首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
Pesticide volatilization models are typically based on equilibrium partitioning of the chemical into solid, liquid, and gaseous phases in the soil environment. In turf systems direct vaporization from vegetation surfaces is a more likely source, and it is difficult to apply equilibrium methods to plant material due to the uncertainties of solid-liquid-gas partitioning. An alternative approach is to assume that pesticide volatilization is governed by the same processes that affect water evaporation. A model was developed in which evapotranspiration values, as determined by the Penman equation, were adjusted to chemical vaporization using ratios of water and chemical saturated vapor pressures and latent heats of vaporization. The model also assumes first-order degradation of pesticide on turf vegetation over time. The model was tested by comparisons of predictions with measurements of volatilization for eight pesticides measured during 3 to 7 d in 11 field experiments. Measured volatilization fluxes ranged from 0.1 to 22% of applied chemical. Pesticides were divided into two groups based on saturated vapor pressures and organic C partition coefficients. One pesticide was selected from each group to calibrate the model's volatilization constant for the group, and the remaining pesticides were used for model testing. Testing results indicated that the model provides relatively conservative estimates of pesticide volatilization. Predicted mean losses exceeded observations by 20%, and the model explained 67% of the observed variation in volatilization fluxes. The model was most accurate for those chemicals that exhibited the largest volatilization losses.  相似文献   

4.
A previously developed model by Haith et al. (2002) related pesticide volatilization from turf to evapotranspiration (ET) by scaling factors determined from vapor pressures and heats of vaporization. Although the model provided volatilization estimates that compared well with field measurements, it relied on the Penman ET equation, requiring hourly temperature, wind speed, and solar radiation data, none of which are routinely available at field sites. The current study determined that the volatilization model works equally well with a simpler ET equation requiring only daily temperatures. Three daily temperature-based ET models were evaluated as vehicles for estimating pesticide volatilization from turf: Hamon, Hargreaves-Samani, and a modified Priestley-Taylor. When compared with field volatilization measurements for eight pesticides, volatilization estimates produced from the Hargreaves-Samani model most closely approximated both the field observations and the previous estimates based on the more data-intensive Penman model. Mean estimated volatilization exceeded mean observations by 15% and the coefficient of variation (R2) between estimates and observations was 0.65. The comparable values based on Penman ET were 17% and 0.63, respectively.  相似文献   

5.
We analyzed the changes in pesticide use and risk in the Province of Ontario, Canada, from 1973 to 1998 to monitor the success of Food Systems 2002, a program to reduce pesticide use by 50%. Pesticide risk was calculated by multiplying the amount of pesticide used (kilograms of active ingredient) by the Environmental Impact Quotient (EIQ), a score for the potential risk of pesticides to farmworkers, consumers, and the environment. Pesticide use increased by 46% from 1973 to 1983. From 1983, the baseline year for Food Systems 2002, to 1998, pesticide use decreased by 38.5% and risk declined 39.5%. The reductions in pesticide use and risk were primarily on corn (Zea mays L.) and tobacco (Nicotiana tabacum L.), the crops with the highest pesticide use in 1983. Total pesticide use on soybean [Glycine max (L.) Merr.] did not change, but the mean application rate (kg ha(-1)) decreased by 57%. Corn and soybean account for 65% of pesticide use, but have a relatively low pesticide use and risk per hectare and per tonne of production. Total pesticide use on tobacco, fruits, and vegetables was lower than on corn or soybean, but the pesticide use and risk per hectare were much higher. Small reductions in pesticide use on corn and soybean may allow a 50% reduction in pesticide use, but greater reductions in risk can be achieved by reducing the use of "high risk" pesticides on fruit and vegetables.  相似文献   

