首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The (90)Sr and (137)Cs uptake by the plant Helianthus annuus L. was studied during cultivation in a hydroponic medium. The accumulation of radioactivity in plants was measured after 2, 4, 8, 16 and 32 days of cultivation. About 12% of (137)Cs and 20% of (90)Sr accumulated during the experiments. We did not find any differences between the uptake of radioactive and stable caesium and strontium isotopes. Radioactivity distribution within the plant was determined by autoradiography. (137)Cs was present mainly in nodal segments, leaf veins and young leaves. High activity of (90)Sr was localized in leaf veins, stem, central root and stomata. The influence of stable elements or analogues on the transfer behaviour was investigated. The percentage of non-active caesium and strontium concentration in plants decreased with the increasing initial concentration of Cs or Sr in the medium. The percentage of (90)Sr activity in plants decreased with increasing initial activity of the nuclide in the medium, but the activity of (137)Cs in plants increased. The influence of K(+) and NH(4)(+) on the uptake of (137)Cs and the influence of Ca(2+) on the uptake of (90)Sr was tested. The highest accumulation of (137)Cs (24-27% of the initial activity of (137)Cs) was found in the presence of 10 mM potassium and 12 mM ammonium ions. Accumulation of about 22% of initial activity of (90)Sr was determined in plants grown on the medium with 8 mM calcium ions.  相似文献   

2.
A number of hypotheses have previously been developed concerning the rates of uptake and elimination of radiocaesium (137Cs) in fish. These include the influence of potassium and other water chemical parameters on both uptake and elimination, and the effect of fish size on accumulation. In order to test these hypotheses, we have assembled a data set comprising more than 1,000 measurements of radiocaesium (137Cs) in predatory fish (perch, pike and brown trout) in nine European lakes during the years after Chernobyl. These data have been analysed using simple models for uptake and excretion of 137Cs in fish, showing that: 1. Fish-water concentration factors (CF) were inversely proportional to potassium [K+] concentration of the different lakes, in agreement with previous studies. 2. The uptake rate of 137Cs in fish was negatively correlated with lake [K+], but excretion rate was independent of [K+]. 3. Lower than expected CF values were found in one lake, Iso Valkj?rvi, Finland. This is attributed to inhibition of the K+ (and therefore 137Cs) high affinity transport system in aquatic plants and fish by low pH and/or low Ca2+. 4. The inclusion of fish weight as a parameter in our dynamic model significantly improves the ability of the model to fit the observed measurements of 137Cs. 5. The model developed from the above hypotheses was able to fit the data from nine different lakes to within approximately a factor of 3 of the observed values.  相似文献   

3.
Potassium, a chemical analogue of cesium, and phosphorus, an essential macronutrient transported by arbuscular mycorrhizal fungi (AMF), have been suggested to influence the transport of radiocesium by AMF. However, no study investigated the effects of increasing concentrations of both elements on the importance of this transport. Here, the arbuscular mycorrhizal-plant (AM-P) in vitro culture system associating Medicago truncatula plantlets with Glomus intraradices was used to evaluate this effect.Using three concentrations of K (0, 1, 10 mM) and two concentrations of P (30 and 3000 μM) added to a compartment only accessible to the AMF, we demonstrated that K and P individually and in combination significantly influenced radiocesium transport by AMF. Whilst increased concentration of K decreased the amount of radiocesium transported, the opposite was observed for P. Although the exact mechanisms involved need to be assessed, both elements were identified as important factors influencing the transport of radiocesium by AMF.  相似文献   

