首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Practical guidelines addressing the timing of manure and nutrient application must consider the concerns of the farm operators while ensuring the protection of the environment. An approach was developed and analyzed through case studies to determine the first recommended day in the spring, and the last in the fall, for manure and nutrient application based on probability analysis. Since most manure and nutrient application guidelines recommend avoiding adverse conditions, the three criteria established to perform a risk assessment were: (i) a frost depth greater than 0.05 m; (ii) a snow accumulation of greater than 0.05 m; and (iii) a soil volumetric water content greater than or equal to that of the plastic limit for the soil. Climatic data and typical soil information for seven locations in Ontario were used to model volumetric soil water contents, frost depths, and snow accumulation from the simultaneous heat and water (SHAW) model for a 48-yr period (1954-2001). Applying the three criteria to the modeled output, the average range between the least limiting probability (0.1, or one in ten year occurrence) and the greatest limiting probability (0.001, or one in one thousand year occurrence) analyzed among the locations was 16 d in the spring as compared to 29 d in the fall. Although geographical location affected the predicted spring start and fall end recommended manure and nutrient application dates, local climate and soil hydraulic properties also played an important part in the determination of these days. Overall the prediction method developed performed reasonably well and provided insight into the environmental factors influencing manure and nutrient application timing.  相似文献   

2.
A field study was initiated in 1992 to investigate the long-term impacts of beef feedlot manure application (composted and uncomposted) on nutrient accumulation and movement in soil, corn silage yield, and nutrient uptake. Two application strategies were compared: providing the annual crop nitrogen (N) requirement (N-based rate) or crop phosphorus (P) removal (P-based rate), as well as a comparison to inorganic fertilizer. Additionally, effects of a winter cover crop were evaluated. Irrigated corn (Zea mays L.) was produced annually from 1993 through 2002. Average silage yield and crop nutrient removal were highest with N-based manure treatments, intermediate with P-based manure treatments, and least with inorganic N fertilizer. Use of a winter cover crop resulted in silage yield reductions in four of ten years, most likely due to soil moisture depletion in the spring by the cover crop. However, the cover crop did significantly reduce NO3-N accumulation in the shallow vadose zone, particularly in latter years of the study. The composted manure N-based treatment resulted in significantly greater soil profile NO3-N concentration and higher soil P concentration near the soil surface. The accounting procedure used to calculate N-based treatment application rates resulted in acceptable soil profile NO3-N concentrations over the short term. While repeated annual manure application to supply the total crop N requirement may be acceptable for this soil for several years, sustained application over many years carries the risk of unacceptable soil P concentrations.  相似文献   

3.
This study quantified the effects of tillage (moldboard plowing [MP], ridge tillage [RT]) and nutrient source (manure and commercial fertilizer [urea and triple superphosphate]) on sediment, NH4+ -N, NO3- -N, total P, particulate P, and soluble P losses in surface runoff and subsurface tile drainage from a clay loam soil. Treatment effects were evaluated using simulated rainfall immediately after corn (Zea mays L.) planting, the most vulnerable period for soil erosion and water quality degradation. Sediment, total P, soluble P, and NH4+ -N losses mainly occurred in surface runoff. The NO3- -N losses primarily occurred in subsurface tile drainage. In combined (surface and subsurface) flow, the MP treatment resulted in nearly two times greater sediment loss than RT (P < 0.01). Ridge tillage with urea lost at least 11 times more NH4+ -N than any other treatment (P < 0.01). Ridge tillage with manure also had the most total and soluble P losses of all treatments (P < 0.01). If all water quality parameters were equally important, then moldboard plow with manure would result in least water quality degradation of the combined flow followed by moldboard plow with urea or ridge tillage with urea (equivalent losses) and ridge tillage with manure. Tillage systems that do not incorporate surface residue and amendments appear to be more vulnerable to soluble nutrient losses mainly in surface runoff but also in subsurface drainage (due to macropore flow). Tillage systems that thoroughly mix residue and amendments in surface soil appear to be more prone to sediment and sediment-associated nutrient (particulate P) losses via surface runoff.  相似文献   

