共查询到20条相似文献,搜索用时 0 毫秒
1.
Dirk-Faitakis C Allen DG 《Journal of the Air & Waste Management Association (1995)》2003,53(11):1373-1383
Biofiltration of periodically fluctuating concentrations of an alpha-pinene-laden waste gas was investigated to treat both high-frequency and low-frequency fluctuations. The effects of periodic concentration fluctuations on biofilter performance were measured. Controlled variables of periodic operation included cycle period and amplitude. The cycle period ranged from 10 min to 6 days, with the inlet alpha-pinene concentration fluctuating between 0 and 100 parts per million volume. At high-frequency concentration cycling (i.e., on the order of minutes), both cyclic and constant concentration biofilters maintained similar long-term performance with an average removal efficiency of 77% at an averaged loading rate of 29 g alpha-pinene/m3 bed/hr. A first approximation suggests kinetics that are time-independent, indicating that steady-state data can be used to predict transient behavior at this time scale. Cyclic biofilter operation with a cycle period of 24 hr (with equal on/off time) was achievable for biofilters without a significant loss in performance. At longer time scales, cyclic biofilter performance decreased at the restart of the ON cycle. The recovery time to previous levels of performance increased with increasing cycle period; the recovery time was less than 1 hr for a cycle period of 24 hr and between 6 and 8 hr for a cycle period of 6 days. 相似文献
2.
采用等体积浸渍法制备锰基催化剂MnOx/13X和MnOx/γ-Al2O3,并在吸附-间歇放电模式下研究了其联合介质阻挡放电(DBD)等离子体对乙酸乙酯的氧化性能;对催化剂进行BET、SEM和XPS表征,以分析不同载体的Mn基催化剂氧化效果存在差异的原因。DBD氧化实验结果表明:与13X和γ-Al2O3相比,负载活性组分MnOx后,COx产率分别提高了36.3%(MnOx/13X)和29%(MnOx/γ-Al2O3),CO2选择性均提高至98%以上,副产物臭氧明显减少。表征结果显示,MnOx/13X上的Mn4+和晶格氧含量更高,更有利于乙酸乙酯的降解。结合吸附态乙酸乙酯的等离子体降解机理和不同填充材料的实验数据,建立了相应的动力学模型,为DBD降解挥发性有机物系统中催化剂的优化及其应用提供参考。 相似文献
3.
为解决喷漆和涂装废气中VOCs的污染,采用同轴圆管式介质阻挡反应器进行低温等离子体降解高浓度甲苯探索,研究了反应器参数(放电间距、放电长度)、操作参数(初始甲苯浓度、气体流量、输入功率)等关键参数对甲苯转化率和产物CO2选择性的影响。结果表明:放电间距过大或者过小都不利于甲苯的降解,放电长度的增加对其影响相对较小;输入功率越大,甲苯的降解效果越好,并且反应产物中臭氧的浓度越低,但气体流量及初始甲苯浓度的增加不利于甲苯的降解。最后对产物进行GC-MS检测,分析了甲苯降解机理。 相似文献
4.
Yonghua Yang Eric R. Allen 《Journal of the Air & Waste Management Association (1995)》2013,63(7):863-868
Laboratory scale biological filter systems for control of hydrogen sulfide (H2S) in waste gas have been studied and the optimum design and operating parameters determined. Extensive tests have been conducted to evaluate the effect of various filter bed operating parameters such as temperature, retention time, H2S concentration, and H2S loading rate. Variable properties of new and used composts such as sulfate content, acidity, and water content have been studied for their influence on H2S removal efficiency. The effects of compost particle size distribution on system pressure drop and the maximum H2S elimination capacity were examined. Biofiltration systems containing various types of yard waste compost as the filter material have been observed to remove hydrogen sulfide with efficiencies greater than 99.9 percent for H2S inlet concentrations in the range from 5 to 2650 ppmv. 相似文献
5.
为提高分子筛在含水条件下对VOCs的吸附性能,采用表面修饰方法选取三甲基氯硅烷(TMCS)、甲基三甲氧基硅烷(MTMS)、六甲基二硅胺烷(HMDS)等3种不同硅烷试剂对强亲水性的商业NaY分子筛进行改性,对比测试了在干燥和较高湿度条件下样品对甲苯的动态吸附性能。样品表征结果表明,硅烷化改性后分子筛骨架结构未发生明显改变,表面积和孔径均有所减小。采用上述3种试剂改性后,样品的静态水接触角从0依次增加为69.2°、45.2°和19.0°,憎水性明显提高。在甲苯初始浓度为4 500 mg·m-3,相对湿度为80%的固定床实验条件下,改性分子筛对甲苯的吸附量分别增加了78%、73%和34%。 相似文献
6.
7.
Waste sulfuric acid is a byproduct generated from numerous industrial chemical processes. It is essential to remove the impurities and recover the sulfuric acid from the waste acid. In this study the rectification method was introduced to recover high purity sulfuric acid from the waste acid generated in toluene nitration process by using rectification column. The waste acid quality before and after rectification were evaluated using UV–Vis spectroscopy, GC/MS, HPLC and other physical and chemical analysis. It was shown that five nitro aromatic compounds in the waste acid were substantially removed and high purity sulfuric acid was also recovered in the rectification process at the same time. The COD was removed by 94% and the chrominance was reduced from 1000° to 1°. The recovered sulfuric acid with the concentration reaching 98.2 wt% had a comparable quality with commercial sulfuric acid and could be recycled back into the toluene nitration process, which could avoid waste of resources and reduce the environmental impact and pollution. 相似文献
8.