4.
A greenhouse pot experiment was conducted to study the influence of potassium fertilizers in different forms and rates on cadmium (Cd) uptake by two cultivars of spring wheat (Triticum aestivum, L.): Brookton and Krichauff. Potassium fertilizers were added to soil at four levels: 0, 55, 110 and 166 mg K kg(-1) soil as KNO(3) (N), KCl (C) or K(2)SO(4) (S). CdCl(2) was added to all the treatments at a uniform rate equivalent to 15 mg Cd kg(-1) soil. Plant shoot and root dry weights (DW) of both cultivars were reduced significantly by the addition of K-fertilizer in C and S treatments but there were only marginal changes in the N treatments. The Cd concentrations in shoots and whole plants increased significantly (P<.001) with increasing K addition, from 37.5 to 81.4 mg kg(-1) and from 42.9 to 86.8 mg kg(-1) for Brookton and Krichauff, respectively. However, no obvious effect was observed in the N treatments, except for the highest K level (K3) where there was a sharp increase in Cd concentration compared to the lower additions. Forms of K-fertilizers significantly influenced the Cd concentrations in plant shoots and roots (P<.001), but there was no significant difference between C and S treatments. This experiment showed that anions Cl(-) and SO(4)(2-) increase Cd uptake by plants, which can be interpreted as Cl(-) and SO(4)(2-) complexing readily with Cd(2+) and thereby increasing the bioavailability of Cd(2+) in soils. The effect of potassium itself on plant uptake of Cd was also observed. We suggest that when applying potassium fertilizer to Cd-contaminated soils, the forms and rates should be considered.  相似文献   

5.
The probable occurrence and rate of foliar absorption of stable cesium (133Cs) from the water column by aquatic macrophyte species was analyzed following the addition of 133Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10(3)Lkg(-1)d(-1)) and a loss rate parameter k (d(-1)) were estimated for each species using time series of 133Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the 133Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u> or =0.75 x 10(3)Lkg(-1)d(-1). Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for 137Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.  相似文献   

6.
A large-scale hydroponic experiment was carried out in a non-controlled greenhouse. Spring wheat plants were grown to maturity at four levels of external K concentration (2, 4, 20 and 40 mgl(-1)) and one concentration of radiocaesium (8 Bqml(-1)). Concentrations of K and radiocaesium in the growth solution were closely monitored, and replenishments were made upon depletion. K effectively competed with radiocaesium in terms of root uptake. Activity concentrations of radiocaesium in plants differed significantly between the four K treatments; the activity concentration at the lowest external K concentration being 100 times higher than that at the highest K level. The relationship between radiocaesium uptake and external K level could be described by a negative power function; this showed that when the K level reached around 12 mgl(-1), further increases in the external K level resulted only in slight changes in its inhibitory effect. As a result of this inhibitory effect of potassium supply, concentrations of radiocaesium in plant tissues, grains in particular, were greatly reduced at high external K concentration. Mechanisms involved in Cs-K interaction in root uptake are also discussed.  相似文献   

7.
Distribution of cesium (134Cs and 137Cs) and strontium (Sr-II) between soil/water phases depends on many factors such as concentration of these ions between phases, the cation exchange capacity (CEC) of the soil as well as its clay content, chemical composition (especially Na, K, Ca, and Mg ions), grain size distribution, calcite, iron oxide content, and organic coatings. Distribution coefficients (Kd) of cesium (labeled with 137Cs) and strontium were measured on the grain size distributions ≥32 μm of four soil samples. These soils were obtained from four different locations within Inshas site in Egypt and three groundwater samples were obtained from the same site locations. X-ray diffraction showed that the soil samples consisted mainly of quartz mixed with the minor amounts of kaolonite and clay minerals. Sorption experiments were carried out at strontium aqueous concentrations range 10−7 to 10−4 mol l−1. The CEC and Kds for cesium and strontium were measured at the same metal concentrations range. Distribution coefficients of cesium were found to be influenced by the composition of the soil, while the distribution coefficients of strontium were found to depend on calcium concentrations in the soil/groundwater system. The aim of this study was to determine the safety assessment of disposal 137Cs radionuclide and Sr(II) in the aquifer regions inside the Inshas site. Sequential extraction tests showed that, strontium was associated with the carbonate fractions and majority of cesium was sorbed on the iron oxides and the residue.  相似文献   

