首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
This study investigated the effect of inoculation of Pleurotus tuber-regium, a Nigerian white rot fungus, period of incubation, different levels of contamination on cutting fluids degradation in contaminated soil over 30, 60, and 90 days. Control for different levels of cutting fluids was also used to compare rates of bioremediation of the contaminant in the soil. At the end of each incubation period, the mycelia-ramified substrate was separated from the soil layer and dried. The soil samples were analyzed for physico-chemical parameters; total petroleum hydrocarbon, lignin content by determining the acid detergent fraction (ADF), heavy metals content of the soil using flame atomic absorption spectrophotometer, and changes in the polyphenol oxidase and peroxidase activities were also determined after 1, 2, and 3 months. P. tuber-regium improved the nutrient status of the soil and increased enzyme activity was recorded. A reduction in the pH and heavy metal contents of the soil at all levels of cutting fluids concentrations was detected. The lignin in the rice straw decreased from 34.50% in the control to 8.06% at 30% cutting fluids concentration after 3 months of incubation. The highest TPH loss of 30.84% was recorded at 20% cutting fluids contamination after 3 months compared to 13.75% at the onset of the experiment. The improvement of the nutrient contents of the soil, bioaccumulation of heavy metals, degradation of TPH, lignin, and increased activity of polyphenol oxidase and peroxidase was due to biodegradation of the cutting fluids.  相似文献   

2.
At four estuarine sites on the coast of Galicia (northwestern Spain), all of which were affected by the Prestige oil spill, soil samples were taken from polluted and unpolluted areas and their petroleum hydrocarbon contents, heavy metal contents, and other chemical and physical characteristics were measured. Oil pollution altered both chemical and physical soil properties, aggregating soil particles in plaques, lowering porosity, and increasing resistance to penetration and hydrophobicity. The chromium, nickel, copper, iron, lead, and vanadium contents of polluted soils were between 2 and 2500 times higher than those of their unpolluted counterparts and the background concentrations in Galician coastal sediments. In the cases of Cr, Cu, Ni, Pb, and V, their origin in the polluting oil was corroborated by the high correlation (r >/= 0.74) between the concentrations of these metals and the total petroleum hydrocarbon (TPH) content of the polluted soils. Soil redox potentials ranged from -19 to -114 mV in polluted soils and 112 to 164 mV in unpolluted soils, and were negatively correlated with TPH content (p < 0.01). The low values in the polluted soils explain why the soluble fractions of their total heavy metal contents were very small (generally less than 3%, and in many cases undetectable).  相似文献   

3.
The use of higher plants to accelerate the remediation of petroleum contaminants in soil is limited by, among other factors, rooting depth and the delivery of nutrients to the microsites at which remediation occurs. The objective of this study was to test methods of enhancing root growth and remediation in the subsurface of a contaminated petroleum sludge. The phytoremediation of highly contaminated petroleum sludge (total petroleum hydrocarbons >35 g kg(-1) was tested in the greenhouse as a function of the frequency and the depth of irrigation and fertilization. Water and dissolved plant nutrients were added to the soil surface or at a depth of 30 cm, either daily or weekly. Equivalent quantities of water and nutrients were added in all cases. Daily irrigation at a depth of 30 cm invoked greater root growth and enhanced contaminant degradation relative to all other treatments. In the absence of plants, residual concentrations of petroleum hydrocarbons after 7 mo were higher than with plants. The presence of plant roots clearly improved the physical structure of the soil and increased microbial populations. Thus, the plant roots in conjunction with daily additions of soluble N and P appeared to enhance oxygen transport to greater depths in the soil, stimulate petroleum-degrading microorganisms, and provide microbial access to soil micropores. Subsurface irrigation with frequent, small amounts of water and nutrients could significantly accelerate phytoremediation of field soils contaminated with petroleum hydrocarbons.  相似文献   

