首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Water is scarce in Mediterranean countries: cities are crowded with increasing demand; food is produced with large amounts of water; ecosystems demand more water that is often available; drought affects all. As climate change impacts become more noticeable and costlier, some current water management strategies will not be useful. According to the findings of CIRCE, the areas with limited water resources will increase in the coming decades with major consequences for the way we produce food and we protect ecosystems. Based on these projections this paper discusses water policy priorities for climate change adaptation in the Mediterranean. We first summarise the main challenges to water resources in Mediterranean countries and outline the risks and opportunities for water under climate change based on previous studies. Recognising the difficulty to go from precipitation to water policy, we then present a framework to evaluate water availability in response to natural and management conditions, with an example of application in the Ebro basin that exemplifies other Mediterranean areas. Then we evaluate adaptive capacity to understand the ability of Mediterranean countries to face, respond and recover from climate change impacts on water resources. Social and economic factors are key drivers of inequality in the adaptive capacity across the region. Based on the assessment of impacts and adaptive capacity we suggest thresholds for water policy to respond to climate change and link water scarcity indicators to relevant potential adaptation strategies. Our results suggest the need to further prioritise socially and economically sensitive policies.  相似文献   

2.
气候变化问题日益凸显。应对和适应气候变化刻不容缓。然而,短期内无法有效减缓气候变化产生的不利影响。因此,有必要针对不同领域制定相应的适应措施来提高人们对气候变化的适应能力。北京作为人口众多的大城市及我国的缺水城市之一,气候变化无疑将加剧水资源的供需矛盾。本文针对北京市水资源现状及气候变化对北京市水资源领域已经形成的影响,从自然、工程、政策制度三个角度探讨了北京市水资源领域适应气候变化可采取的对策及保障措施。  相似文献   

3.
Climate change, water availability and future cereal production in China   总被引:3,自引:0,他引:3  
Climate scenarios from a regional climate model are used to drive crop and water simulation models underpinned by the IPCC A2 and B2 socio-economic development pathways to explore water availability for agriculture in China in the 2020s and 2040s. Various measures of water availability are examined at river basin and provincial scale in relation to agricultural and non-agricultural water demand and current and planned expansions to the area under irrigation. The objectives are to understand the influences of different drivers on future water availability to support China's food production. Hydrological simulations produce moderate to large increases in total water availability in response to increases in future precipitation. Total water demand increases nationally and in most basins, but with a decreasing share for agriculture due primarily to competition from industrial, domestic and municipal sectors. Crop simulations exhibit moderate to large increases in irrigation water demand which is found to be highly sensitive to the characteristics of daily precipitation in the climate scenarios. The impacts of climate change on water availability for agriculture are small compared to the role of socio-economic development.The study identifies significant spatial differences in impacts at the river basin and provincial level. In broad terms water availability for agriculture declines in southern China and remains stable in northern China. The combined impacts of climate change and socio-economic development produce decreases in future irrigation areas, especially the area of irrigated paddy rice. Overall, the results suggest that there will be insufficient water for agriculture in China in the coming decades, due primarily to increases in water demand for non-agricultural uses, which will have significant implications for adaptation strategies and policies for agricultural production and water management.  相似文献   

4.
In this paper, consideration has focused mainly on the extent and usefulness of the existing literature available so far on the understanding of the impact of climate change on water resources in Africa, focusing mainly on the Olifants River basin in South Africa. Here, the existing literature on the impact of climate change on the hydrological cycle (particularly the hydrological processes like temperature, precipitation and runoff) has been reviewed. The uncertainties, constraints and limitations in climate change research have been discussed at great length. A detailed discussion has been highlighted on the remaining knowledge gaps in climate change research, especially in Africa. In addition to the research gaps highlighted here, the emphasis on the need of climate change research by African scientists is included as part of lessons learnt. Overall, the importance of conducting further research in climate change, understanding the potential impact of climate change on our lives, and taking actions to effectively meet the adaptation needs of the people, emerge as an important theme in this review.  相似文献   

