首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the frame of a process aiming at harmonizing National Forest Inventory (NFI) and ICP Forests Level I Forest Condition Monitoring (FCM) in Italy, we investigated (a) the long-term consistency between FCM sample points (a subsample of the first NFI, 1985, NFI_1) and recent forest area estimates (after the second NFI, 2005, NFI_2) and (b) the effect of tree selection method (tree-based or plot-based) on sample composition and defoliation statistics. The two investigations were carried out on 261 and 252 FCM sites, respectively. Results show that some individual forest categories (larch and stone pine, Norway spruce, other coniferous, beech, temperate oaks and cork oak forests) are over-represented and others (hornbeam and hophornbeam, other deciduous broadleaved and holm oak forests) are under-represented in the FCM sample. This is probably due to a change in forest cover, which has increased by 1,559,200 ha from 1985 to 2005. In case of shift from a tree-based to a plot-based selection method, 3,130 (46.7 %) of the original 6,703 sample trees will be abandoned, and 1,473 new trees will be selected. The balance between exclusion of former sample trees and inclusion of new ones will be particularly unfavourable for conifers (with only 16.4 % of excluded trees replaced by new ones) and less for deciduous broadleaves (with 63.5 % of excluded trees replaced). The total number of tree species surveyed will not be impacted, while the number of trees per species will, and the resulting (plot-based) sample composition will have a much larger frequency of deciduous broadleaved trees. The newly selected trees have—in general—smaller diameter at breast height (DBH) and defoliation scores. Given the larger rate of turnover, the deciduous broadleaved part of the sample will be more impacted. Our results suggest that both a revision of FCM network to account for forest area change and a plot-based approach to permit statistical inference and avoid bias in the tree sample composition in terms of DBH (and likely age and structure) are desirable in Italy. As the adoption of a plot-based approach will keep a large share of the trees formerly selected, direct tree-by-tree comparison will remain possible, thus limiting the impact on the time series comparability. In addition, the plot-based design will favour the integration with NFI_2.  相似文献   

3.
Air pollution, bulk precipitation, throughfall, soil condition, foliar nutrients, as well as forest health and growth were studied in 2006–2009 in a long-term ecological research (LTER) network in the Bucegi Mountains, Romania. Ozone (O3) was high indicating a potential for phytotoxicity. Ammonia (NH3) concentrations rose to levels that could contribute to deposition of nutritional nitrogen (N) and could affect biodiversity changes. Higher that 50% contribution of acidic rain (pH?<?5.5) contributed to increased acidity of forest soils. Foliar N concentrations for Norway spruce (Picea abies), Silver fir (Abies alba), Scots pine (Pinus sylvestris), and European beech (Fagus sylvatica) were normal, phosphorus (P) was high, while those of potassium (K), magnesium (Mg), and especially of manganese (Mn) were significantly below the typical European or Carpathian region levels. The observed nutritional imbalance could have negative effects on forest trees. Health of forests was moderately affected, with damaged trees (crown defoliation >25%) higher than 30%. The observed crown damage was accompanied by the annual volume losses for the entire research forest area up to 25.4%. High diversity and evenness specific to the stand type’s structures and local climate conditions were observed within the herbaceous layer, indicating that biodiversity of the vascular plant communities was not compromised.  相似文献   