4.
This study was carried out to ascertain the practicability of using bioremediated, engine‐oil‐impacted soil for crop cultivation. In this study, bioremediation by land farming and nutrient enhancement was used to treat contaminated soils. In the laboratory, soil samples were homogenized, analyzed, and placed into several reactor vessels including a substrate of poultry droppings and cow dung in various ratios to the contaminated soil. During the first phase of the investigation, contaminated soil without treatment served as a control. The soil matrix was homogenized on a weekly basis, and samples were drawn during the third, fifth, eighth, tenth, and fifteenth weeks for total petroleum hydrocarbon (TPH) reduction and nutrients analysis. The initial concentrations of TPH were diluted upon the addition of the poultry litter and cow dung substrate. Results obtained during the experiment indicate that the amount of nutrients generally decreased as the weeks progressed, and the TPH degradation ranged from 78.27% to 61.84% in the reactor vessels. There was no significant difference (p < .05) in TPH degradation based on the substrate quantities, whereas the TPH reductions in the soil amended with the animal wastes were significantly different from the control sample (soil not amended with animal wastes). In the planting phase, uncontaminated, loamy soil was used as a control (the planting phase control), and the results show that maize planted on the treated soil germinated with no significant difference (p < .05) in the number of leaves and plant heights between the treated samples and the control sample (uncontaminated loamy soil). Analysis of field‐scale animal waste requirements for hypothetical TPH contaminated soil covering a certain area shows that inorganic fertilizer application requires lesser quantities with lower costs than using poultry litter and cow dung to supply nutrients to support bioremediation. The study concludes that bioremediation for agricultural purpose is feasible, but it can be better implemented if the astronomical quantities of substrates required for field‐scale utilization can be surmounted.  相似文献   

5.
Phosphorus (P) often limits the eutrophication of streams, rivers, and lakes receiving surface runoff. We evaluated the relationships among selected soil P availability indices and runoff P fractions where manure, whey, or commercial fertilizer applications had previously established a range of soil P availabilities on a Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) surface-irrigated with Snake River water. Water-soluble P, Olsen P (inorganic and organic P), and iron-oxide impregnated paper-extractable P (FeO-Ps) were determined on a 0.03-m soil sample taken from the bottom of each furrow before each irrigation in fall 1998 and spring 1999. Dissolved reactive phosphorus (DRP) in a 0.45-microm filtered runoff sample, and iron-oxide impregnated paper-extractable P (FeO-Pw), total P, and sediment in an unfiltered runoff sample were determined at selected intervals during a 4-h irrigation on 18.3-m field plots. The 1998 and 1999 data sets were combined because there were no significant differences. Flow-weighted average runoff DRP and FeO-Pw concentrations increased linearly as all three soil P test concentrations increased. The average runoff total P concentration was not related to any soil P test but was linearly related to sediment concentration. Stepwise regression selected the independent variables of sediment, soil lime concentration, and soil organic P extracted by the Olsen method as related to average runoff total P concentration. The average runoff total P concentration was 1.08 mg L(-1) at a soil Olsen P concentration of 10 mg kg(-1). Soil erosion control will be necessary to reduce P losses in surface irrigation runoff.  相似文献   

6.
Water reuse and pollutant removal efficiency analysis of the on-farm irrigation tanks (OFTs) was carried out in rice paddy field region of Zhanghe Irrigation District, Southern China through field experiments during the rice growing season of 2009–2011. Water flow measurements indicate that 20.6–68.9% of drainage water captured by OFTs was reused for supplemental irrigation. Rainfall was the most important factor that determines the water reuse efficiency (WRR) of OFTs, since higher rainfall resulted in higher surplus irrigation water draining out of OFTs without reuse, and thus decreased WRR. Fully using the storage capacity for storing return flow, and releasing totally for supplemental irrigation also enhanced WRR of OFTs. Water quality analysis shows that OFTs removed 47.2% of total phosphorous (TP) and 60.8% of total nitrogen (TN) of inflow and have a great effect on increasing sedimentation for return flow as the mean of removal efficiency of pollutant load (REL) for suspended solids (SS) amounted to 68.4%. For water treatment effectiveness of OFTs, high hydraulic retention time (HRT) is most beneficial to increase REL of TN whereas REL of TP is not sensitive to HRT. These results confirm that OFTs can effectively increase agricultural return flow reuse and remove pollutants. As the cascade OFTs irrigation system recycle return flow for several times, the irrigation water demand from outside of region was reduced significantly for rice production. Coupling with the effect of cyclic irrigation on the nutrients recycling by paddy fields, OFTs irrigation system also considerably mitigate the N and P off-site emission. Therefore, it is advisable to integrate the role of OFTs on water reuse and treatment for water saving irrigation and ecological management of paddy fields landscape.  相似文献   