8.
An analysis of sporocarps of ectomycorrhizal fungi Suillus variegatus assessed whether cesium (133Cs and 137Cs) uptake was correlated with potassium (K) or rubidium (Rb) uptake. The question was whether intraspecific correlations of Rb, K and 133Cs mass concentrations with 137Cs activity concentrations in sporocarps were higher within, rather than among, different fungal species, and if genotypic origin of sporocarps within a population affected uptake and correlation. Sporocarps (n = 51) from a Swedish forest population affected by the fallout after the Chernobyl accident were studied. The concentrations were 31.9 ± 6.79 g kg−1 for K (mean ± SD, dwt), 0.40 ± 0.09 g kg−1 for Rb, 8.7 ± 4.36 mg kg−1 for 133Cs and 63.7 ± 24.2 kBq kg−1 for 137Cs. The mass concentrations of 133Cs correlated with 137Cs activity concentrations (r = 0.61). There was correlation between both 133Cs concentrations (r = 0.75) and 137Cs activity concentrations (r = 0.44) and Rb, but the 137Cs/133Cs isotopic ratio negatively correlated with Rb concentration. Concentrations of K and Rb were weakly correlated (r = 0.51). The 133Cs mass concentrations, 137Cs activity concentrations and 137Cs/133Cs isotopic ratios did not correlate with K concentrations. No differences between, within or, among genotypes in S. variegatus were found. This suggested the relationships between K, Rb, 133Cs and 137Cs in sporocarps of S. variegatus is similar to other fungal species.  相似文献   

9.
Caesium (Cs) uptake in roots of winter wheat was found to follow a dual pattern similar to that established for potassium uptake in barley roots. This suggests the operation of two discrete uptake systems for Cs, as for potassium. The ‘System 1’ (low concentration) uptake mechanism for caesium, however, can be resolved into two hyperbolic components which both obey Michaelis-Menten kinetics. The Michaelis-Menten equation was used to derive a function which describes the variation in solution-to-root transfer factor for any element for which the appropriate root uptake constants (Km andVmax) can be determined. This function successfully described available data for root uptake of caesium and potassium, predicting that the solution-to-root transfer factor decreases in relation to an increase in the substrate concentration of each respective element. At substrate concentrations equivalent to carrier-free radiocaesium concentrations, however, the solution-to-root transfer factor predicted by the function and by empirical data suggests that the relationship between root uptake and solution concentration of caesium is linear. These findings are discussed in relation to the comparative physiology of caesium and potassium uptake by plant roots and with respect to the application of the soil-to-plant transfer factor concept to radioecological studies.  相似文献   

10.
This work is aimed at quantifying foliar transfer of cesium, strontium, barium and tellurium under the influence of rainfall characteristics (intensity, frequency and time elapsed between contamination and first rainfall). Grassland boxes were contaminated by dry deposition of multi-element aerosols of (137)Cs, (85)Sr, (133)Ba and (123m)Te. They were grown in a greenhouse under controlled conditions. The treatments consisted of mowing and applying rainfalls (8 and 30 mmh(-1)) at different times after the contamination. At a leaf area index of 5.9+/-1.9, interception of the aerosols was similar for the 4 radionuclides (83.8+/-5.9%). Dew produced significant radionuclide accumulation in the base of the vegetation and transfer to the soil. For moderate intensity, an early (2 days after contamination) first rainfall was as efficient, in terms of leaf wash-off, as a longer rainfall occurring later (6 days after contamination). For early rainfalls, eliminated activities were comparable because the influence of rain intensity was compensated by rain duration. However, for late rainfalls, wash-off efficiency increased with rainfall intensity. Total transfer factors (TTF) were determined on whole grass immediately after 4 rainfalls and at harvest. After 4 medium intensity rainfalls, rain frequency did not influence total transfer factors (TTF) of strontium, barium and tellurium (about 0.2, 0.3 and 0.35 Bq kg(fresh weight)(-1) by Bq m(-2), respectively). Cesium TTF value was lower in the case of a weekly rain (0.1 against 0.2 Bq kg(fresh weight)(-1) by Bqm(-2)). TTF values were similar for twice-a-week rainfalls, whatever their intensity. They were higher for weekly rains of high intensity (between 0.3 and 0.75 Bq kg(fresh weight)(-1) by Bqm(-2) against 0.1-0.35 Bq kg(fresh weight)(-1) by Bq m(-2), depending on the radionuclides). TTF values attested that wash-off was more efficient when rainfalls lasted longer. Field loss on the top of the leaves was well described by an offset exponential model. The half-lives varied with rainfall characteristics from 4 days for cesium, strontium and barium to 20 days for tellurium. The offset value varied between 0% for tellurium (high intensity rainfalls) and 14% for cesium (medium intensity rainfalls).  相似文献   