4.
Some of the most fertile agricultural land in Atlantic Canada includes dykelands, which were developed from rich salt marshes along the Bay of Fundy through the construction of dykes. A 2-yr field experiment was conducted on dykeland soil to evaluate the effect of fertility treatments: source-separated municipal solid waste (SS-MSW) compost, solid manure, commercial fertilizer, and gypsum on (1) timothy/red clover forage productivity, (2) N, S, and other nutrients uptake, and (3) residual NO(3)-N and NH(4)-N in the soil profile. All fertility treatments increased dry matter yields from the two cuts each year relative to the control. Residual soil NO(3)-N and NH(4)-N concentrations in the fall of the second year decreased with depth, and beyond 20-cm depth were lower than 1 mg kg(-1). Gypsum application equivalent to 40 kg S ha(-1) increased dry matter yields and N uptake by forage, and increased soil Mehlich 3-extractable S, tissue S, and uptake of S, Ca, P, Cu, Fe, and Mn relative to the control. High rates of compost can provide sufficient N, S, and perhaps other nutrients to a perennial forage system under the cool wet climate of Atlantic Canada with no heavy metal enrichment of forage. However, the chemical N provided greater total N uptake than organic sources, except the high rate of compost, suggesting that the N availability from organic sources was not well synchronized with forage N demand. Municipal solid waste compost may also increase soil and forage tissue Na, which might be of concern.  相似文献   

5.
Management of animal manures to provide nutrients for crop growth has generally been based on crop N needs. However, because manures have a lower N/P ratio than most harvested crops, N-based manure management often oversupplies the crop-soil system with P, which can be lost into the environment and contribute to eutrophication of water bodies. We examined the effects of N- vs. P-based manure applications on N and P uptake by alfalfa (Medicago sativa L.), corn (Zea mays L.) for silage, and orchardgrass (Dactylis glomerata L.), leaching below the root zone, and accumulation of P in soil. Treatments included N- and P-based manure rates, with no nutrient input controls and inorganically fertilized plots for comparison. Nitrate concentrations in leachate from inorganic fertilizer or manure treatments averaged 14 mg NO(3)-N L(-1), and did not differ by nutrient treatment. Average annual total P losses in leachate did not exceed 1 kg ha(-1). In the top 5 cm of soil in plots receiving the N-based manure treatment, soil test P increased by 47%, from 85 to 125 mg kg(-1). Nitrogen- and P-based manure applications did not differ in ability to supply nutrients for crop growth, or in losses of nitrate and total P in leachate. However, the N-based manure led to significantly greater accumulation of soil test P in the surface 5 cm of soil. Surface soil P accumulation has implications for increased risk of off-field P movement.  相似文献   

6.
Prediction of phosphorus (P) availability from soil-applied composts and manure is important for agronomic and environmental reasons. This study utilized chemical properties of eight composted and two non-composted beef cattle (Bos taurus) manures to predict cumulative phosphorus uptake (CPU) during a 363-d controlled environment chamber bioassay. Ten growth cycles of canola (Brassica napus L.) were raised in pots containing 2 kg of a Dark Brown Chernozemic clay loam soil (fine-loamy, mixed, Typic Haploboroll) mixed with 0.04 kg of the amendments. Inorganic P fertilizer (KH2PO4) and an unamended control were included for comparison. All treatments received a nutrient solution containing an adequate supply of all essential nutrients, except P, which was supplied by the amendments. Cumulative P uptake was similar for composted (74 mg kg-1 soil) and non-composted manures (60 mg kg-1 soil) and for the latter and the fertilizer (40 mg kg-1 soil). However, the CPU was significantly higher for organic amendments than the control (24 mg kg-1 soil) and for composted manure than the fertilizer. Apparent phosphorus recovery (APR) from composted manure (24%) was significantly lower than that from non-composted manure (33%), but there was no significant difference in APR between the organic amendments and the fertilizer (27%). Partial least squares (PLS) regression indicated that only two parameters [total water-extractable phosphorus (TPH2O) and total phosphorus (TP) concentration of amendments] were adequate to model amendment-derived cumulative phosphorus uptake (ACPU), explaining 81% of the variation in ACPU. These results suggest that P availability from soil-applied composted and non-composted manures can be adequately predicted from a few simple amendment chemical measurements. Accurate prediction of P availability and plant P recovery may help tailor manure and compost applications to plant needs and minimize the buildup of bioavailable P, which can contribute to eutrophication of sensitive aquatic systems.  相似文献   