6.
Rainfall samples were collected during the 2003 and 2004 growing seasons at four agricultural locales across the USA in Maryland, Indiana, Nebraska, and California. The samples were analyzed for 21 insecticides, 18 herbicides, three fungicides, and 40 pesticide degradates. Data from all sites combined show that 7 of the 10 most frequently detected pesticides were herbicides, with atrazine (70%) and metolachlor (83%) detected at every site. Dacthal, acetochlor, simazine, alachlor, and pendimethalin were detected in more than 50% of the samples. Chlorpyrifos, carbaryl, and diazinon were the only insecticides among the 10 most frequently detected compounds. Of the remaining pesticide parent compounds, 18 were detected in fewer than 30% of the samples, and 13 were not detected. The most frequently detected degradates were deethylatrazine; the oxygen analogs (OAs) of the organophosphorus insecticides chlorpyrifos, diazinon, and malathion; and 1-napthol (degradate of carbaryl). Deethylatrazine was detected in nearly 70% of the samples collected in Maryland, Indiana, and Nebraska but was detected only once in California. The OAs of chlorpyrifos and diazinon were detected primarily in California. Degradates of the acetanilide herbicides were rarely detected in rain, indicating that they are not formed in the atmosphere or readily volatilized from soils. Herbicides accounted for 91 to 98% of the total pesticide mass deposited by rain except in California, where insecticides accounted for 61% in 2004. The mass of pesticides deposited by rainfall was estimated to be less than 2% of the total applied in these agricultural areas.  相似文献   

7.
The environmental fate of herbicides can be studied at different levels: in the lab with disturbed or undisturbed soil columns or in the field with suction cup lysimeters or soil enclosure lysimeters. A field lysimeter experiment with 10 soil enclosures was performed to evaluate the mass balance in different environmental compartments of the phenylurea herbicides diuron [3-(3,4-diclorophenyl)-1,1-dimethyl-urea] and linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea]. After application on the agricultural soil, the herbicides were searched for in soil, pore water, and air samples. Soil and water samples were collected at different depths of the soil profile and analyzed to determine residual concentrations of both the parent compounds and of their main transformation products, to verify their persistence and their leaching capacity. Air volatilization was calculated using the theoretical profile shape method. The herbicides were detected only in the surface layer (0-10 cm) of soil. In this layer, diuron was reduced to 50% of its initial concentration at the end of the experiment, while linuron was still 70% present after 245 d. The main metabolites detected were DCPMU [3-(3,4-dichlorophenyl)-1-methylurea] and DCA (3,4-dichloroaniline). In soil pore water, diuron and linuron were detected at depths of 20 and 40 cm, although in very low concentrations. Therefore the leaching of these herbicides was quite low in this experiment. Moreover, volatilization losses were inconsequential. The calculated total mass balance showed a high persistence of linuron and diuron in the soil, a low mobility in soil pore water (less than 0.5% in leachate water), and a negligible volatilization effect. The application of the Pesticide Leaching Model (PELMO) showed similar low mobility of the chemicals in soil and water, but overestimated their volatilization and their degradation to the metabolite DCPMU. In conclusion, the use of soil enclosure lysimeters proved to be a good experimental design for studying mobility and transport processes of herbicides in field conditions.  相似文献   

8.
The increased use of pesticides by container nurseries demands that practices for removal of these potential contaminants from runoff water be examined. Constructed wetlands may be designed to clean runoff water from agricultural production sites, including container nurseries. This study evaluated 14 constructed wetlands cells (1.2 by 4.9 m or 2.4 by 4.9 m, and 30 or 45 cm deep) that collected pesticide runoff from a 465-m2 gravel bed containerized nursery in Baxter, TN. One-half of the cells were vegetated with bulrush, Scirpus validus. The cells were loaded at three rates or flows of 0.240, 0.120, and 0.060 m3 d(-1). Herbicides-simazine (Princep) [2-chloro-4,6-bis(ethylamino)-s-triazine] and metolachlor (Pennant) [2-chloro-N-(2-ethyl-6-methylphenyl)-N-2-methoxy-1-methylethyl-acetamide] -were applied to the gravel portion of the container nursery at rates of 4.78 and 239 kg ha(-1), respectively, 9 July 1998, and at rates of 2.39 and 1.19 kg ha(-1), respectively, 17 May 1999. Pesticides entering the wetland and wetland cell water samples were analyzed daily to determine pesticide removal. At the slower flow rate, which corresponds to lower mass loading and greater hydraulic retention times (HRTs), a greater percentage of pesticides was removed. During the 2-yr period, cells with plants removed 82.4% metolachlor and 77.1% simazine compared with cells without plants, which removed 63.2% metolachlor and 64.3% simazine. At the lowest flow rate and mass loading, wetland cells removed 90.2% metolachlor and 83% simazine. Gravel subsurface flow constructed wetlands removed most of the pesticides in runoff water with the greatest removal occurring at lower flow rates in vegetated cells.  相似文献   