5.
Unmitigated anthropogenic climate change is set to exacerbate current stresses on water resources management and creates the need to develop strategies to face climate change impacts on water resources, especially in the long term. Insufficient information on possible impacts on water availability limits the organization and promotion of efforts to adapt and improve the resilience and efficiency of water systems. To document the potential impacts of climate change in the region of Mendoza, Argentina, we perform a hydrological modeling of the Mendoza River watershed using a SWAT model and project climate change scenarios to observe hydrological changes. The results show the impact of higher temperature on glaciers as river flow increases due to glacier melting; at the same time, runoff decreases as precipitation is reduced. Furthermore, the runoff timing is shifted and an earlier melting becomes more important in more pronounced climate change scenarios. Scenarios show a reduction in water availability that ranges between 1 and 10%. An additional scenario under stronger climate change conditions without glaciers data shows a reduction of the river flow by up to 11.8%. This scenario would correspond to a future situation in which glaciers have completely melted. These situations would imply a reduction in the water availability and the possibility of future unsatisfied water uses, in particular for irrigation, which received most of the available water in Mendoza, on which agricultural activities and regional economy depends.  相似文献   

6.
Climate change impacts on the hydrological cycle, e.g. leading to changes of precipitation patterns, have been observed over several decades. Higher water temperatures and changes in extremes hydrometeorological events (including floods and droughts) are likely to exacerbate different types of pressures on water resources with possible negative impacts on ecosystems and human health. In addition, sea-level rise is expected to extend areas of salinisation of groundwater and estuaries, resulting in a decrease of freshwater availability for humans and ecosystems in coastal areas. Furthermore, climate-related changes in water quantity and quality are expected to affect food availability, water access and utilisation, especially in arid and semi-arid areas, as well as the operation of water infrastructure (e.g. hydropower, flood defences, and irrigation systems). This paper serves as an introduction to the special issue of Environment Science & Policy dealing with climate change impacts on water-related disasters. It provides a brief background about relevant EU water policies and examples of EU-funded research trends which illustrate on-going efforts to improve understanding and modelling of climate changes related to the hydrological cycles at scales that are relevant to decision making (possibly linked to policy).  相似文献   

7.
Climate change mitigation, in the context of growing population and ever increasing economic activity, will require a transformation of energy and agricultural systems, posing significant challenges to global water resources. We use an integrated modelling framework of the water-energy-land-climate systems to assess how changes in electricity and land use, induced by climate change mitigation, impact on water demand under alternative socioeconomic (Shared Socioeconomic Pathways) and water policy assumptions (irrigation of bioenergy crops, cooling technologies for electricity generation). The impacts of climate change mitigation on cumulated global water demand across the century are highly uncertain, and depending on socioeconomic and water policy conditions, they range from a reduction of 15,000 km3 to an increase of more than 160,000 km3. The impact of irrigation of bioenergy crops is the most prominent factor, leading to significantly higher water requirements under climate change mitigation if bioenergy crops are irrigated. Differences in socioeconomic drivers and fossil fuel availability result in significant differences in electricity and bioenergy demands, in the associated electricity and primary energy mixes, and consequently in water demand. Economic affluence and abundance of fossil fuels aggravate pressures on water resources due to higher energy demand and greater deployment of water intensive technologies such as bioenergy and nuclear power. The evolution of future cooling systems is also identified as an important determinant of electricity water demand. Climate policy can result in a reduction of water demand if combined with policies on irrigation of bioenergy, and the deployment of non-water-intensive electricity sources and cooling types.  相似文献   

8.
The Cameroonian agricultural sector, a critical part of the local ecosystem, is potentially vulnerable to climate change raising concerns about food security in the country’s future. Adaptations policies may be able to mitigate some of this vulnerability. This article investigates and addresses the issue of selected adaptation options within the context of Cameroonian food production. A methodology is applied where transient diagnostics of two atmosphere–ocean general circulation models, the NASA/Goddard Institute GISS and the British HadCM3, are coupled to a cropping system simulation model (CropSyst) to simulate current and future (2020, 2080) crop yields for selected key crops (bambara nut, groundnut, maize, sorghum, and soybean) in eight agricultural regions of Cameroon. Our results show that for the future, substantial yield increases are estimated for bambara groundnut, soybean and groundnut, while little or no change or even decreases for maize and sorghum yields, varying according to the climate scenario and the agricultural region investigated. Taking the “no regrets” principle into consideration, we explore the advantages of specific adaptation strategies specifically for three crops viz. maize, sorghum and bambara groundnut, under GISS A2 and B2 marker scenarios only. Changing sowing dates may be ineffective in counteracting adverse climatic effects because of the narrow rainfall band that strictly determines the timing of farm operations in Cameroon. In contrast, the possibility of developing later maturing new cultivars proved to be extremely effective in offsetting adverse impacts, giving the highest increases in productivity under different scenario projections without management changes. For example, under climate change scenario GISS A2 2080, a 14.6% reduction in maize yield was converted to a 32.1% increase; a 39.9% decrease in sorghum yield was converted to a 17.6% increase, and for bambara groundnut (an under-researched and underutilised African legume), yields were almost trebled (37.1% increase above that for sowing date alone (12.9%)) due to increase length of growing period and the positive effects of higher CO2 concentrations. These results may better inform wider studies and development strategies on sustainable agriculture in the area by providing an indication as to the potential direction in shifts in production capabilities. Our approach highlights the benefit of using models as tools to investigate potential climate change impacts, where results can supplement existing knowledge. The results provide useful guidance and motivation to public authorities and development agencies interested in food security issues in Cameroon and elsewhere.  相似文献   