4.
Red pine (Pinus resinosa Ait.) is rare (< 15 000 mature trees) in Newfoundland and is known from only 22 locations in the central region. Red pine occupies 3 major site types in Newfoundland: 1) red pine on medium-textured sands (RP1), 2) red pine on coarse-textured glaciofluvial deposits (RP2), and 3) red pine on Folisols over bedrock (RP3). The succession of red pine site types after cutting is from red pine to Kalmia-black spruce (Picea mariana (Mill.) B.S.P.) for RP1, and to Cladonia-Kalmia-black spruce for types RP2 and RP3. Succession after fire is usually to the pre-fire type, but this depends on the severity of the fire.Although occupying a relatively poor site, red pine at 60–70 years reaches heights in excess of 18 m, dbh in excess of 40 cm, and individual tree volumes greater than 1 m3 were recorded in 75 stemanalyzed fire-killed trees. Black spruce on that same site produces less than one-third that volume in 60 years. Merchantable volume of 140–280 m3 ha-1 were recorded i.e., Canada Land Inventory (CLI) forest capability class 5 and class 4 ratings. This raises the CLI rating two capability classes if red pine were occupying these poor quality sites over black spruce. In terms of nutrition, even the best growing red pine are nitrogen (N) deficient as shown by foliar analysis. All natural stands have foliar N concentrations below 1.3% which is the critically low level shown in the literature. Immediately after fire, foliar concentrations reach this level but are usually about 1% or less. Most other nutrients are low but are within the generally reported adequate levels in testing for P, K, Ca and Mg.Fire influences soil nutrient availability as pH increases in the RP1 type. Burning temperature also affects soil pH and the understory vegetation. The RP2 type loses more N in hotter burns on this site type and more N is tied up in these ortstein hardpan soils. The pattern of regeneration following wildfire is related to slope, density, age and species mixture of the stand as well as the thickness and composition of the duff layer.  相似文献   

5.
We studied within-site spatial variation of the carbon stock in the organic layer of boreal forest soil. A total of 1,006 soil samples were taken in ten forest stands (five Scots pine stands and five Norway spruce stands). Our results indicate that the spatial autocorrelation disappears at a distance of 75-225 cm. This spatial autocorrelation should be taken into account in the sampling design by locating the sampling points at adequate intervals. With a sample size of over 20-30 samples per site, additional soil samples do not notably improve the precision of the site mean estimate. An adequate sample size is dependent on the purpose of sampling and on the site-specific soil variation. Our results on the dependence between sample size and precision of the mean estimates can be applied in designing efficient soil monitoring in boreal coniferous forests.  相似文献   

6.
The article describes the use of Scots pine bark to identifynitrogen sources in eastern Germany, as well as background areas in Russia and Bulgaria, by using natural isotope ratios of total nitrogen (Nt) and individual N compoundssuch as ammonium (NH4 +), nitrate (NO3 -)and amid nitrogen (amide-N). The samples collected were analysed using an elemental analyser in connection with a gas isotope mass spectrometer (EA-IRMS). Natural 15N abundances in pine bark from impact areas suggest that the ammonium accumulated on the surface of the bark is releasedfrom livestock management. Bark of Scots pines growing near agricultural land had highly depleted 15Nt values (between –8 and –12), while bark from background areas (unpolluted areas) displayed slightly negative 15Nt values (mean 15Nt = –3.8). It is assumed that part of the N adsorbed on the bark surface is mainly derived from ammonia(mean 15Nt = –40.3) escaping from livestock housing and during the application of manure. This assumption is confirmed by experiments under controlled conditions in which manure samples were spread on soil. In addition, temporal and spatial variations of 15Nt abundances in pine bark from various locations in eastern Germany as wellas pine stands in Nature Park Dübener Heath are discussed.  相似文献   

7.
The crown densities of 186 trees of five common European tree species (Norway spruce (Picea abies), silver fir (Abies alba), Scots pine (Pinus sylvestris), oak (Quercus robur) and beech (Fagus sylvatica) were assessed simultaneously by observation teams from France, Germany and the United Kingdom. Major differences in the scores existed, with the maximum difference on any one tree being 45%. Differences tended to be consistent, with the French team scoring more lightly than the German team and the German team more lightly than the UK team. The differences throw into question the value of international comparisons of forest condition, particularly the use of comparative tables of the extent of forest decline in individual European countries.  相似文献   