9.
Reducing pesticide loads in surface waters implies identifying the pathways responsible for the pollution. The current study documents the pesticide contamination of the river Zwester Ohm, a 4917-ha catchment in Germany with 41% of the land used for crop production. Discharges and concentrations of 19 pesticides were measured continuously at three locations for 15 mo. The load detected at the outlet of the catchment amounted to 9048 g a.i. The losses represent 0.22% of the pesticides applied by the farmers. The contamination showed a seasonal pattern following the pesticide application times. The wastewater treatment plant system (WWTPS) in the catchment (two wastewater treatment plants [WWTP], 14 combined sewer overflows (CSO), four CSO tanks) emits during dry weather periods purified sewage and during storm events sewage mixed with stormwater runoff into the river. The contribution by the WWTPS to the pesticide load was defined as point-source pollution (PSP). The load was dominated by PSP with at least 77% of the total pollution. No significant interdependencies between intrinsic properties of the pesticides, hydrometeorological factors, and the loads occurring in the stream could be found. Therefore, it is not possible to predict PSP for other catchments based on the results from this study. Whereas 65% of the total load entered the river via the WWTP, a portion of 12% was attributed to the CSO. The study points out that the influence of CSO on PSP should be taken into account in future catchment studies in areas with comparable agricultural structure.  相似文献   

10.
Summary Population exposure to toxic chemicals in the environment has become one of the most important, if not the most important, environmental issue of the 1980's. In response to finding high cancer mortality rates, the State of New Jersey organized an extensive program of research to determine public exposure to toxic substances in the environment. Three parts of that research are described. One focusing on toxic substances in the water has detected very low concentrations of many substances. These substances tend to be found in three distinct chemical groups: pesticides, light chlorinated hydrocarbons, and heavy metals. Gross pesticide contamination tends to occur in agricultural and forest areas; gross light chlorinated hydrocarbon pollution is in urban areas. The second component of the research is toxic substances in the air. Like the water studies, low levels of contamination have been found. Limited sampling to date has found groupings of ubiquitous organic chemicals in urban areas, two groups of specialized organic chemicals near industrial sites, and high lead levels near major highways. The third project is developing a computerized information bank about the use and disposal of 155 chemicals and will look for associations between industrial disposal practices and contamination of the environment.  相似文献   

11.
ABSTRACT: A finite element model based on Galerkin's upstream weighted residual technique was developed to predict the simultaneous convective-dispersion transport and transformations of pesticides and their metabolites in the unsaturated zone. Transformations of the parent compound and its metabolites were assumed to be first-order reactions for oxidation and hydrolysis, while adsorption of the pesticide species (parent compound and metabolites) to the soil components was assumed to be represented by a linear equilibrium (Freundlich type) isotherm. Volatilization and plant root uptake of pesticides in the solution phase were neglected in the analysis. The proposed model was used to simulate the transport and transformation of aldicarb and its metabolites, aldicarb sulfoxide and aldicarb sulfone, in the soil profile. Several examples are used to demonstrate the accuracy, validity, and applicability of the proposed model. Simulated results indicate that the proposed model can potentially be used to estimate the mass flux of water, and pesticide and pesticide metabolite concentrations in the subsurface environment. However, further verification of the model against actual field data is needed to fully demonstrate the model's potential.  相似文献   