7.
Concerns over increased phosphorus (P) application with nitrogen (N)-based compost application have shifted the trend to P-based composed application, but focusing on one or two nutritional elements does not serve the goals of sustainable agriculture. The need to understand the nutrient release and uptake from different composts has been further aggravated by the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, we evaluated the leachability and phytoavailability of P, N, and K from a sandy loam soil amended with animal, poultry, and sludge composts when applied on a total P-equivalent basis (200 kg ha(-1)) under Cl(-) (NaCl)- and SO4(2-) (Na2SO4)-dominated irrigation water. Our results showed that the concentration of dissolved reactive P (DRP) was higher in leachates under SO(4)(2-) than Cl(-) treatments. Compost amendments differed for DRP leaching in the following pattern: sludge > animal > poultry > control. Maize (Zea mays L.) growth and P uptake were severely suppressed under Cl(-) irrigation compared with SO4(2-) and non-saline treatments. All composts were applied on a total P-equivalent basis, but maximum plant (shoot + root) P uptake was observed under sludge compost amendment (73.4 mg DW(-1)), followed by poultry (39.3 mg DW(-1)), animal (15.0 mg DW(-1)), and control (1.2 mg DW(-1)) treatment. Results of this study reveal that irrigation water dominated by SO4(2-) has greater ability to replace/leach P, other anions (NO3(-)), and cations (K+). Variability in P release from different bio-composts applied on a total P-equivalent basis suggested that P availability is highly dependent on compost source.  相似文献   

8.
Understanding how carbon, nitrogen, and key soil attributes affect gas emissions from soil is crucial for alleviating their undesirable residual effects that can linger for years after termination of manure and compost applications. This study was conducted to evaluate the emission of soil CO2, N2O, and CH4 and soil C and N indicators four years after manure and compost application had stopped. Experimental plots were treated with annual synthetic N fertilizer (FRT), annual and biennial manure (MN1 and MN2, respectively), and compost (CP1 and CP2, respectively) from 1992 to 1995 based on removal of 151 kg N ha(-1) yr(-1) by continuous corn (Zea mays L.). The control (CTL) plots received no input. After 1995, only the FRT plots received N fertilizer in the spring of 1999. In 1999, the emissions of CO2 were similar between control and other treatments. The average annual carbon input in the CTL and FRT plots were similar to soil CO2-C emission (4.4 and 5.1 Mg C ha(-1) yr(-1), respectively). Manure and compost resulted in positive C and N balances in the soil four years after application. Fluxes of CH4-C and N2O-N were nearly zero, which indicated that the residual effects of manure and compost four years after application had no negative influence on soil C and N storage and global warming. Residual effects of compost and manure resulted in 20 to 40% higher soil microbial biomass C, 42 to 74% higher potentially mineralizable N, and 0.5 unit higher pH compared with the FRT treatment. Residual effects of manure and compost on CO2, N20, and CH4 emissions were minimal and their benefits on soil C and N indicators were more favorable than that of N fertilizer.  相似文献   

