptake of a [U-phenyl-14C]-DCP solution followed by a 48 h water chase, whole plants (L. minor, S. natans) or excised shoots were harvested and aqueous extracts were analysed by high performance liquid chromatography (HPLC). Metabolites were then isolated, submitted to enzymatic or chemical hydrolyses and characterised by electrospray ionisation-mass spectrometric analyses. Whereas DCP monoglucosides or more complex monoglucoside esters, either malonyl or acetyl, were found in most species, an unusual glucosyl-pentose conjugate was identified as the DCP major metabolite in L. minor and G. maxima. Our results showed for the first time the ability of five macrophytes to uptake and metabolise DCP and the characterisation of their metabolic pathways of DCP biotransformation.  相似文献   

4.
Kim do H  Mulholland JA  Ryu JY 《Chemosphere》2007,67(9):S135-S143
Polychlorinated naphthalenes (PCNs) formed along with dibenzo-p-dioxin and dibenzofuran products in the slow combustion of dichlorophenols (DCPs) at 600 degrees C were identified. Each DCP reactant produced a unique set of PCN products. Major PCN congeners observed in the experiments were consistent with products predicted from a mechanism involving an intermediate formed by ortho-ortho carbon coupling of phenoxy radicals; polychlorinated dibenzofurans (PCDFs) are formed from the same intermediate. Tautomerization of the intermediate and H2O elimination produces PCDFs; alternatively, CO elimination to form dihydrofulvalene and fusion produces naphthalenes. Only trace amounts of tetrachloronaphthalene congeners were formed, suggesting that the preferred PCN formation pathways from chlorinated phenols involve loss of chlorine. 3,4-DCP produced the largest yields of PCDF and PCN products with two or more chlorine substituents. 2,6-DCP did not produce tri- or tetra-chlorinated PCDF or PCN congeners. It did produce 1,8-DCN, however, which could not be explained.  相似文献   

5.
Wang SG  Liu XW  Zhang HY  Gong WX  Sun XF  Gao BY 《Chemosphere》2007,69(5):769-775
Development of aerobic granules for the biological degradation of 2,4-dichlorophenol (2,4-DCP) in a sequencing batch reactor was reported. A key strategy was involving the addition of glucose as a co-substrate and step increase in influent 2,4-DCP concentration. After operation of 39d, stable granules with a diameter range of 1-2mm and a clearly defined shape and appearance were obtained. After granulation, the effluent 2,4-DCP and chemical oxygen demand concentrations were 4.8mgl(-1) and 41mgl(-1), with high removal efficiencies of 94% and 95%, respectively. Specific 2,4-DCP biodegradation rates in the granules followed the Haldane model for substrate inhibition, and peaked at 39.6mg2,4-DCPg(-1)VSS(-1)h(-1) at a 2,4-DCP concentration of 105mgl(-1). Efficient degradation of 2,4-DCP by the aerobic granules suggests their potential application in the treatment of industrial wastewater containing chlorophenols and other inhibitory chemicals.  相似文献   

6.
Zheng M  Bao J  Liao P  Wang K  Yuan S  Tong M  Long H 《Chemosphere》2012,87(10):1097-1104
A novel electrolytic groundwater remediation process, which used the H2 continuously generated at cathode to achieve in situ catalytic hydrodechlorination, was developed for the treatment of 2,4-dichlorophenol (2,4-DCP) in groundwater. Catalytic hydrodechlorination using Pd supported on bamboo charcoal and external H2 showed that 2,4-DCP was completely dechlorinated to phenol within 30 min at pH ? 5.5. In a divided electrolytic system, the catalytic hydrodechlorination of 2,4-DCP in cathodic compartment by H2 generated at the cathode under 20 and 50 mA reached 100% at 120 and 60 min, respectively. Two column experiments with influent pHs of 5.5 (unconditioned) and 2 were conducted to evaluate the feasibility of this process. The 2,4-DCP removal efficiencies were about 63% and nearly 100% at influent pHs of 5.5 and 2, respectively. Phenol was solely produced by 2,4-DCP hydrodechlorination, and was subsequently degraded at the anode. A low pH could enhance the hydrodechlorination, but was not necessarily required. This study provides the preliminary results of a novel effective electrolytic process for the remediation of groundwater contaminated by chlorinated aromatics.  相似文献   