12.
This paper proposes a hydrological modeling framework to define achievable performance standards (APSs) for pesticides that could be attained after implementation of recommended management actions, agricultural practices, and available technologies (i.e., beneficial management practices [BMPs]). An integrated hydrological modeling system, Gestion Intégrée des Bassins versants à l'aide d'un Système Informatisé, was used to quantify APSs for six Canadian watersheds for eight pesticides: atrazine, carbofuran, dicamba, glyphosate, MCPB, MCPA, metolachlor, and 2,4-D. Outputs from simulation runs to predict pesticide concentration under current conditions and in response to implementation of two types of beneficial management practices (reduced pesticide application rate and 1- to 10-m-wide edge-of-field and/or riparian buffer strips, implemented singly or in combination) showed that APS values for scenarios with BMPs were less than those for current conditions. Moreover, APS values at the outlet of watersheds were usually less than ecological thresholds of good condition, when available. Upstream river reaches were at greater risk of having concentrations above a given ecological thresholds because of limited stream flows and overland loads of pesticides. Our integrated approach of "hydrological modeling-APS estimation-ecotoxicological significance" provides the most effective interpretation possible, for management and education purposes, of the potential biological impact of predicted pesticide concentrations in rivers.  相似文献   

13.
The rationale for pesticide use in agriculture is that costs associated with pesticide pollution are to be justified by its benefits, but this is not so obvious. Valuing the benefits by simple economic analysis has increased pesticide use in agriculture and consequently produced pesticide-induced “public ills.” This paper attempts to explore the research gaps of the economic and social consequences of pesticide use in developing countries, particularly with an example of Nepal. We argue that although the negative sides of agricultural development, for example- soil, water, and air pollution; pest resistance and resurgence; bioaccumulation, bio-magnification; and loss of biodiversity and ecosystem resilience caused by the use of pesticides in agriculture, are “developmental problems” and are “unintentional,” the magnitude may be increased by undervaluing the problems in the analysis of its economic returns. Despite continuous effort for holistic system analyses for studying complex phenomena like pesticides impacts, the development within the academic science has proceeded in the opposite direction that might have accelerated marginalization of the third world subsistence agricultural communities. We hypothesize that, if these adversities are realized and accounted for, the benefits from the current use of pesticides could be outweighed by the costs of pollution and ill human health. This paper also illustrates different pathways and mechanisms for marginalization. In view of potential and overall negative impacts of pesticide use, we recommend alternative ways of controlling pests such as community integrated pest management (IPM) along with education and training activities. Such measures are likely to reduce the health and environmental costs of pesticide pollution, and also enhance the capabilities of third world agricultural communities in terms of knowledge, decision making, innovation, and policy change.  相似文献   

14.
Process-based models are frequently used to assess the water quality impacts of turfgrass management emanating from proposed or existing golf courses. Thatch complicates the prediction of pesticide transport because surface-applied pesticides must pass through an organic-rich layer before entering the soil. This study was conducted to (i) compare the use of a linear equilibrium model (LEM) and two-site nonequilibrium (2SNE) model to predict pesticide transport through soil and thatch + soil columns, and (ii) evaluate thatch effects on pesticide transport through soil columns with a volume-averaging approach. Pesticide breakthrough curves were obtained for soil and thatch + soil columns from a 1 cm h(-1) flux applied one day after applying triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) and carbaryl (1-napthyl-methyl carbamate). Pesticide and bromide transport parameters indicated that nonequilibrium processes were affecting pesticide transport. Columns containing zoysiagrass (Zoysia japonica Steud.) thatch had lower triclopyr and carbaryl leaching losses than did soil-only columns, although total reductions attributable to thatch did not exceed 15% of the applied pesticide. When laboratory-based retardation factors were used, the 2SNE model explained 88 to 93% of the variability for triclopyr and 70 to 94% of the variability for carbaryl. Laboratory-based retardation factors performed well in a 2SNE model to predict the peak concentration and tailing behavior of triclopyr and carbaryl with a volume-averaging approach. These results suggest that separate representation of the thatch layer in process-based models is not a prerequisite to obtain reasonable estimates of pesticide transport under steady state flow conditions.  相似文献   