9.
Composting may be a viable on-farm option for disposal of cattle carcasses. This study investigated greenhouse gas emissions during co-composting of calf mortalities with manure. Windrows were constructed that contained manure + straw (control compost [CK]) or manure + straw + calf mortalities (CM) using two technologies: a tractor-mounted front-end loader or a shredder bucket. Composting lasted 289 d. The windrows were turned twice (on Days 72 and 190), using the same technology used in their creation. Turning technology had no effect on greenhouse gas emissions or the properties of the final compost. The CO2 (75.2 g d(-1) m(-2)), CH4 (2.503 g d(-1) m(-2)), and N2O (0.370 g d(-1) m(-2)) emissions were higher (p < 0.05) in CM than in CK (25.7, 0.094, and 0.076 g d(-1) m(-2) for CO2, CH4, and N2O, respectively), which reflected differences in materials used to construct the compost windrows and therefore their total C and total N contents. The final CM compost had higher (p < 0.05) total N, total C, and mineral N content (NO3*+ NO2* + NH4+) than did CK compost and therefore has greater agronomic value as a fertilizer.  相似文献   

10.
Few studies have examined the water quality impact of manure use in no-tillage systems. A lysimeter study in continuous corn (Zea mays L.) was performed on Maury silt loam (fine, mixed, semiactive, mesic Typic Paleudalf) to evaluate the effect(s) of tillage (no-till [NT] and chisel-disk [CD]), nitrogen fertilizer rate (0 and 168 kg N ha(-1)), and dairy manure application timing (none, spring, fall, or fall plus spring) on NO3-N, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), and alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)acetanilide] concentrations in leachate collected at a 90-cm depth. Herbicides were highest immediately after application, declining to less than 4 mug L(-1) in about two months. Manure and manure timing by tillage interactions had little effect on leachate herbicides; rather, the data suggest that macropores rapidly transmitted atrazine and alachlor through the soil. Tillage usually did not significantly affect leachate NO3-N, but no-tillage tended to cause higher NO(3)-N. Manuring caused higher NO3-N concentrations; spring manuring had more impact than fall, but fall manure contained about 78% of the N found in spring manure. Nitrate under spring "only fertilizer" treatment exceeded 10 mg L(-1) 38% of the time, compared with 15% for spring only manure treatment. After three years, manured soil leachate NO3-N exceeded that for soil receiving only N fertilizer. Soil profile (90 cm) NO3-N after corn harvest exceeding 22 kg N ha(-1) was associated with winter leachate NO3-N greater than 10 mg N L(-1). Manure can be used effectively in conservation tillage systems on this and similar soils. Accounting for all N inputs, including previous manure applications, will be important.  相似文献   

11.
The fate of manure nutrients in beef cattle (Bos taurus) feedlots is influenced by handling treatment, yet few data are available in western Canada comparing traditional practices (fresh handling, stockpiling) with newer ones (composting). This study examined the influence of handling treatment (fresh, stockpiled, or composted) on nutrient levels and mass balance estimates of feedlot manure at Lethbridge, Alberta, and Brandon, Manitoba. Total carbon (TC) concentration of compost (161 kg Mg(-1)) was lower (P < 0.001) than stockpiled (248 kg Mg(-1)), which was in turn lower (P < 0.001) than fresh manure (314 kg Mg(-1)). Total nitrogen (TN) concentration was not affected by handling treatment while total phosphorus (TP) concentration increased with composting at Lethbridge. The percent inorganic nitrogen (PIN) was lower (P < 0.01) for compost (5.1%) than both fresh (24.7%) and stockpiled (28.9%) manure. Composting led to higher (P < 0.05) dry matter (DM) losses (39.8%) compared to stockpiling (22.5%) and higher (P < 0.05) total mass (water + DM) losses (65.6 vs. 35.2%). Carbon (C) losses were higher (P < 0.01) with composting (66.9% of initial) than with stockpiling (37.5%), as were nitrogen (N) losses (46.3 vs. 22.5%, P < 0.05). Composting allowed transport of two times as much P as fresh manure and 1.4 times as much P as stockpiled manure (P < 0.001) on an "as is" basis. Our study looked at one aspect of manure management (i.e., handling treatment effects on nutrient concentrations and mass balance estimates) and, as such, should be viewed as one component in the larger context of a life cycle assessment.  相似文献   