7.
Zhang J  Shen H  Wang X  Wu J  Xue Y 《Chemosphere》2004,55(2):167-174
There were few reports on the antioxidant response of aquatic organisms exposed to 2,4-dichlorophenol (2,4-DCP). This research explored the hepatic antioxidant responses of fish to long-term exposure of 2,4-DCP for the first time. Freshwater fish Carassius auratus were chosen as experimental animals. The fish were exposed to six different concentrations of 2,4-DCP (0.005-1.0 mg/l) for 40 days and then liver tissues were separated for determination. As shown from the results, 40 days afterwards, the activities of catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) and the content of oxidized glutathione (GSSG) were induced significantly on the whole compared to control group; superoxide dismutase (SOD) responded to 2,4-DCP exposure at only 0.005 mg/l; the content of reduced glutathione (GSH) was suppressed continuously except Group 7; the activity of glutathione reductase was inhibited initially and then restored to control level from Group 4 on; glutathione S-transferase had only slight responses in Groups 3 and 4. Total glutathione (tGSH) and GSH/GSSG ratio were also calculated to analyze the occurrence of oxidative stress. Besides, good dose-effect relations, which cover most of the exposure concentration range, were found between 2,4-DCP level and CAT activity, GSSG content, Se-GPx activity, respectively. In conclusion, SOD and Se-GPx may be potential early biomarkers of 2,4-DCP contamination in aquatic ecosystems, and further studies will be necessary.  相似文献   

8.
2-Chlorophenol (2-CP), 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) at initial concentrations of 10, 20, 50 and 100mg l(-1) were degraded in aqueous media by direct UV photolysis using dielectric barrier discharge XeBr( *) excilamp (283nm) in a flow-through photoreactor. The pseudo-first order rate constants were highest and half-life times were lowest for 4-CP. The rates of photolysis under the experimental conditions increased in the order: 2-CP<2,4-DCP<4-CP. The intermediates of photolysis were identified by GC-MS and HPLC. The evolution of hydroquinone and p-benzoquinone as major intermediates of 4-CP photolysis was monitored.  相似文献   

9.
Ninety strains of fungi from the collection of our mycology laboratory were tested in Galzy and Slonimski (GS) synthetic liquid medium for their ability to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its by-product, 2,4-dichlorophenol (2,4-DCP) at 100 mg l(-1), each. Evolution of the amounts of each chemical in the culture media was monitored by HPLC. After 5 days of cultivation, the best results were obtained with Aspergillus penicilloides and Mortierella isabellina for 2,4-D and with Chrysosporium pannorum and Mucor genevensis for 2,4-DCP. The data collected seemed to prove, on one hand, that the strains responses varied with the taxonomic groups and the chemicals tested, and, on the other hand, that 2,4-D was less accessible to fungal degradation than 2,4-DCP. In each case, kinetics studies with the two most efficient strains revealed that there was a lag phase of 1 day before the onset of 2,4-D degradation, whereas there was none during 2,4-DCP degradation. Moreover, 2,4-DCP was detected transiently during 2,4-D degradation. Finally, M. isabellina improved its degradation potential in Tartaric Acid (TA) medium relative to GS and Malt Extract (ME) media.  相似文献   

10.
A molecularly imprinted polymer (MIP) for selective removal of 2,4-dichlorophenol (2,4-DCP) in water was prepared as microspheres by the reverse microemulsion polymerization method based on the non-covalent interactions between 2,4-DCP, oleic acid, and divinylbenzene in acetonitrile. Microspheres have been characterized by Fourier transform infrared spectrometer (FTIR) and energy dispersive X-ray spectrometer (EDS) studies with evidence of 2,4-DCP linkage in polymer particles and scanning electron microscopy (SEM) to study their morphological properties. The proper adsorption and selective recognition ability of the MIP were studied by an equilibrium-adsorption method. The MIP showed outstanding affinity towards 2,4-DCP in aqueous solution and the optimum pH value for binding has been found around the neutral range. The molecular recognition of 2,4-DCP was analyzed in detail by using molecular modeling software. In addition, by investigating the variation in the adsorption ability of the MIP, it clearly showed excellent reproducibility.  相似文献   