15.
ABSTRACT: Toxic organic compounds, such as DBCP, EDB, and c TCP, that are associated with pineapple cultivation in Hawaii have been discovered in drinking water wells on Oahu. In order to reach and contaminate the Pearl Harbor aquifer, pesticides must be transported quickly downward away from the soil surface prior to complete volatilization, degradation, or adsorption of residuals. This paper assesses the role of pesticide application timing relative to subsequent rainfall-induced recharge events in determining the amount and extent of chemical leaching from the soil. A water balance model for a pineapple crop is developed to estimate the time series of recharge from two fields for which soil contamination profiles are available. In general, the amounts of DBCP, EDB, and TCP found in the soil profiles of the two fields are consistent with expectations of leaching based on an analysis of the recharge time series. The results indicate that recharge during and immediately following the application of pesticides is important in determining whether groundwater contamination will result.  相似文献   

16.
A lignocellulosic substrate (LS) obtained from our local agroindustry was used as a low-cost and effective adsorbent for the removal of pesticides from wastewaters. The studied pesticides were terbumeton (N-(1,1-dimethyl)-Nethyl-6-methoxy-1,3,5-triazine-2,4-diamine), desethyl terbumeton (N-(1,1-dimethylethyl)-6-methoxy-1,3,5-triazine-2,4-diamine), dimetomorph (4-[3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloyl]morpholine), and isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea). Batch and column experiments were conducted as a function of pH and pesticide concentration under laboratory and industrial conditions. The concentration range studied for the pesticides varied from 2 x 10(-7) to 3 x 10(-4) mol L(-1). The influence of organic and inorganic pollutants was assessed by studying the retention of pesticide in the presence of copper(II) and a surfactant. These experiments indicated that LS is an efficient adsorbent toward the investigated pesticides and has little influence of the other pollutants. The kinetic adsorptions are fast, and the amounts of adsorbed pesticide varied from 1 to 8 g kg(-1) of LS. These retention capacities show that LS can provide a simple, effective, and cheap method for removing pesticides from contaminated waters. Thus, this biomaterial may be useful for cleaning up polluted waters.  相似文献   

17.
During the last decades, high population growth and export-oriented economics in Vietnam have led to a tremendous intensification of rice production, which in turn has significantly increased the amount of pesticides applied in rice cropping systems. Since pesticides are toxic by design, there is a natural concern on the impact of their presence in the environment on human health and environmental quality. The present study was designed to examine the water regime and fate of pesticides (fenitrothion, dimethoate) during two consecutive rice crop seasons in combined paddy rice-fish pond farming systems in northern Vietnam. Major results revealed that 5 and 41% (dimethoate), and 1 and 17% (fenitrothion) of the applied mass of pesticides were lost from the paddy field to the adjacent fish pond during spring and summer crop seasons, respectively. The decrease of pesticide concentration in paddy surface water was very rapid with dissipation half-life values of 0.3 to 0.8 and 0.2 d for dimethoate and fenitrothion, respectively. Key factors controlling the transport of pesticides were water solubility and paddy water management parameters, such as hydraulic residence time and water holding period. Risk assessment indicates that the exposure to toxic levels of pesticides for aquaculture (, ) is significant, at least shortly after pesticide application.  相似文献   