11.
The uptake of naturally occurring uranium, thorium, radium and potassium by wheat plant from two morphologically different soils of India was studied under natural field conditions. The soil to wheat grain transfer factors (TF) were calculated and observed to be in the range of 4.0 x 10(-4) to 2.1 x 10(-3) for 238U, 6.0 x 10(-3) to 2.4 x 10(-2) for 232Th, 9.0 x 10(-3) to 1.6 x 10(-2) for 226Ra and 0.14-3.1 for 40K. Observed ratios (OR) of radionuclides with respect to calcium have been calculated to explain nearly comparable TF values in spite of differences in soil concentration of the different fields. They also give an idea about the discrimination exhibited by the plant in uptake of essential and nonessential elements. The availability of calcium and potassium in soil for uptake affects the uranium, thorium and radium content of the plant. The other soil factors such as illite clays of alluvial soil which trap potassium in its crystal lattice and phosphates which form insoluble compounds with thorium are seen to reduce their availability to plants. A major percentage (54-75%) of total 238U, 232Th and 226Ra activity in the plant is concentrated in the roots and only about 1-2% was distributed in the grains, whereas about 57% of 40K activity accumulated in the shoots and 16% in the grains. The intake of radionuclides by consumption of wheat grains from the fields studied contributes a small fraction to the total annual ingestion dose received by man due to naturally existing radioactivity in the environment.  相似文献   

12.
The radioactive isotopes of cesium and strontium may be deposited on urban surfaces in the case of an accidental atmospheric discharge from a nuclear facility and thus imply a health hazard. In order to handle the decontamination of these surfaces, we have carried out experiments under controlled conditions on tiles and concrete and we have studied.the physical and chemical mechanisms at the solid-liquid interface. The deposition of radionuclides was carried out in the form of aerosols indicating an accidental source term. Their desorption by rainwater is low in all cases, of the order of 5-6% for cesium for any material and 29 and 12% for strontium on tile and concrete, respectively. The low desorption values of cesium may be explained by the strong bonding that occurs with the silicates constituting the tile due to virtually irreversible processes of exchange of ions and by the formation of insoluble complexes with the C--S-H gel of concrete. The strontium-tile bonds are weaker, while strontium precipitates with the carbonates of concrete in the form of SrCO3. In view of these characteristics, washing solutions with high concentrations of chloride and oxalate of ammonium chosen for their ion-exchanging and sequestering properties were tested on these surfaces. The desorption of cesium improved strongly since it reached 70% on tile and 90% on concrete after 24h of contact, which is consistent with our knowledge of the; bonds between this element and the surfaces. Strontium, given the greater complexity of physical and chemical forms that it may take is less well desorbed. The ammonium chloride improves the desorption (50% and 40%, for tile and concrete, respectively) but the oxalate, while it does not affect desorption on the tiles, decreases that on the concrete since by strongly etching the concrete, it causes the release of carbonate ions that precipitate with strontium.  相似文献   