11.
We evaluated the catalytic activity of a water-soluble iron-porphyrin in an oxidative coupling reaction to form covalent bonds between 2,4-dichlorophenol (2,4-DCP) and humic molecules. The biomimetic catalysis in the presence of H2O2 was tested in the dark and in daylight, and changes in reaction products were revealed by high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. In all conditions, iron-porphyrin was effective in promoting complete disappearance of 2,4-DCP, although catalyst activity was enhanced in daylight (with a maximum turnover number of 85.13). Further evidence of the occurred covalent coupling between 2,4-DCP and humic molecules was revealed by diffusion-ordered nuclear magnetic resonance (DOSY-NMR) spectroscopy that showed a reduced diffusivity of 2,4-DCP after the catalytic reaction. These findings indicate that iron-porphyrin is an efficient catalyst for the covalent binding of polyhalogenated phenols to humic molecules, thereby suggesting that the copolymerization reactions may become a useful technology to remediate soils and waters contaminated by halogenated phenols and their analogues.  相似文献   

12.
Quan X  Shi H  Wang J  Qian Y 《Chemosphere》2003,50(8):1069-1074
2,4-Dichlorophenol (2,4-DCP) degrading mixed culture was immobilized in polyvinyl alcohol jel beads and supplemented to sequencing batch reactors (SBR) to treat 2,4-DCP containing wastewater. Impacts of bioaugmentation level on the performance of bioaugmented systems were studied. Results show that inoculum size affected the start-up time of the SBR systems. For the non-augmented SBR system, nine days was needed for the system to start-up, whereas it only took six, four, three and two days for the SBRs with 1.9%, 3.7%, 5.6% and 9.3% immobilized culture, respectively. In addition, bioaugmented SBR systems demonstrated stronger capacity to cope with high 2,4-DCP shock loading than the control system. The control SBR failed to treat 2,4-DCP at 166 mg/l in influent, while the SBR with 1.9% inoculation could successfully cope with 2,4-DCP at 166 mg/l, but failed at 250 mg/l, and the SBR with 3.7%, 5.6% and 9.3% immobilized culture could successfully degrade 250 mg/l 2,4-DCP in feed. Furthermore, the contributions to the removal of 2,4-DCP by the introduced and indigenous culture in an augmented SBR system at various operation stages were investigated. It was found that augmented culture played the primary role in degrading 2,4-DCP at the beginning of system start-up, but after one-month operation, both the indigenous and the introduced culture posed strong ability to degrade 2,4-DCP.  相似文献   

13.
Okawa K  Nakano Y  Nishijima W  Okada M 《Chemosphere》2004,57(9):1231-1235
The objectives of this study are to clarify the behavior of humic substances throughout the processes of 2,4-dichlorophenol (2,4-DCP) adsorption on granular activated carbon (GAC) from water and extraction into acetic acid, and the influence of the extracted humic substances on the decomposition of 2,4-DCP by ozone in the acetic acid. The adsorption capacity of GAC for 2,4-DCP was not influenced by the humic substances preloaded to have equilibrium concentration of 24.9mg Cl(-1) (14.5mg Cg(-1)). The adsorption capacity of GAC for 2,4-DCP decreased to one tenth of new GAC after the first adsorption-extraction step because of only 16% desorption in the first step. However, 2,4-DCP adsorbed on GAC was completely extracted after the second step suggesting that GAC can be used as adsorbent to transfer 2,4-DCP from water to acetic acid. The concentration ratio of 2,4-DCP from water into acetic acid was around 2x10(5), whereas the concentration ratio of humic substances was about 3.5, indicating that 2,4-DCP was selectively adsorbed and extracted by this system. The first order degradation rate constant for 2,4-DCP by ozone in acetic acid increased with the addition of humic substances. The rate constant with 16mg Cl(-1) of humic substances was 2.6 times as high as that without humic substances. Humic substances behaved as a promoter for the degradation of 2,4-DCP by ozone.  相似文献   