18.
There is continuing concern over potential impacts of widespread application of nutrients and pesticides on ground- and surface-water quality. Transport and fate of nitrate and pesticides were investigated in a shallow aquifer and adjacent stream, Cow Castle Creek, in Orangeburg County, South Carolina. Pesticide and pesticide degradate concentrations were detected in ground water with greatest frequency and largest concentrations directly beneath and downgradient from the corn (Zea mays L.) field where they were applied. In almost all samples in which they were detected, concentrations of pesticide degradates greatly exceeded those of parent compounds, and were still present in ground waters that were recharged during the previous 18 yr. The absence of both parent and degradate compounds in samples collected from deeper in the aquifer suggests that this persistence is limited or that the ground water had recharged before use of the pesticide. Concentrations of NO(-)(3) in ground water decreased with increasing depth and age, but denitrification was not a dominant controlling factor. Hydrologic and chemical data indicated that ground water discharges to the creek and chemical exchange takes place within the upper 0.7 m of the streambed. Ground water had its greatest influence on surface-water chemistry during low-flow periods, causing a decrease in concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. Conversely, shallow subsurface drainage dominates stream chemistry during high-flow periods, increasing stream concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. These results point out the importance of understanding the hydrogeologic setting when investigating transport and fate of contaminants in ground water and surface water.  相似文献   

19.
Agricultural wastewater treatment is important for maintaining water quality, and constructed wetlands (CW) can be an effective treatment option. However, some of the N that is removed during treatment can be volatilized to the atmosphere as ammonia (NH(3)). This removal pathway is not preferred because it negatively impacts air quality. The objective of this study was to assess NH(3) volatilization from surface flow (SF) and subsurface flow (SSF) CWs. Six CWs (3 SF and 3 SSF; 6.6 m(2) each) were loaded with dairy wastewater ( approximately 300 mg L(-1) total ammoniacal nitrogen, TAN = NH(3)-N + NH(4)(+)-N) in Nova Scotia, Canada. From June through September 2006, volatilization of NH(3) during 12 or 24 h periods was measured using steady-state chambers. No differences (p > 0.1) between daytime and nighttime fluxes were observed, presumably due in part to the constant airflow inside the chambers. Changes in emission rates and variability within and between wetland types coincided with changes in the vegetative canopy (Typha latifolia L.) and temperature. In SSF wetlands, the headspace depth also appeared to affect emissions. Overall, NH(3) emissions from SF wetlands were significantly higher than from SSF wetlands. The maximum flux densities were 974 and 289 mg NH(3)-N m(-2) d(-1) for SF and SSF wetlands, respectively. Both wetland types had similar TAN mass removal. On average, volatilization contributed 9 to 44% of TAN removal in SF and 1 to 18% in SSF wetlands. Results suggest volatilization plays a larger role in N removal from SF wetlands.  相似文献   

20.
Saleh, Dina K., David L. Lorenz, and Joseph L. Domagalski, 2010. Comparison of Two Parametric Methods to Estimate Pesticide Mass Loads in California’s Central Valley. Journal of the American Water Resources Association (JAWRA) 00(0):1‐11. DOI: 10.1111/j.1752‐1688.2010.00506.x Abstract: Mass loadings were calculated for four pesticides in two watersheds with different land uses in the Central Valley, California, by using two parametric models: (1) the Seasonal Wave model (SeaWave), in which a pulse signal is used to describe the annual cycle of pesticide occurrence in a stream, and (2) the Sine Wave model, in which first‐order Fourier series sine and cosine terms are used to simulate seasonal mass loading patterns. The models were applied to data collected during water years 1997 through 2005. The pesticides modeled were carbaryl, diazinon, metolachlor, and molinate. Results from the two models show that the ability to capture seasonal variations in pesticide concentrations was affected by pesticide use patterns and the methods by which pesticides are transported to streams. Estimated seasonal loads compared well with results from previous studies for both models. Loads estimated by the two models did not differ significantly from each other, with the exceptions of carbaryl and molinate during the precipitation season, where loads were affected by application patterns and rainfall. However, in watersheds with variable and intermittent pesticide applications, the SeaWave model is more suitable for use on the basis of its robust capability of describing seasonal variation of pesticide concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号