7.
Colloid-facilitated phosphorus (P) delivery from agricultural soils in different hydrological pathways was investigated using a series of laboratory and field experiments. A soil colloidal P test was developed that yields information on the propensity of different soils to release P attached to soil colloids. The relationship between turbidity of soil extracts and total phosphorus (TP) was significant (r2 = 0.996, p < 0.001) across a range of agricultural soils, and a strong positive relationship (r2 = 0.86, p < 0.001) was found between "colloidal P" (H2O-CaCl2 extracts) and turbidity. Linear regression of the proportion of fine clay (<2 microm) for each soil type evaluated against the (H2O-CaCl2) colloidal P fraction gave a weak but positive relationship (r2 = 0.38, p = 0.082). The relative contribution of different particle-size fractions in transporting P in agricultural runoff from grassland soils was evaluated using a randomized plot experiment. A significant difference (p = 0.05) in both TP and reactive phosphorus (RP) in subsurface flow was recorded for different particle-size fractions, with most TP transferred either in association with the 2-microm fraction or with the 0.001-microm or smaller fractions. Total P concentrations in runoff were higher from plots receiving P amendments compared with the zero-P plots; however, these differences were only significant for the >0.45-microm particle-size fractions (p = 0.05), and may be evidence of surface applications of organic and inorganic fertilizers being transferred through the soil either as intact organic colloids or attached to mineral particles. Our results highlight the potential for drainage water to mobilize colloids and associated P during rainfall events.  相似文献   

8.
Reduction of migration of fecal coliforms (FC) and streptococci (FS) by limiting the leaching in effluent-irrigated soil was tested in lysimeters packed with quartz sand without or with added biosolids compost or with one of two clayey soils. The 200-L, 70-cm-deep lysimeters were either planted with a Eucalyptus camaldulensis or an Oroblanco citrus tree (in the sand only), or not planted. The Eucalyptus was irrigated with oxidation pond effluent (OPE) and the Oroblanco with mechanical-biological treatment plant effluent (MBTPE). The leaching fraction (LF) ranged from 0.2 to about 1.0, and the residence time (RT) from under 1 to 40 d. The Eucalyptus was also tested under intermittent leaching (RT 11-20 d) and deficit irrigation (without leaching for about 6 mo) regimes. Under MBTPE irrigation there was little or no leaching of FC and FS. Under OPE irrigation at LF 1 without a Eucalyptus there was little or no bacterial leaching at irrigation rates below 40 L d(-1) per lysimeter (RT > or = 0.8 d). Bacterial counts in the leachate were substantial in the presence of a Eucalyptus tree under LF 0.2 and intermittent leaching regimes, and when sand-packed unplanted lysimeters received OPE effluent at >45 L d(-1). Bacterial recovery peaked at LF 0.2, at up to 45% of the input level. At LF 1 (RT 0.6-2.8 d) and with intermittent leaching the recoveries were minute. Bacterial counts in the washout from the deficit-irrigated lysimeters were typical of nonpolluted soils. The bacterial concentration and recovery patterns in the leachate mostly matched the organic carbon (OC) load in the irrigation water, and its concentration and bioavailablity in the leachate. We related the leaching patterns of the fecal bacteria to their relative reproduction and die-off rates, and to the dependence of their regrowth on available carbon sources.  相似文献   