14.
Cea M  Seaman JC  Jara AA  Fuentes B  Mora ML  Diez MC 《Chemosphere》2007,67(7):1354-1360
The adsorption of 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) by a variable-charge soil from southern Chile was studied in a series of batch equilibration experiments. 2,4-DCP and PCP adsorption behavior was evaluated as a function of pH (pH values of 4.5, 6.0 and 7.5) in a 0.1M KCl (25 degrees C) background solution for soil material collected at three different depths (0-20 cm, 20-40 cm, and 40-60 cm). 2,4-DCP and PCP adsorption decreased with increasing soil pH, suggesting that the undissociated species were adsorbed more readily and that electrostatic repulsion may inhibit partitioning as pH increases. The PCP adsorption was greater than observed for 2,4-DCP and decreased with soil depth. Multiple regression analysis between K(d) and various soil properties indicated that the soil organic carbon content is a strong indicator of chlorophenol adsorption, and in addition to organic carbon, the soil pH is an important property controlling adsorption behavior.  相似文献   

15.
Tsai TY  Okawa K  Nakano Y  Nishijima W  Okada M 《Chemosphere》2004,57(9):1151-1155
The effects of chemical characteristics of organic solvents on the decomposition rate constants of undissociative trichloroethylene (TCE) and dissociative 2,4-dichlorophenol (2,4-DCP) by ozonation were studied. The TCE and 2,4-DCP decomposition by ozonation in organic solvents followed to the first-order reaction kinetics with respect to TCE or 2,4-DCP concentration. The orders of the rate constants among organic solvents for undissociative TCE and dissociative 2,4-DCP were different indicating that the ozonation rates for undissociative and dissociative compounds were dependent on the chemical property of organic solvent. The decomposition of undissociative TCE by ozonation was a simple electrophilic reaction, which was dependent on acceptor number (AN) of the solvent. On the other hand, the decomposition of dissociative 2,4-DCP was dependent on by the dissociation of the compounds and would be dependent on donor number (DN) of the solvent. Finally, TCE in acetic acid was transformed to chlorinated intermediates and chloride ion and then these intermediates were continuously oxidized to chlorine gas.  相似文献   

16.

Introduction

Transgenic plant strategies based on peroxidase expression or overexpression would be useful for phenolic compound removal since these enzymes play an important role in phenolic polymerizing reactions.

Material and methods

Thus, double transgenic (DT) plants for basic peroxidases were obtained and characterized in order to compare the tolerance and efficiency for 2,4-dichlorophenol (2,4-DCP) removal with WT and simple transgenic plants expressing TPX1 or TPX2 gene. Several DT plants showed the expression of both transgenes and proteins, as well as increased peroxidase activity.

Results

DT lines showed higher tolerance to 2,4-DCP at early stage of development since their germination index was higher than that of WT seedlings exposed to 25?mg/L of the pollutant. High 2,4-DCP removal efficiencies were found for WT tobacco plants. TPX1 transgenic plants and DT (line d) reached slightly higher removal efficiencies for 10?mg/L of 2,4-DCP than WT plants, while DT plants (line A) showed the highest removal efficiencies (98%). These plants showed an increase of 21% and 14% in 2,4-DCP removal efficiency for solutions containing 10 and 25?mg/L 2,4-DCP, respectively, compared with WT plants. In addition, an almost complete toxicity reduction of postremoval solutions using WT and DT plants was obtained through AMPHITOX test, which indicates that the 2,4-DCP degradation products would be similar for both plants.

Conclusion

These results are relevant in the field of phytoremediation application and, moreover, they highlight the safety of using DT tobacco plants because nontoxic products were formed after an efficient 2,4-DCP removal.  相似文献   

17.
The effects of different environmental parameters, i.e., pH, temperature, time and enzyme concentration on the biodegradation of 2,4-dichlorophenol (2,4-DCP) in aqueous phase was evaluated with laccase from Pleurotus sp. using response surface methodology (RSM) in the present investigation. The Box-Behnken design of experiments was used to construct second order response surfaces with the investigated parameters. It was observed that the maximum degradation efficiency of approximately 98% was achieved at pH 6, temperature of 40 degrees C, time 9h and an enzyme concentration of 8IUml(-1). The adequacy of the model was confirmed by the coefficient of multiple regression, R(2) and adjusted R(2) which were adjudged to be 87.9% and 73.6%, respectively indicating a reasonably good model for practical implementation. Despite the fact that many successful attempts have been taken in the past for biodegradation of 2,4-DCP using whole cells, the present study emphasizes the fastest biodegradation of 2,4-DCP, a potent xenobiotic compound.  相似文献   