9.
Anthropogenic activities are responsible for the emission of gaseous and particulate pollutants that modify atmospheric composition. Such changes are, in turn, responsible for the degradation of air quality at the regional/local scale as well as for changes of climate. Air pollution and climate change are two intimately connected environmental issues. However, these two environmental challenges are still viewed as separate issues, which are dealt with by different science communities and within different policy frameworks. Indeed, many mitigation options offer the possibility to both improve air quality and mitigate climate change but, at the same time, mitigation options that may provide benefits to one aspect, are worsening the situation in the other. Therefore, coordinated actions taking into account the air quality-climate linkages are required. These actions need to be based on strong scientific grounds, as recognised by the European Commission that in the past few years has promoted consultation processes among the science community, the policy makers and the relevant stakeholders. Here, the main fields in which such coordinated actions are needed are examined from a policy perspective.  相似文献   

10.
This study investigated potential changes in flow, total suspended solid(TSS) and nutrient(nitrogen and phosphorous) loadings under future climate change, land use/cover(LULC)change and combined change scenarios in the Wolf Bay watershed, southern Alabama,USA. Four Global Circulation Models(GCMs) under three Special Report Emission Scenarios(SRES) of greenhouse gas were used to assess the future climate change(2016–2040). Three projected LULC maps(2030) were employed to reflect different extents of urbanization in future. The individual, combined and synergistic impacts of LULC and climate change on water quantity/quality were analyzed by the Soil and Water Assessment Tool(SWAT).Under the "climate change only" scenario, monthly distribution and projected variation of TSS are expected to follow a pattern similar to streamflow. Nutrients are influenced both by flow and management practices. The variation of Total Nitrogen(TN) and Total Phosphorous(TP) generally follow the flow trend as well. No evident difference in the N:P ratio was projected. Under the "LULC change only" scenario, TN was projected to decrease,mainly due to the shrinkage of croplands. TP will increase in fall and winter. The N:P ratio shows a strong decreasing potential. Under the "combined change" scenario, LULC and climate change effect were considered simultaneously. Results indicate that if future loadings are expected to increase/decrease under any individual scenario, then the combined change will intensify that trend. Conversely, if their effects are in opposite directions, an offsetting effect occurs. Science-based management practices are needed to reduce nutrient loadings to the Bay.  相似文献   

11.
Mountains are important global reservoirs of water resources. However they are highly vulnerable to climate change as limited alterations in temperature and precipitation may cause harmful effects to water systems. Southern Europe and especially Greece are expected to undergo a drought trend over the next decades, resulting in less recharge for the aquifers and water services reduction. Thus, climate change may distort both natural and socioeconomic characteristics of freshwater ecosystem services deteriorating the general social welfare related to them. This paper examines the economic impacts of climate change on river uses of the Aoos basin in Greece. In this regard, a choice experiment is conducted to estimate the value changes in different ecological and economic services in a mountain community. The econometric simulations using conditional logit, random parameters logit and latent class models reveal that despite existing preference heterogeneity, respondents on average derive positive and significant welfare effects from climate change adaptation measures. The findings of the survey may assist in adaptation planning for the Aoos River basin, with possible extensions to other river systems enduring similar climate change indications.  相似文献   

12.
Factors influencing support for climate mitigation policy in the United States are well researched, however, research regarding individuals’ support for climate adaptation policy is relatively sparse. This study explores how an individual’s perception of climate change impacts may influence their support for adaptation actions. Results of a survey of the U.S. public (n = 653) indicates that individuals who believe climate change impacts are unlikely to happen or will primarily affect other people in other places are less likely to be concerned about climate change impacts and less likely to support climate adaptation. However, an individual’s support for climate change adaptation measures is not influenced by their perception of when climate change impacts will occur even when taking into account concern for climate impacts. Critical for policy-makers, a belief that climate adaptation measures will not be effective attenuates the relationship between psychological distance, concern for climate change impacts, and adaptation policy measures. Our results indicate that to effectively communicate about climate change, policy-makers should emphasize that: (i) climate change impacts are occurring, (ii) that their constituents are being affected now, or will be in the future, and (iii) communicate that adaptation measures can be effective in addressing risks associated with climate change impacts.  相似文献   