13.
Three rates of Ca(OH)2 were applied to an acid soil and the 134Cs uptake by radish, cucumber, soybean and sunflower plants was studied. The 134Cs concentration in all plant species was reduced from 1.6-fold in the sunflower seeds to 6-fold in the soybean vegetative parts at the higher Ca(OH)2 rate. Potassium (K) concentration in plants was also reduced, but less effectively. The significantly decreased 134Cs-K soil to plant distribution factors (D.F.) clearly suggest a stronger effect of soil liming on 134Cs than on K plant uptake. This observation was discussed in terms of ionic interactions in the soil matrix and within the plants. The results also indicated that the increased Ca2+ concentration in the exchange phase and in the soil solution along with the improved root activity, due to the soil liming, enhanced the immobilization of 134Cs in the soil matrix and consequently lowered the 134Cs availability for plant uptake.  相似文献   

14.
The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to find any association between the uptake of the naturally occurring radionuclides and the isotopes of cesium of Chernobyl origin. The activities of the isotopes of radium, 226Ra and 228Ra, in the tobacco leaves reflected their origin from the soil by root uptake rather than from fertilizers used in the tobacco cultivation. Lead-210 originated from the air and was deposited onto the tobacco leaves and trapped by the trichomes. Potassium-40 in the tobacco leaves was due to root uptake either from soil or from fertilizer. The isotopes of cesium, 137Cs and 134Cs, in the tobacco leaves were due to root uptake and not due to deposition onto the leaf foliage as they still remained in soil four years after the Chernobyl reactor accident but were absent from the atmosphere in rain washout (precipitation) and gravitational settling.  相似文献   

15.
为探究赣江南昌段水化学时空变化特征及南昌城区对赣江的影响,于2015年4月~2016年3月在赣江南昌段(赣江进入南昌城区前、城区中心及流经城区后的北支、中支和南支)进行月周期采样,分析水体中的化学离子(HCO-3、Cl-、SO2-4、NO-3、K+、Na+、Ca2+、Mg2+、NH+4),重金属元素(Cr、Mn、Fe、Ni、Cu、Cd、Sb、Pb)以及溶解性有机碳(DOC)、总磷(TP)的分布特征及影响因素。结果表明:1)赣江南昌段总体水质在地表水源地标准限值内,水化学类型为HCO3-Ca型水,HCO-3、Cl-、SO2-4、NO-3、K+、Na+、Ca2+、Mg2+、NH+4、Mn和DOC含量在不同月份间的变化主要受流量影响,Cr、Fe、Ni、Cu、Cd、Sb、Pb和TP受流量影响较小。(2) 赣江南昌段污染程度为:南支污染最重,北支次之,中支、城区中心和入城区前的污染程度相近。TP、Cr、Ni、Cu、Sb、Pb在南支显著偏高,Mn在北支显著偏高。(3)TP、Ni、Cu、Pb受南昌城区影响显著,经城区后含量增加;DOC、Cd经城区后含量减小,但流经城郊农业区后增加;HCO-3、Cl-、NO-3、SO2-4、Na+、K+、Ca2+、Mg2+、NH+4、Cr、Fe、Mn、Sb受南昌城区影响不显著。 关键词: 赣江;南昌城区;水化学;时空变化  相似文献   

16.
The accumulation of natural and artificial radionuclides in humans and domestic animals is of interest in estimating effective doses of exposed humans and to decide whether animal products can be used for nutrition of the population. In this paper we present an investigation of the (137)Cs- and (40)K-activity levels of the ribs and sternum of a "mountain pasture" cow, born in a highly contaminated region of Styria, Austria, at the time of the radioactive fallout following the Chernobyl accident. This is the first systematic investigation of the variation in activity levels of a contaminated animal. The International Commission on Radiological Protection (ICRP) assumes that cesium and potassium are homogenously distributed throughout the whole body of an organism. However, the presented results show that there is a non-uniform distribution of (137)Cs and (40)K in different skeletal bones and their adherent tissues of a dairy cattle. We found that activity concentrations of (137)Cs and (40)K varied up to a factor 2.5 in different components of the ribs. The minimum values of (137)Cs and (40)K in the ribs were 29.9 and 21Bqkg(-1) fresh mass for trabecular bone in the vertebral half of asternal ribs, and the maximum values 332 and 132Bqkg(-1) fresh mass for a mixed sample composed of a cartilaginous tissue layer and parts of the perichondrium, both originating from asternal costal cartilages, respectively.  相似文献   