12.
Groundwater pollution and associated effects on drinking water have increased with the expansion of irrigated agriculture in north-central U.S. sand plains. Controlling this pollution requires an ability to measure and predict pollutant loading by specific agricultural systems. We measured NO3 and Cl loading to groundwater beneath a Wisconsin central sand plain irrigated vegetable field using both a budget method and a new monitoring-based method. By relying on frequent monitoring of shallow groundwater, the new method overcomes some limitations of other methods. Monitoring-based and budget methods agreed well, and indicated that loading to groundwater was 165 kg ha(-1) NO3-N and 111 kg ha(-1) Cl for sweet corn (Zea mays L.) in 1992, and 228 kg ha(-1) NO3-N and 366 kg ha(-1) Cl for potato (Solanum tuberosum L.) in 1993. Nitrate N loading was 56 to 60% of available N, or 66 to 70% of fertilizer N. Sweet corn NO3 loading was about typical for this region, but potato NO3 loading was probably 50% greater than typical because heavy rains provoked extra fertilizer application. Our results imply that typical NO3-N loading would be 119 kg ha(-1) for sweet corn and 203 kg ha(-1) for potato, even with strict adherence to University Extension fertilizer recommendations. To keep average groundwater NO3-N within the 10 mg L(-1) U.S. drinking water standard, each irrigated vegetable field would need to be offset by five to eight times as much land supplying NO3-free groundwater recharge.  相似文献   

13.
The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content.  相似文献   

14.
Streamside vegetated buffer strips (riparian zones) are often assumed to be zones of ground water nitrate (NO3(-)) attenuation. At a site in southwestern Ontario (Zorra site), detailed monitoring revealed that elevated NO3(-) -N (4-93 mg L(-1)) persisted throughout a 100-m-wide riparian floodplain. Typical of riparian zones, the site has a soil zone of recent river alluvium that is organic carbon (OC) rich (36 +/- 16 g kg(-1)). This material is underlain by an older glacial outwash aquifer with a much lower OC content (2.3 +/- 2.5 g kg(-1). Examination of NO3(-), Cl(-), SO4(2-), and dissolved organic carbon (DOC) concentrations; N/Cl ratios; and NO3(-) isotopic composition (delta15N and delta18O) provides evidence of four distinct NO3(-) source zones within the riparian environment. Denitrification occurs but is incomplete and is restricted to a narrow interval located within ~0.5 m of the alluvium-aquifer contact and to one zone (poultry manure compost zone) where elevated DOC persists from the source. In older ground water close to the river discharge point, denitrification remains insufficient to substantially deplete NO3(-). Overall, denitrification related specifically to the riparian environment is limited at this site. The persistence of NO3(-) in the aquifer at this site is a consequence of its Pleistocene age and resulting low OC content, in contrast to recent fluvial sediments in modern agricultural terrain, which, even if permeable, usually have zones enriched in labile OC. Thus, sediment age and origin are additional factors that should be considered when assessing the potential for riparian zone denitrification.  相似文献   