13.
As human history is changing on many fronts, it is appropriate for us to understand the different perspectives of major global challenges, of which, water is a major priority. The water resources in urban areas are either approaching or exceeding the limits of sustainable use at alarming rates. Groundwater table depletion and increasing flood events can be easily realized in rapidly developing urban areas. It is necessary to improve existing water management systems for high-quality water and reduced hydro-meteorological disasters, while preserving our natural/pristine environment in a sustainable manner. This can be achieved through optimal collection, infiltration and storage of stormwater. Stormwater runoff is rainfall that flows over the ground surface; large volumes of water are swiftly transported to local water bodies and can cause flooding, coastal erosion, and can carry many different pollutants that are found on paved surfaces. Sustainable stormwater management is desired, and the optimal capture measure is explored in the paper. This study provides commentary to assist policy makers and researchers in the field of stormwater management planning to understand the significance and role of remote sensing and GIS in designing optimal capture measures under the threat of future extreme events and climate change. Community attitudes, which are influenced by a range of factors, including knowledge of urban water problem, are also considered. In this paper, we present an assessment of stormwater runoff management practices to achieve urban water security. For this purpose, we explored different characteristics of stormwater runoff management policies and strategies adopted by Japan, Vietnam and Thailand. This study analyses the abilities of Japanese, Vietnamese and Thai stormwater runoff management policies and measures to manage water scarcity and achieve water resiliency. This paper presents an overview of stormwater runoff management to guide future optimal stormwater runoff measures and management policies within the governance structure. Additionally, the effects of different onsite facilities, including those for water harvesting, reuse, ponds and infiltration, are explored to establish adaptation strategies that restore water cycle and reduce climate change-induced flood and water scarcity on a catchment scale.  相似文献   

14.
Managing risk by adapting long-lived infrastructure to the effects of climate change must become a regular part of planning for water supply, sewer, wastewater treatment, and other urban infrastructure during this century. The New York City Department of Environmental Protection (NYCDEP), the agency responsible for managing New York City’s (NYC) water supply, sewer, and wastewater treatment systems, has developed a climate risk management framework through its Climate Change Task Force, a government-university collaborative effort. Its purpose is to ensure that NYCDEP’s strategic and capital planning take into account the potential risks of climate change—sea-level rise, higher temperature, increases in extreme events, changes in drought and flood frequency and intensity, and changing precipitation patterns—on NYC’s water systems. This approach will enable NYCDEP and other agencies to incorporate adaptations to the risks of climate change into their management, investment, and policy decisions over the long term as a regular part of their planning activities. The framework includes a 9-step Adaptation Assessment procedure. Potential climate change adaptations are divided into management, infrastructure, and policy categories, and are assessed by their relevance in terms of climate change time-frame (immediate, medium, and long term), the capital cycle, costs, and other risks. The approach focuses on the water supply, sewer, and wastewater treatment systems of NYC, but has wide application for other urban areas, especially those in coastal locations.  相似文献   

15.
Hydropower is very important for electricity supply security in the European inter-connexion as well as for the economy of regions (primarily peripheral) that possess water resources. Its future may however be jeopardized by several factors: climate change, the development of new renewable energy, the creation of super and micro-grids, and progress in power storage technology. Energy and climate policy, as well as electricity market design and dynamics play a pivotal role.This article carries out a comprehensive analysis of all these factors and discusses the future of hydropower. This discussion follows an overview of the present situation and of future drivers. The technical, environmental, economic and political aspects of the problem are analyzed with an interdisciplinary approach. The stakes as well as the uncertainties are highlighted.The conclusion is that hydropower has a promising future, particularly in light of emerging sustainable energy policy, but that the risks should not be overlooked. Academics will find a comprehensive interdisciplinary analysis of hydropower in this article, whereas public bodies, communities and hydropower companies can identify the strategic variables that should be taken into consideration in the decision making process. The end of water concessions or authorizations is also evoked.  相似文献   