9.
Soil organic phosphorus (SOP) can greatly contribute to plant-available P and P nutrition. The study was conducted to determine the effects of organic amendments on organic P fractions and microbiological activities in paddy soils. Samples were collected at the Changshu Agro-ecological Experiment Station in Tahu Lake Basin, China, from an experiment that has been performed from 1999 to 2004, on a paddy soil (Gleysols). Treatments consisted of swine manure (SM), wheat straw (WS), swine manure plus wheat straw (SM + WS), and a control (chemical fertilization alone). Organic amendments markedly increased soil total organic phosphorus (TOP) and total organic carbon (TOC), especially in continuously flooded conditions. Based on the fractionation of SOP, organic amendments significantly increased soil labile organic phosphorus (LOP), moderately labile organic phosphorus (MLOP), and moderately stable organic phosphorus (MSOP) compared with the control. For SM and SM + WS treatments, LOP in continuously flooded soils decreased by 30.1 and 36.4%, respectively, compared to intermittently flooded soils. In organically amended soils, continuous flooding showed significantly lower microbial biomass phosphorus (MBP) and alkaline phosphatase activities (APA) than intermittent flooding. In intermittently flooded conditions, incorporating organic amendments into soil resulted in greater P uptake and biomass yield of rice than the control. In the intermittently flooded soils, APA (P < 0.05) and MBP (P < 0.01) were significantly and positively related to TOP, LOP, MLOP, and MSOP, whereas in continuously flooded soils, there was a significant (P < 0.05) negative relationship between MBP, TOP, and MSOP. Based on soil organic P fractions and soil enzymatic and microbiological activities, continuous flooding applied to paddy soils should be avoided, especially when swine manure is incorporated into paddy soil.  相似文献   

10.
Irrigation of citrus (Citrus aurantium L. × Citrus paradise Macf.) with urban reclaimed wastewater (RWW) can be economical and conserve fresh water. However, concerns remain regarding its deleterious effects on soil quality. We investigated the ionic speciation (ISP) of RWW and potential impacts of 11 yr of irrigation with RWW on soil quality, compared with well-water (WW) irrigation. Most of nutrients (~53-99%) in RWW are free ionic species and readily available for plant uptake, such as: NH(4+), NO(3-), K(+), Ca(2+), Mg(2+), SO(4)(2-), H(3)BO(3), Cl(-), Fe(2+), Mn(2+), Zn(2+), Co(2+), and Ni(2+), whereas more than about 80% of Cu, Cr, Pb, and Al are complexed with CO(3-), OH(-), and/or organic matter. The RWW irrigation increased the availability and total concentrations of nutrients and nonessential elements, and soil salinity and sodicity by two to three times compared with WW-irrigated soils. Although RWW irrigation changed many soil parameters, no difference in citrus yield was observed. The risk of negative impacts from RWW irrigation on soil quality appears to be minimal because of: (i) adequate quality of RWW, according to USEPA limits; (ii) low concentrations of metals in soil after 11 yr of irrigation with RWW; and (iii) rapid leaching of salts in RWW-irrigated soil during the rainy season.  相似文献   

11.
Rising population and demands for rice as a staple food have created severe stress on freshwater availability for paddy cultivation. The literature suggests that conventional irrigation techniques are inadequate to overcome the water constraints arising from drought and extreme weather conditions. In the past few decades, there is an upsurge of scientific exploration of agricultural techniques in reinventing traditional methods of irrigation. Recently, alternate wet and dry irrigation (AWDI) method has shown great promise regarding profitable rice cultivation with limited water supply. The AWDI method is a trending water management system, which inundates rice fields with intermittent wet conditions followed by a dry period. This not only ensures adequate water supply but increases crop yield and water productivity index (WPI). The AWDI also helps in reducing parasitic mosquito population in the rice fields by minimizing the field flooding period and curtailing a major part of their life cycles. This review proposes a novel approach of emphasizing AWDI method as an important agricultural tool for supplementing rice fields with limited freshwater, increasing crop yield, and monitoring parasitic mosquito populations. The major objective of this study is to report the state-of-the-art scenario of AWDI method, critically analyze the research gaps related to conventional methods of irrigation and appreciate the futuristic long-term benefits of AWDI method. Literature survey was performed using search engines like Scopus, PubMed, Google Scholar, Research Gate, Science Direct, and Google Scholar. Comprehensive appraisal of resources (both offline and online) and critical evaluation of AWDI technicalities revealed that the AWDI reduced water usage by 45%, enhanced crop yield and improved WPI in paddy fields in the Asian sub-continent. The AWDI also curtailed the propagation of lethal mosquito species (Cx. tritaenorhynchus, Cx. vishnui, and Cx pseudovishnui) in rice fields. Therefore, the current study endorses AWDI as a promising substitute of conventional irrigation and a novel approach towards fulfilling water constraints that may be practiced anywhere in the world.  相似文献   