17.
Bikini Island was contaminated on March 1, 1954 by the Bravo detonation (U.S. nuclear test series, Castle) at Bikini Atoll. About 90% of the estimated dose from nuclear fallout to potential island residents is from cesium-137 ((137)Cs) transferred from soil to plants that are consumed by residents. Thus, radioecology research efforts have been focused on removing (137)Cs from soil and/or reducing its uptake into vegetation. Most effective was addition of potassium (K) to soil that reduces (137)Cs concentration in fruits to 3-5% of pretreatment concentrations. Initial observations indicated this low concentration continued for some time after K was last applied. Long-term studies were designed to evaluate this persistence in more detail because it is very important to provide assurance to returning populations that (137)Cs concentrations in food (and, therefore, radiation dose) will remain low for extended periods, even if K is not applied annually or biennially. Potassium applied at 300, 660, 1260, and 2070 kg ha(-1) lead to a (137)Cs concentration in drinking-coconut meat that is 34, 22, 10, and about 4% of original concentration, respectively. Concentration of (137)Cs remains low 8-10 y after K is last applied. An explanation for this unexpected result is discussed.  相似文献   

18.
A method for screening 90Sr in milk samples is proposed. This method is based on a liquid scintillation technique taking advantage of Cherenkov radiation, which is produced in a liquid medium and then detected by the photomultipliers of a Liquid Scintillation Counter (LSC). Twenty millilitres of water and milk samples spiked with various concentrations of 90Sr/90Y in equilibrium were added in plastic vials and then were measured with an LSC (TriCarb 3170 TR/SL). The derived efficiencies were 49% for water samples and 14% for milk samples. The detection limit was 470 mBq L(-1)(90)Sr for water, without any pretreatment. Milk contains potassium, which also produces Cherenkov radiation due to the presence of 40K. For this reason, the interference of 40K in the measurements of 90Sr in milk samples was also investigated. The detection limit for milk was 1.7 Bq L(-1)90Sr.  相似文献   

19.
Natural gamma radiation of beach sand deposits was measured along the south coast of Rio de Janeiro State, Brazil, with the aim of studying the provenance and transport processes of sediments in this area. Concentrations of thorium, uranium and potassium were evaluated using γ-ray spectrometry and a behavioral study of eTh/eU and eTh/K cross plots was performed, reflecting the mineralogical properties of beach sands, as well as their history of transport and sorting processes. The results show that such technique can be efficiently used to map heavy mineral distributions and to distinguish the different origins of coastal sediments disclosing the influence of nearby rivers.  相似文献   

20.
Under greenhouse condition a pot culture investigation was carried out using Inceptisol soil (Typic Haplustept) contaminating with (134)Cs @ 1muCikg(-1) soil to study the transfer factor to Mustard, Gram, Spinach and Wheat crops as influenced by potassium application (0, 27.3, 54.6 and 81.9mgKkg(-1) soil). Potassium application in general improved the biomass, grain yield and also the potassium concentration in all the crops. Irrespective of the crops, (134)Cs transfer factor to straw and grain was highest in control treatment (no K addition) and found to decrease significantly with increase in K application levels. The (134)Cs uptake was highest in Spinach followed by Mustard, Gram and Wheat crops. The weighted transfer factor values (straw plus grain) to Spinach, Mustard, and Gram were observed to be 5.54, 4.38 and 2.20 times higher as compared to Wheat crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号