8.
The biomonitoring properties of oak tree bark compared with the epiphytic moss Hypnum cupressiforme and the influence of the tree bark, as its growth substrate, on the content of heavy metals in moss were investigated. Samples of the epiphytic moss H. cupressiforme and oak tree bark (Quercus spp.) were collected in Eastern Romania at a total of 44 sampling sites. Parallel moss and bark samples were collected from the same sides of the trunk circumference. V, Cr, Ni, Cu, Zn, As, Mo, Cd, In, Tl, Sn, Pb, and Bi were determined by ICP-MS. Principal component analysis was used to identify possible sources of metals in bark and moss. Six factors explaining 87 % of the total variance in the data set were chosen. The main factors represent long-range atmospheric transport of elements (Zn, Cd, (Pb), Bi, (Mo), (Tl)), local emissions from industrial sources (As, Cr, Ni, V), road traffic (Pb, Zn) and agricultural activities (Cu, (Zn)). The element concentrations in moss and bark samples are of the same order of magnitude. For almost all the elements, higher concentrations were obtained in moss. Significant correlations between concentrations in moss and bark samples were obtained for 7 of the 13 elements: V, Ni, Cu, Zn, Cd, In, and Bi, all typical anthropogenic pollutants. The use of tree bark for monitoring purposes might be an alternative in areas where there is a scarcity of mosses.  相似文献   

9.
Air pollutants pose a risk to forest health and vitality in the United States. Here we present the major findings from a national scale air pollution assessment that is part of the United States' 2003 Report on Sustainable Forests. We examine trends and the percent forest subjected to specific levels of ozone and wet deposition of sulfate, nitrate, and ammonium. Results are reported by Resource Planning Act (RPA) reporting region and integrated by forest type using multivariate clustering. Estimates of sulfate deposition for forested areas had decreasing trends (1994-2000) across RPA regions that were statistically significant for North and South RPA regions. Nitrate deposition rates were relatively constant for the 1994 to 2000 period, but the South RPA region had a statistically decreasing trend. The North and South RPA regions experienced the highest ammonium deposition rates and showed slightly decreasing trends. Ozone concentrations were highest in portions of the Pacific Coast RPA region and relatively high across much of the South RPA region. Both the South and Rocky Mountain RPA regions had an increasing trend in ozone exposure. Ozone-induced foliar injury to sensitive species was recorded in all regions except for the Rocky Mountain region. The multivariate analysis showed that the oak-hickory and loblolly-shortleaf pine forest types were generally exposed to more air pollution than other forest types, and the redwood, western white pine, and larch forest types were generally exposed to less. These findings offer a new approach to national air pollution assessments and are intended to help focus research and planning initiatives related to air pollution and forest health.  相似文献   

10.
The condition of the forest ecosystem in the vicinity of the largest Slovene power plant [the ?o?tanj Thermal Power Plant (?TPP)] was monitored during the period 1991–2008 by determining the total concentration of sulphur, ascorbic acid and chlorophyll in Norway spruce needles. After 1995, the introduction of cleaning devices at the ?TPP dramatically reduced the former extremely high SO2 and dust emissions. The most significant findings of this comprehensive, long-duration survey are as follows: (1) the chosen parameters are suitable bioindicators of stress caused by air pollution in Norway spruce needles; they reflect both spatial and temporal variations in air pollution as well as the degree of efficiency of the cleaning devices; (2) observations show that the physiological condition of Norway spruce in northern Slovenia has significantly improved since 1995, when the first desulphurization device at ?TPP was built, together with a reduction in the area influenced by pollution from ?TPP; (3) metabolic processes in spruce needles react to air pollution according to the severity of the pollution and the length of exposure; exposure to high SO2 ambient levels and/or spread over a long duration can damage the antioxidant defence mechanisms of spruce trees as well as diminishing the concentration of ascorbic acid; (4) a reduction in the exposure to air pollution improves the vitality of the trees (e.g. higher concentrations of total (a?+?b) chlorophyll), as well as restoring their defence capabilities as shown by higher concentrations of ascorbic acid; and (5) forest monitoring should be continued and focused on integrating the effects of multiple stressors, which can additionally affect a forest ecosystem.  相似文献   