12.
Phosphorus (P) loss from agricultural land in surface runoff can contribute to eutrophication of surface water. This study was conducted to evaluate a range of environmental and agronomic soil P tests as indicators of potential soil surface runoff dissolved reactive P (DRP) losses from Ontario soils. The soil samples (0- to 20-cm depth) were collected from six soil series in Ontario, with 10 sites each to provide a wide range of soil test P (STP) values. Rainfall simulation studies were conducted following the USEPA National P Research Project protocol. The average DRP concentration (DRP30) in runoff water collected over 30 min after the start of runoff increased (p < 0.001) in either a linear or curvilinear manner with increases in levels of various STPs and estimates of degree of soil P saturation (DPS). Among the 16 measurements of STPs and DPSs assessed, DPS(M3) 2 (Mehlich-3 P/[Mehlich-3 Al + Fe]) (r2 = 0.90), DPS(M3)-3 (Mehlich-3 P/Mehlich-3 Al) (r2 = 0.89), and water-extractable P (WEP) (r2 = 0.89) had the strongest overall relationship with runoff DRP30 across all six soil series. The DPS(M3)-2 and DPS(M3)-3 were equally accurate in predicting runoff DRP30 loss. However, DPS(M3)-3 was preferred as its prediction of DRP30 was soil pH insensitive and simpler in analytical procedure, ifa DPS approach is adopted.  相似文献   

13.
Bioavailable phosphorus (BAP) in stormwater runoff is a key issue for control of eutrophication in agriculturally impacted watersheds. Laboratory experiments were conducted in soil runoff boxes to determine BAP content in simulated storm runoff in 10 (mostly) calcareous soils from the Minnesota River basin in southern Minnesota. The soluble reactive phosphorus (SRP) portion of the runoff BAP was significantly correlated with soil Mehlich-III P, Olsen P, and water-extractable P (all r2 > 0.90 and p < 0.001). A linear relationship (r2 = 0.88, p < 0.001) also was obtained between SRP in runoff and the phosphorus saturation index based on sorptivity (PSIs) calculated with sorptivity as a measure of the inherent soil P sorption capacity. Runoff levels of BAP estimated with iron oxide-impregnated paper were predicted well by various soil test P methods and the PSI, of the soils, but correlation coefficients between these variables and runoff BAP were generally lower than those for runoff SRP. Using these relationships and critical BAP levels for stream eutrophication, we found corresponding critical levels of soil Mehlich-III P and Olsen P (which should not be exceeded) to be 65 to 85 and 40 to 55 mg kg(-1), respectively.  相似文献   

14.
The effects of various fractions of copper (Cu) and zinc (Zn) on soil bacteria were evaluated by the heavy metal tolerance level of the bacterial community (IC50) in soil samples collected near a mine. The IC50 values had no relationship with the total concentrations of Zn and Cu in the soils, but were weakly correlated with the 0.05 M CaCl2-extractable form of each metal in the soils (Cu: R2 = 0.670, p < 0.01; Zn: R2 = 0.453, p < 0.05). It was found that the IC50 correlated strongly with the total concentration of each metal in the extracts from water-saturated soil samples, described below as "soil solution" (Cu: R2 = 0.789, p < 0.01; Zn: R2 = 0.617, p < 0.01). The speciation of these metals in the soil solutions was estimated using an equilibrium thermodynamic computer model, SOILCHEM. Simulated free Cu ion ranged from 18 to 98% of total Cu, and organic complexes of Cu ranged from < 1 to 56%. In all samples, Zn existing as the free ion was estimated to be more than 80% of total Zn in the soil solutions. The IC50 values were also correlated with the estimated free metal ion activities, but with slightly lower correlation coefficients than found for total concentration in the soil solutions (Cu: R2 = 0.735, p < 0.01; Zn: R2 = 0.610, p < 0.01). The results suggest that not only high metal ion activities, but also total dissolved metal concentrations in soil solutions may affect the bacterial community.  相似文献   