15.
Low-disturbance manure application methods can provide the benefits of manure incorporation, including reducing ammonia (NH3) emissions, in production systems where tillage is not possible. However, incorporation can exacerbate nitrate (NO3?) leaching. We sought to assess the trade-offs in NH3 and NO3? losses caused by alternative manure application methods. Dairy slurry (2006-2007) and liquid swine manure (2008-2009) were applied to no-till corn by (i) shallow (<10 cm) disk injection, (ii) surface banding with soil aeration, (iii) broadcasting, and (iv) broadcasting with tillage incorporation. Ammonia emissions were monitored for 72 h after application using ventilated chambers and passive diffusion samplers, and NO3? leaching to 80 cm was monitored with buried column lysimeters. The greatest NH3 emissions occurred with broadcasting (35-63 kg NH3-N ha?), and the lowest emissions were from unamended soil (<1 kg NH-N ha?1). Injection decreased NH-N emissions by 91 to 99% compared with broadcasting and resulted in lower emissions than tillage incorporation 1 h after broadcasting. Ammonia-nitrogen emissions from banding manure with aeration were inconsistent between years, averaging 0 to 71% that of broadcasting. Annual NO3? leaching losses were small (<25 kg NO3-N ha?1) and similar between treatments, except for the first winter when NO3? leaching was fivefold greater with injection. Because NO3? leaching with injection was substantially lower over subsequent seasons, we hypothesize that the elevated losses during the first winter were through preferential flow paths inadvertently created during lysimeter installation. Overall, shallow disk injection yielded the lowest NH3 emissions without consistently increasing NO3? leaching, whereas manure banding with soil aeration conserved inconsistent amounts of N.  相似文献   

16.
Reclamation of trace element polluted soils often requires the improvement of the soil quality by using appropriate organic amendments. Low quality compost from municipal solid waste has been tested for reclamation of soils, but these materials can provide high amounts of heavy metals. Therefore, a high-quality compost, with low levels of heavy metals, produced from the main by-product of the Spanish olive oil extraction industry ("alperujo") was evaluated for remediation of soils affected by a pyritic mine sludge. Two contaminated soils were selected from the same area: they were characterised by differing pH values (4.6 and 7.3) and total metal concentrations, which greatly affected the fractionation of the metals. Compost was applied to soil at two rates (equivalent to 48 and 72 Tm ha(-1)) and compared with an inorganic fertiliser treatment. Compost acted as an available nutrient source (C, N and P) and showed a low mineralisation rate, suggesting a slow release of nutrients and thus favouring long term soil fertility. In addition, the liming effect of the compost led to a significant reduction of toxicity for soil microorganisms in the acidic soil and immobilisation of soil heavy metals (especially Mn and Zn), resulting in a clear increase in both soil microbial biomass and nitrification. Such positive effects were clearly greater than those provoked by the mineral fertiliser even at the lowest compost application rate, which indicates that this type of compost can be very useful for bioremediation programmes (reclamation and revegetation of polluted soils) based on phytostabilisation strategies.  相似文献   

17.
The application of organic wastes to improve soil physical characteristics in mechanized vineyards planted after land levelling is becoming a common practice in Mediterranean areas. It may be useful as an additional source of organic matter and nutrients, but these wastes could also have negative effects due to their metal content. The aim of the study was to evaluate the influence of compost application on soil metal contents in mechanized vineyard soils of the Spanish Mediterranean area, where this practice is repeated every three years. The study was carried out in a ten-year-old vineyard where the main soil type is Typic Calcixerept. Composted cattle manure was applied in alternate rows, at a rate of 40 Mgha(-1) dry-weight. Nine sampling points were located along the slopes of two plots: a levelled plot prepared for mechanization with large soil disturbance movements within the plot, and a plot of undisturbed soil. At each location, soil samples were taken in both treated and untreated soils. Total concentrations (digestion with aqua regia) and the extractable DTPA (Diethylene-triaminepentacetic)-CaCl2-TEA (Triethanolamine) fractions of Cu, Zn and Mn were analyzed in each sample. For Cu and Zn, the initial concentration was higher in the undisturbed plot. In both cases, total Cu and total Zn were positively affected by manure input and the concentration in treated soils was significantly higher than in untreated soil. For Mn, the initial concentration was higher in disturbed soils than in undisturbed ones, and although in both scenarios the concentrations increased with manure, no significant differences were found between treated and untreated soils. The extractable fraction also increased in treated versus untreated soils, although for Cu and Mn the extractable/total metal ratio was similar in treated and untreated soils. After one compost application, total metal contents increased significantly, particularly for Zn. Most of those metals are accumulated in the soil, due to the soil characteristics.  相似文献   