18.
Freshwater quality criteria for 2,4-dichlorophenol (2,4-DCP) were developed with particular reference to the aquatic biota in China, and based on USEPA's guidelines. Acute toxicity tests were performed on nine different domestic species indigenous to China to determine 48-h LC50 and 96-h LC50 values for 2,4-DCP. In addition, 21 day survival-reproduction tests with Daphnia magna, 30-day embryo-larval tests with Carassius auratus, 60 day fry-juvenile test with Ctenopharyngodon idellus, 30 d early life stage tests with Bufo bufo gargarizans and 96 h growth inhibition tests with Scenedesms obliqaus were conducted, to estimate lower chronic limit (LCL) and upper chronic limit (UCL) values. The final acute value (FAV) was 2.49 mg/l 2,4-DCP. Acute-to-chronic ratios (ACR) ranged from 3.74 to 22.5. The final chronic value (FCV) and the final plant value (FPV) of 2.4-DCP were 0.212 mg/l and 7.07 mg/l respectively. Based on FAV, FCV, and FPV, a criteria maximum concentration (CMC) of 1.25 mg/l and a criterion continuous concentration (CCC) of 0.212 mg/l were derived. The results of this study provide useful data for deriving national or local water quality criteria for 2,4-DCP based on aquatic biota in China.  相似文献   

19.
The objectives of this study were to evaluate the performance of powdered activated carbon treatment (PACT) process based on the adsorption capacity of powdered activated carbon (PAC) in activated sludge and the effect of dissolved organic substances in activated sludge on the adsorption capacity of PAC. The DCP adsorption capacity of three PACs originated from different raw materials (coal, soft coal and sawdust) in activated sludge were 29%, 34% and 17% of that of new PAC, respectively. The performance of PACT process for shock loading of 3,5-dichlorophenol (3,5-DCP) was different among PACs in spite of the same adsorption capacity in new PAC. The performance of PACT process for removal of DCP is dependent not on the adsorption capacity of new PAC but on the adsorption capacity of PAC in the aeration tank. Dissolved organic matter (DOM) with molecular weight smaller than 50kDa did not affect the adsorption capacity of PAC for 3,5-DCP in the activated sludge reactor. DOM with molecular weight larger than 50kDa and biofilm developed on the surface of PAC seemed to be responsible for the decreased adsorption capacity of PAC for the DCP.  相似文献   

20.
Multiple efforts have been directed towards optimized processes in which enzymes, like peroxidases, are used to remove phenolic compounds from polluted wastewater. Here we describe the use of peroxidase isoenzymes from tomato hairy roots, which were able to oxidise 2,4-dichlorophenol (2,4-DCP) and phenol from aqueous solutions. This could be an interesting alternative for the removal of these compounds from contaminated sites. We used different enzyme fractions: total peroxidases (TP), ionically bound to cell wall peroxidases (IBP), basic (BP) and acidic peroxidases (AP). We analyzed the optimum conditions of removal, the effect of Polyethyleneglycol (PEG-3350) on the process and on the enzyme activities, to obtain the maximum efficiency. The optimal H2O2 concentrations for 2,4-DCP and phenol removal were 1 and 0.1mM, respectively. TP, IBP and BP showed better removal efficiencies than AP, for both contaminants. The addition of different concentrations (10-100mg l(-1)) of PEG-3350 to solutions containing 2,4-DCP showed no effect on the removal efficiencies of the isoenzymes. However, PEG (100mg l(-1)) increased the removal efficiency of phenol by BP and IBP fractions. On the other hand, peroxidase activities from BP and IBP fractions were 3 and 13 times higher, respectively, than those detected for the same fractions in phenol treated solutions without PEG. The protective effect of PEG, which depends on the contaminant as well as of the enzyme fraction used, would be important to improve the removal efficiency of phenol by some peroxidase isoenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号