11.
At the Bear Brook Watershed in Maine (BBWM), the forest tree composition was characterized and the effects of the chronic ammonium sulfate ((NH4)2SO4) treatment on basal area growth, foliar chemistry, and gas exchange were investigated on forest species. The BBWM is a paired watershed forest ecosystem study with one watershed, West Bear (WB), treated since 1989 with 26.6 kg N ha???1 year???1 and 30 kg S ha???1 year???1applied bimonthly as (NH4)2SO4, while the other watershed, East Bear (EB), serves as a reference. Tree species richness, density, and mortality were found to be similar between watersheds. Basal area increment was estimated from red spruce and sugar maple, showing that, for the first 7 years of treatment, it was significantly higher for sugar maple growing in WB compared to EB, but no differences were observed for red spruce between watersheds. However, the initial higher sugar maple basal area growth in WB subsequently decreased after 8 years of treatment. Foliar chemical analysis performed in trees, saplings, and ground flora showed higher N concentrations in the treated WB compared to the reference EB. But, foliar cation concentrations, especially Ca and Mg, were significantly lower for most of the species growing in WB compared with those growing in EB. For sugar maple, foliar N was higher on WB, but there were no differences in foliar Ca and Mg concentrations between treated and reference watersheds. In addition, only sugar maple trees in the treated WB showed significantly higher photosynthetic rates compared to reference EB trees.  相似文献   

12.
Bark flakes were sampled in a biomonitoring survey throughout The Netherlands. Tree species used were oak (65 samples) and non-oak (58 samples) (poplar, elm, willow). Bark elemental analysis was carried out for As, Br, Ca, Cd, Ce, Co, Cr, Cs, Fe, Hg, K, La, Na, Ni, Pb, Rb, Sb, Sc, Se, Sm, Th, and Zn. Furthermore, bark acidity, SO4, NH4 and NO3 were determined. Further variables introduced into the data-set were DIST (closest distance to sea water) and the dummy variably OAK (tree species).Straightforward multivariate correlation analysis was performed to check the effects on bark metal retention of the non-metal pollutants SO4, NH4 and NO3, and of bark acidity. The OAK variable served to identify species-specific metal and non-metal pollutant behaviour. The DIST variable was used to visualize geography(source)-related variations in bark metal and non-metal pollutant concentrations, and to account for the non-random distribution of OAK and non-OAK tree species.The results indicate that the non-oak and oak bark samples may be combined to form 123 samples containing data-set for As, Br, Cd, Ce, Co, Fe, La, Na, Sc, Sm, Th, Zn, NH4, NO4, SO4 and acidity, but not for Rb, Cs, Se, K, Ni, Pb and Sb (species-specific) and for Ca and Hg (H+-dependent). In the presented data-set, bark sulphate, ammonia and nitrate could not be shown to significantly affect bark metal retention.  相似文献   

13.
Hypogymnia physodes was sampled from 179 sites of Scots pine forests regularly distributed throughout Norway. The purpose was to map the nitrogen and sulphur contents of lichen thalli on a large-scale geographical basis, and to relate these values to differences in atmospheric deposition and climate.The lichen nitrogen and sulphur concentrations showed large differences; the highest concentration values being 4–5 times greater than the lowest. The highest nitrogen and sulphur values occurred along the coast of southern Norway and on some sites in the inland of southern Norway. There was a close correlation between the two elements. The lichen N/S ratio decreased with increasing latitude.The nitrogen and sulphur contents ofHypogymnia physodes were both significantly correlated to estimated atmospheric deposition of these two elements in Norway. The degree of explanation improved when climatic variables such as temperature sum, altitude, annual precipitation and temperature were included. Factors promoting growth, such as high bark pH, mild winters, hot summers, high precipitation, high ammonium deposition and high evapotranspiration, were all associated with lower lichen nitrogen and/or sulphur concentrations. Unfavourable growth conditions, such as at high altitude, was related to higher concentrations than expected from deposition models. This indicates that differences in element concentration between nearby localities might be related to local differences in climate and lichen growth conditions. This should be taken into consideration whenever using lichens for biomonitoring.  相似文献   