16.
Anthropogenic climate change is progressively transforming the environment despite political and technological attempts to reduce greenhouse gas emissions to tackle global warming. Here we propose that greater insight and understanding of the health-related impacts of climate change can be gained by integrating the positivist approaches used in public health and epidemiology, with holistic social science perspectives on health in which the concept of ‘wellbeing’ is more explicitly recognised. Such an approach enables us to acknowledge and explore a wide range of more subtle, yet important health-related outcomes of climate change. At the same time, incorporating notions of wellbeing enables recognition of both the health co-benefits and dis-benefits of climate change adaptation and mitigation strategies across different population groups and geographical contexts. The paper recommends that future adaptation and mitigation policies seek to ensure that benefits are available for all since current evidence suggests that they are spatially and socially differentiated, and their accessibility is dependent on a range of contextually specific socio-cultural factors.  相似文献   

17.
As the world’s largest industry, the insurance sector is both an aggregator of the impacts of climate change and a market actor able to play a material role in decreasing the vulnerability of human and natural systems. This article reviews the implications of climate change for insurers and provides specific examples of insurance-relevant synergisms between adaptation and mitigation in the buildings and energy sectors, agriculture, forestry, and land use. Although insurance is far from a “silver bullet” in addressing climate change, it offers significant capacity and ability to understand, manage, and spread risks associated with weather-related events, more so today in industrialized countries but increasingly so in developing countries and economies in transition. Certain measures that integrate climate change mitigation and adaptation also bolster insurers’ solvency and profitability, thereby increasing their appeal. Promising strategies involve innovative products and systems for delivering insurance and the use of new technologies and practices that both reduce vulnerability to disaster-related losses and support sustainable development. However, climate change promises to erode the insurability of many risks, and insurance responses can be more reactive than proactive, resulting in compromised insurance affordability and/or availability. Public–private partnerships involving insurers and entities such as the international relief community offer considerable potential, but have not been adequately explored.
Evan MillsEmail: URL: http://insurance.lbl.gov
  相似文献   

18.
As climate change adaptation is increasingly discussed and becoming a mainstream concept, different types of users are asking themselves if and when they should develop an adaptation strategy, often not knowing where to begin. Climate experts, on the other hand, have access to an enormous amount of data that could be useful to users but often do not know how to translate it into something practical. Both users and experts can be linked through two timescales, the system lifespan and climate vulnerability. While the system lifespan relies on the user’s estimation of his planning timeframe, the climate vulnerability is estimated from climate model projections and observations. We propose a simple tool to relate user and climate expert knowledge by combining the two timescales. To be reliable, the interconnection implies a dialogue to first identify what sensitive climate variable will impact the system and subsequently the extent of the impact. Climate data can then be used to identify, with the use of a simple graph, how sensitive a system is likely to be and help users position themselves about the urgency of adaptation. The concept has been successfully presented and applied to the tourism industry, notably the ski industry, which is showcased in this paper.  相似文献   

19.
Climate change is a multi-dimensional issue and in terms of adaptation numerous state and non-state actors are involved from global to national and local scales. The aim of this paper is first to analyse specific institutional networks involved in climate change predominantly at the national level in South Africa and second to determine how different stakeholders perceive their role vis-a-vis climate change adaptation. Within the South African context there is a gap in understanding and evaluating how institutional networks operate and thus the findings of this work may help inform and strengthen such relationships in the future. Results showed that few institutions fully understand the implications of adaptation and their roles and responsibilities have not yet been properly defined. Constraints relating to capacity, lack of awareness and poor information flow need to be addressed. Climate change is perceived as an important issue although problems such as poverty reduction and job creation remain national priorities. Most importantly this research has demonstrated how adaptation challenges the hierarchical manner in which government works and a more collaborative approach to climate change adaptation is needed. Adaptation needs to be mainstreamed and institutional networks need to be strengthened in order for adaptation mechanisms to be effectively implemented.
Ingrid Christine KochEmail:
  相似文献   

20.
Climate change effects are becoming evident worldwide, with serious regional and local impacts. The European Union (EU) has launched and developed initiatives and policies that scratch the surface of water resources impacts. This article presents an introduction of the existing environmental policy and more concisely in the areas of climate change and the interactions with water resources. It also addresses main management tools, and plans linked to policies, recent updates on the Science–Policy Interface, highlighting major results from research and development projects. Establishing appropriate policies to tackle climate change impacts on water is essential given the cross-sectorial and flowing nature and the importance of water in all environmental, social and economic sectors. There are still some pending reviews and updates in the current EU policy and its implementation, as well as at the national level in Spain. This article identifies existing gaps, and provides recommendations on how and where reforms could take place and be applied by decision makers in the water policy sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号