18.
In this study, the Tsunami-caused deterioration of soil and groundwater quality in the agricultural fields of coastal Nagapattinam district of Tamilnadu state in India is presented by analyzing their salinity and sodicity parameters. To accomplish this, three sets of soil samples up to a depth of 30cm from the land surface were collected for the first six months of the year 2005 from 28 locations and the ground water samples were monitored from seven existing dug wells and hand pumps covering the study region at intervals of 3 months. The EC and pH values of both the soil and ground water samples were estimated and the spatial and temporal variability mappings of these parameters were performed using the geostatistical analysis module of ArcGIS((R)). It was observed that the spherical semivariogram fitted well with the data set of both EC and pH and the generated kriged maps explained the spatial and temporal variability under different ranges of EC and pH values. Further, the recorded EC and pH data of soil and ground water during pre-Tsunami periods were compared with the collected data and generated variability soil maps of EC and pH of the post-Tsunami period. It was revealed from this analysis that the soil quality six months after the Tsunami was nearing the pre-Tsunami scenario (EC< 1.5dSm(-1); pH<8), whereas the quality of ground water remained highly saline and unfit for irrigation and drinking. These observations were compared with the ground scenarios of the study region and possible causes for such changes and the remedial measures for taking up regular agricultural practices are also discussed.  相似文献   

19.
Manure use on cropland has raised concern about nutrient contamination of surface and ground waters. Warm-season perennial grasses may be useful in filter strips to trap manure nutrients and as biomass feedstock for nutrient removal. We explored the use of 'Alamo' switchgrass (Panicum virgatum L.) in a biomass production-filter strip system treated with dairy manure. We measured changes in extractable P in the soil, NO3 -N in soil water, and changes in total reactive P and chemical oxygen demand (COD) of runoff water before and after a switchgrass filter strip. Five rates of dairy manure (target rates of 0, 50, 100, 150, and 200 kg N ha(-1) from solid manure in 1995; 0, 75, 150, 300, and 600 kg N ha(-1) from lagoon effluent in 1996 and 1997) were surface-applied to field plots of switchgrass (5.2 by 16.4 m) with a 5.2- by 16.4-m switchgrass filter strip below the manured area. Yield of switchgrass from the manured area increased linearly with increasing manure rate in each year. Soil water samples collected at 46 or 91 cm below the soil surface on 30 dates indicated < 3 mg L(-1) of NO3-N in all plots. Concentrations of total reactive P in surface runoff water were reduced an average of 47% for the 150 kg N rate and 76% for the 600 kg N rate in 1996 and 1997 after passing through the strip. Manure could effectively substitute for inorganic fertilizer in switchgrass biomass production with dual use of the switchgrass as a vegetative filter strip.  相似文献   

20.
Repeated manure application can lead to excessive soil test P (STP) levels and increased P concentration in runoff, but also to improved water infiltration and reduced runoff. Research was conducted to evaluate soil P tests in prediction of P concentration in runoff and to determine the residual effects of composted manure on runoff P loss and leaching of P. The research was conducted from 2001 to 2004 under natural runoff events with plots of 11-m length. Low-P and high-P compost had been applied during the previous 3 yr, resulting in total applications of 750 and 1150 kg P ha(-1). Bray-P1 in the surface 5 cm of soil was increased from 16 to 780 mg kg(-1) with application of high-P compost. Runoff and sediment losses were 69 and 120% greater with no compost than with residual compost treatments. Runoff P concentration increased as STP increased, but much P loss occurred with the no-compost treatment as well. Agronomic soil tests were predictive of mean runoff P concentration, but increases in STP resulted in relatively small increases in runoff P concentration. Downward movement of P was not detected below 0.3 m. In conclusion, agronomic soil tests are useful in predicting long-term runoff P concentration, and risk of P loss may be of concern even at moderate soil P levels. The residual effect of compost application in reducing sediment and runoff loss was evident more than 3 yr after application and should be considered in P indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号