14.
The consistency of visual assessment of tree defoliation, which represents the most widely used indicator for tree condition, has frequently been in the focus of scientific criticism. Thus, the objective of the present study was to examine the consistency of the defoliation data from the annual national training courses for the forest condition survey in Germany from 1992 to 2012. Defoliation assessments were carried out in stands of beech (Fagus sylvatica), oak (Quercus robur and Quercus petraea), Norway spruce (Picea abies), and pine (Pinus sylvestris). Among the observer teams, the absolute deviation from the observer mean of all years was ±4.4 % defoliation and the standard deviation of defoliation was ±5.5 %. On average, 94 % of the assessments were located within the ±10 % interval of deviation from the mean. Tree species-specific differences did not occur when all years were considered. A trend towards increasing consistency was observed from 1992 to 2012, in particular for oak and spruce. The deviation of defoliation assessments depended non-linearly on the level of defoliation with highest deviations at intermediate defoliations. In spite of high correlations and agreements among observers, systematic errors were determined in nearly every year. However, within-observer variances were higher than between-observer variances. The present study applied a three-way evaluation approach for the assessment of consistency and demonstrated that the visual defoliation assessment at the national training courses in general produced consistent data within Germany from 1992 to 2012.  相似文献   

15.
This paper introduces the use of nutrition profiles as a first step in the development of a concept that is suitable for evaluating forest nutrition on the basis of large-scale foliar surveys. Nutrition profiles of a tree or stand were defined as the nutrient status, which accounts for all element concentrations, contents and interactions between two or more elements. Therefore a nutrition profile overcomes the shortcomings associated with the commonly used concepts for evaluating forest nutrition. Nutrition profiles can be calculated by means of a neural network, i.e. a self-organizing map, and an agglomerative clustering algorithm with pruning. As an example, nutrition profiles were calculated to describe the temporal variation in the mineral composition of Scots pine and Norway spruce needles in Finland between 1987 and 2000. The temporal trends in the frequency distribution of the nutrition profiles of Scots pine indicated that, between 1987 and 2000, the N, S, P, K, Ca, Mg and Al decreased, whereas the needle mass (NM) increased or remained unchanged. As there were no temporal trends in the frequency distribution of the nutrition profiles of Norway spruce, the mineral composition of the needles of Norway spruce needles subsequently did not change. Interpretation of the (lack of) temporal trends was outside the scope of this example. However, nutrition profiles prove to be a new and better concept for the evaluation of the mineral composition of large-scale surveys only when a biological interpretation of the nutrition profiles can be provided.  相似文献   

16.
A method using flow-injection, gas-diffusion, derivatisation and then fluorescent detection has been established for ammonium ion determination in seawater. The fluorescent derivative formed by reacting ortho-phthaldialdehyde (OPA) and sulfite with ammonia gives high sensitivity while removing potential interferences. This is required to measure the low concentrations of ammonium often seen in the open ocean. The experimental conditions (flow-rate, reagent concentrations, membrane configurations, etc.) were manipulated to improve performance. For a sample throughput of 30 samples h(-1), the limit of detection was 7 nM, the coefficient of variation was 5.7% at 800 nM, and the calibration curve was linear to at least 4 micromol L(-1). Interferences were minimised by a gaseous diffusion step. Volatile small molecular-weight amines as interferents were discriminated against by this method. They neither passed through the membrane as efficiently as ammonia, nor reacted as readily with OPA when sulfite was the reductant. Contamination by ammonia from laboratory and shipboard sources complicates application of the method to natural waters, especially measurement of low concentrations (<100 nM) in open-ocean waters. Steps to overcome contamination are described in detail. Some results are presented for ammonium determination in Southern Ocean and Huon Estuary (Tasmania) waters.  相似文献   

17.
Chloroform is one of the most frequently found anthropogenic groundwater contaminants. Recent investigations, however, suggested that chloroform in groundwater may also originate from a natural production in soils. As societies response to the occurrence of chloroform in groundwater may depend upon its origin as anthropogenic or naturally produced, test methods are needed to measure the potential of natural soil chloroform production. Field measurements of ambient air and soil air, and field and laboratory incubation studies were evaluated for measurement of relative soil chloroform production at a site with four different vegetation types (spruce forest, beech forest, grassland, and grain field) on comparable geological soil. All test methods showed varying soil production of chloroform with spruce forest soil being most productive and grain field soil being least productive. Field measurements of the ratio of soil air to ambient air chloroform concentrations exhibited the smallest difference between high production and low production areas, whereas laboratory incubation studies showed the largest difference. Thus, laboratory incubation studies are suggested as most efficient for estimating relative chloroform production in soil. The study indicated that soil samples should be tested not more than 14 days after sampling. Furthermore, it was found that potentially limiting compounds, such as chloride or nitrate, are not needed to be added in spike experiments to obtain reliable production results. However, it should be recognized that the processes of soil chloroform production are not known yet in all details. Other factors than those studied here may affect the test methods for soil chloroform production too.  相似文献   