15.
Agricultural drainage ditches serve as P transport pathways from fields to surface waters. Little is known about the spatial variation of P at the soil-water interface within ditch networks. We quantified the spatial variation of surficial (0-5 cm) soil P within vegetated agricultural ditches on a farm in Princess Anne, MD with an approximately 30-yr history of poultry litter application. Ditch soils from 10 ditches were sampled at 10-m intervals and analyzed for acid ammonium oxalate-extractable P, Fe, Al (P(ox), Fe(ox), Al(ox)), and pH. These variables were spatially autocorrelated. Oxalate-P (min = 135 mg kg(-1), max = 6919 mg kg(-1), mean = 700 mg kg(-1)) exhibited a high standard deviation across the study area (overall 580 mg kg(-1)) and within individual ditches (maximum 1383 mg kg(-1)). Several ditches contained distinct areas of high P(ox), which were associated with either point- or nonpoint-P sources. Phosphorus was correlated with Al(ox) or Fe(ox) within specific ditches. Across all ditches, Al(ox) (r = 0.80; p < 0.001) was better correlated with P(ox) than was Fe(ox) (r = 0.44; p < 0.001). The high level of spatial variation of soil P observed in this ditch network suggests that spatially distributed sampling may be necessary to target best management practices and to model P transport and fate in ditch networks.  相似文献   

16.
Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R2= 0.7, p = 0.005, range = 4.0-10.1 mg L(-1); ISS: R2= 0.71, p = 0.004, range = 2.04-7.3 mg L(-1)); dissolved organic carbon (DOC) concentration (R2= 0.79, p = 0.001, range = 1.5-4.1 mg L(-1)) and soluble reactive phosphorus (SRP) concentration (R2= 0.75, p = 0.008, range = 1.9-6.2 microg L(-1)) decreased with increasing disturbance intensity; and ammonia (NH4+), nitrate (NO3-), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R2= 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3- during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions.  相似文献   

17.
The extensive reclamation of marshland into cropland has tremendously impacted the ecological environment of the Sanjiang Plain in northeast China. To understand the impacts of marshland reclamation and restoration on soil properties, we investigated the labile organic carbon fractions and the soil enzyme activities in an undisturbed marshland, a cultivated marshland and three marshlands that had been restored for 3, 6 and 12?years. Soil samples collected from the different management systems at a depth of 0-20?cm in July 2009 were analyzed for soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and easily degradable organic carbon. In addition, the activities of the invertase, β-glucosidase, urease and acid phosphatase were determined. These enzymes are involved in C, N and P cycling, respectively. Long-term cultivation resulted in decreased SOC, DOC, MBC, microbial quotient and C (invertase, β-glucosidase) and N-transforming (urease) enzyme activities compared with undisturbed marshland. After marshland restoration, the MBC and DOC concentrations and the soil invertase, β-glucosidase and urease activities increased. Soil DOC and MBC concentrations are probably the main factors responsible for the different invertase, β-glucosidase and urease activities. In addition, marshland restoration caused a significant increase in the microbial quotient, which reflects enhanced efficiency of organic substrate use by microbial biomass. Our observations demonstrated that soil quality recovered following marshland restoration. DOC, MBC and invertase, β-glucosidase and urease activities were sensitive for discriminating soil ecosystems under the different types of land use. Thus, these parameters should be considered to be indicators for detecting changes in soil quality and environmental impacts in marshlands.  相似文献   