18.
Mycorrhiza is the main spatial and temporal linkage between different constituents in a forest ecosystem. The functional compatibility and stress tolerance of ectomycorrhizal types is species specific, and therefore the information on the ectomycorrhizal community structure can add to the understanding of processes in forest ecosystems and can also be applied as tools for bioindication of pollution stress in forest soils. We have studied the effects of pollution (N and S) on trees and forest soils by: (1) quantification of ECM types diversity as in situ indicators in forest stands, (2) determination and quantification of pollution-sensitive or -insensitive ECM types as passive monitors, (3) root growth and development of ECM on nonmycorrhizal spruce seedlings, planted at the studied sites (active monitors), and (4) ECM infection (a bioassay based on mycorrhizal inoculum potential) of seedlings in an experimental set-up as ex situ testers. ECM species richness for Norway spruce trees (Picea abies) showed higher values in unpolluted sites than in polluted ones, while the differences were not significant for European beech trees (Fagus sylvatica). As pollution-sensitive or -insensitive ECM species in spruce forests, we suggest Hydnum rufescens (sensitive) and Paxillus involutus (unsensitive). Mycorrhizal potential in Norway spruce seedlings as a bioassay for soil N and S pollution was effective, and is suggested as an additional, standardized and widely comparable system in bioindication of soil pollution.  相似文献   

19.
A fluorometric method developed for measuring low concentrations of ammonium in marine and freshwater ecosystems was adapted for the analysis of ammonia in ambient air. The modified method entails collection of samples on an acid-treated solid adsorbent followed by analysis using a fluorometer. Optimal results were obtained using a commercially available sorbent tube containing 100 mg of acid-treated silica gel for sample collection, and an analytical protocol consisting of sample desorption in DI water, addition of orthopthaldialdehyde (OPA) working reagent, and room temperature incubation. Method accuracy and precision were evaluated by comparing experimentally determined quantities of ammonia to expected levels for sample loadings ranging from 0.16 [micro sign]g to 550 [micro sign]g-accuracy was generally within +/-20%. The estimated LOQ for the method is 0.08 [micro sign]g ammonia per sample which represents a 25-375-fold improvement in sensitivity compared to current NIOSH and OSHA methods for the measurement of ammonia in ambient air. The new method should be useful for applications requiring measurement of low concentrations of ammonia using personal sampling equipment or in the characterization of short-term fluctuations of ammonia concentrations in air.  相似文献   

20.
The effect of visitors' pressure on the spatial variability of soil properties was investigated in three open green areas in Tel Aviv. Six types of micro-environments were chosen: under oak and pine tree canopy with low (OL and PL) and high (OH and PH) visitors' pressure; herbaceous area without visitors' pressure (HE); and resting area under high visitors' pressure (RA). For each micro-environment soil samples were collected from the upper 0-5 cm depth for organic matter content and moisture determination. Before sampling, soil surface compaction and litter biomass were measured. Soil properties were affected by visitors' pressure and by the type of micro-environment. Soil organic matter content and soil moisture proved significantly higher under oak trees at low visitors' pressure. Average litter biomass significantly decreased with increasing visitors' pressure in the tree micro-environments. Average penetration depth decreased significantly with increased visitors' pressure in all micro-environments. In all the cases where averages significantly decreased, variance significantly decreased too, but the coefficient of variations increased. This means that variances changed slower than averages. Changes in averages were accompanied by a change of data population structure, which indicated more soil spatial homogeneity under high visitors' pressure. The data from different intervals of data population of soil properties demonstrated the different sensitivity to visitors' pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号