18.
Irrigated pastures are significant contributors of phosphorus (P) to inland watercourses, with much of the P coming from applied fertilizer. It was hypothesized that the timing of P fertilizer application relative to irrigation regulates P concentrations in runoff and infiltrating water. To test this hypothesis, a two-by-two factorial experiment was conducted on twelve 8- x 30-m border-irrigated bays growing perennial pasture. Phosphorus fertilizer in the form of single superphosphate (44 kg P ha(-1)) was surface-broadcast onto the bays when the nominal change in soil water deficit reached 0 or 50 mm (U.S. Class A pan evaporation minus rainfall). Following fertilizer application, the bays were again irrigated when the nominal soil water deficit between fertilizing and the subsequent irrigation reached either 0 or 50 mm. The volume of water applied, runoff volume, and changes in soil water content were recorded for the three irrigations following fertilizer application. Total phosphorus (TP) and filtrable reactive phosphorus (FRP, <0.45 microm) concentrations in runoff and at depths of 0.1, 0.3, and 0.6 m in the soil were also measured. Soil water content at fertilizer application had less effect on P concentrations in runoff and soil water than the additional time between fertilizing and irrigating. By allowing a deficit of 50 mm between fertilizer application and irrigation, the average concentration of P in runoff and moving below a soil depth of 0.1 m was approximately halved. To maximize fertilizer use efficiency and minimize environmental effects, a delay should occur between applying P fertilizer and irrigating perennial pasture.  相似文献   

19.
Sediment and phosphorus (P) in agricultural runoff can impair water quality in streams, lakes, and rivers. We studied the factors affecting P transfer and transport in irrigated furrows in six freshly tilled fallow fields, 110 to 180 m long with 0.007 to 0.012 m m-1 slopes without the interference of raindrops or sheet flow that occur during natural or simulated rain. The soil on all fields was Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcids). Flow rate, sediment concentration, and P concentrations were monitored at four, equally spaced locations in each furrow. Flow rate decreased with distance down the furrow as water infiltrated. Sediment concentration varied with distance and time with no set pattern. Total P concentrations related directly to sediment concentrations (r2=0.75) because typically >90% of the transported P was particulate P, emphasizing the need to control erosion to reduce P loss. Dissolved reactive phosphorus (DRP) concentrations decreased with time at a specific furrow site but increased with distance down the furrow as contact time with soil and suspended sediment increased. The DRP concentration correlated better with sediment concentration than extractable furrow soil P concentration. However, suspended sediment concentration tended to not affect DRP concentration later in the irrigation (>2 h). These results indicate that the effects of soil P can be overshadowed by differences in flow hydraulics, suspended sediment loads, and non-equilibrium conditions.  相似文献   

20.
The loss of phosphorus (P) in runoff from agricultural soils may accelerate eutrophication in lakes and streams as well as degrade surface water quality. Limited soil specific data exist on the relationship between runoff P and soil P. This study investigated the relationship between runoff dissolved reactive phosphorus (DRP) and soil P for three Oklahoma benchmark soils: Richfield (fine, smectitic, mesic Aridic Argiustoll), Dennis (fine, mixed, active, thermic Aquic Argiudoll), and Kirkland (fine, mixed, superactive, thermic Udertic Paleustoll) series. These soils were selected to represent the most important agricultural soils in Oklahoma across three major land resource areas. Surface soil (0-15 cm) was collected from three designated locations, treated with diammonium phosphate (18-46-0) to establish a wide range of water-soluble phosphorus (WSP) (3.15-230 mg kg(-1)) and Mehlich-3 phosphorus (M3P) (27.8-925 mg kg(-1)). Amended soils were allowed to reach a steady state 210 d before simulated rainfall (75 mm h(-1)). Runoff was collected for 30 min from bare soil boxes (1.0 x 0.42 m and 5% slope) and analyzed for DRP and total P. Soil samples collected immediately before rainfall simulation were analyzed for the following: M3P, WSP, ammonium oxalate P saturation index (PSI(ox)), water-soluble phosphorus saturation index (PSI(WSP)), and phosphorus saturation index calculated from M3P and phosphorus sorption maxima (P(sat)). The DRP in runoff was highly related (p < 0.001) to M3P for individual soil series (r2 > 0.92). Highly significant relationships (p < 0.001) were found between runoff DRP and soil WSP for the individual soil series (r2 > 0.88). Highly significant relationships (p < 0.001) existed between DRP and different P saturation indexes. Significant differences (p < 0.05) among the slopes of the regressions for the DRP-M3P, DRP-WSP, DRP-PSI(ox), DRP-PSI(WSP), and DRP-P(sat) relationships indicate that the relationships are soil specific and phosphorus management decisions should consider soil characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号