Validation of an efficient method for the determination of pesticide residues in fruits and vegetables using ethyl acetate for extraction 总被引:4,自引:0,他引:4
Aysal P Ambrus A Lehotay SJ Cannavan A 《Journal of environmental science and health. Part. B》2007,42(5):481-490
In this study, a version of the "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) method was modified to use ethyl acetate (EtOAc) rather than acetonitrile (MeCN) for extraction in the determination of multiple pesticide residues in fruits and vegetables. EtOAc is better suited than MeCN for gas chromatographic (GC) analysis with electron capture detection (ECD) and nitrogen-phosphorus detection (NPD). The method entailed extraction of 30 g chopped sample plus 5 g NaHCO(3) and 30 g anhydrous Na(2)SO(4) with 60 mL EtOAc using a probe blender. After a centrifugation step, removal of residual water and cleanup were performed using dispersive solid-phase extraction (dispersive-SPE) with MgSO(4) and primary secondary amine (PSA) sorbent. (14)C-labeled chlorpyrifos with liquid scintillation counting was used to assist in optimizing and characterizing the method, and GC-ECD and GC-NPD were used for analysis of 24 selected pesticides. The method was validated using tomato, apple and frozen green bean matrices spiked at 0.05, 0.5, and 5 mg/kg. For 22 of the analytes, recoveries averaged 93% for all three commodities over the validation range with a relative standard deviation of 10% (n = 1182). Lower recoveries of dichlorvos were obtained with the method and iprodione determination was compromised in the green beans by an interfering peak. Typical limits of detection were 0.005-0.01 mg/kg with the method. 相似文献
9.
Aranda E García-Romera I Ocampo JA Carbone V Malorni A Sannino F De Martino A Capasso R 《Chemosphere》2007,66(1):67-74
Some saprobe fungi (Phlebia radiata, Trametes versicolor, Coriolopsis rigida, Pycnoporus cinnabarinus, Fomes sclerodermus or Pleurotus pulmonarius) were able to bioconvert the ethyl acetate fraction (DEAF) and the corresponding aqueous exhausted fraction (EAF) of dry olive mill residue (DOR), reducing their phytotoxicity on Lepidium sativum seeds. Large amount of hydroxytyrosol together with other eight monomeric phenols were found in the native DEAF fraction, which represents a good source of antioxidants. P. radiata, T. versicolor and F. sclerodermus caused an effective phytotoxicity reduction of EAF in the concentration range of 25-3 gl(-1). In particular, in the range between 12.5 and 3 gl(-1), the EAF samples inoculated with P. radiata and F. sclerodermus surprisingly stimulated the germinability of L. sativum, suggesting their use as a potential biofertilizer. This is the first report which showed the bioconversion of the above fractions in shorter time with respect to the previous findings concerning DOR. The possible implications of laccase in the decrease of DEAF and EAF phytotoxicity was also discussed. 相似文献
10.
采用微气泡臭氧化处理模拟高浓度乙酸乙酯气体,考察了强化吸收与氧化去除体系的性能、反应动力学及氧化反应的过程。结果表明,微气泡臭氧化能明显提高易溶性乙酸乙酯气体吸收-氧化处理的效率,乙酸乙酯气体整体平均去除率高于96%,氧化矿化率可达到90.22%,高于普通气泡臭氧化过程的63.25%和47.15%。微气泡臭氧化可提高臭氧利用效率,累积臭氧利用率可达到85.5%,高于普通气泡中的58.6%;同时,还可强化·OH氧化反应,提高臭氧化反应效率,反应中臭氧消耗量与乙酸乙酯TOC去除量比值(R)仅为1.04 mg∙mg−1,明显低于普通气泡臭氧化过程的1.53 mg∙mg−1。微气泡臭氧化处理中,乙酸乙酯传质吸收和氧化矿化反应均符合表观零级动力学方程,氧化矿化速率与传质速率基本平衡。以上结果表明,微气泡臭氧化处理可实现长期稳定高效处理乙酸乙酯气体。 相似文献
11.
Experimental study and modeling of the transfer of zinc in a low reactive sand column in the presence of acetate 总被引:4,自引:0,他引:4
Delolme C Hébrard-Labit C Spadini L Gaudet JP 《Journal of contaminant hydrology》2004,70(3-4):205-224
Nowadays, it is necessary to understand and identify the reactions governing the fate of heavy metals introduced into the environment with low complexing organic compounds, particularly when they are transferred through soils in urban areas. In this work the concomitant influence of pH and acetate on the fate of zinc on siliceous sand was studied in batch and non-saturated column experiments. Total zinc concentrations varied between 2 and 20 mg/l, and total acetate concentrations were fixed at 22, 72, 132, and 223 mM to obtain solution pHs of 4, 5, 6 and 7, respectively. Natural sand (diameter, 0.3-2 mm), mainly constituted of silica, was used. In batch adsorption experiments, zinc adsorption is insignificant at pH 4, low and linear at pH 5, and increasingly nonlinear, of the Langmuir type, at pH 6 and 7 indicating near-saturation conditions of surface sites at these high pH values. In column experiments, Zn retardation increases and the maximum outlet concentration of Zn decreases with rising pH and acetate concentrations. Previous column tracer experiments revealed the occurrence of regionalized water transport in the column. Modeling these data was based on a non-electrostatic approach. Batch and column data modeling was based on the PHREEQC code that allows concomitant resolution of chemical speciation and regionalized water transport. The speciation calculation indicates that the ZnAcetate+ species is the dominant Zn species in the solutions used. Batch experimental curves are correctly modeled assuming the formation of the three surface species triple bond SiOZn+, triple bond SiOH-Zn Acetate+ and triple bond SiO-Zn(Acetate)2-. The column data could be adequately modeled assuming a two-region water transport and the formation of the same three species with the same thermodynamic constants determined in the batch experiments. The hypothesis of the modeling leads to a slight overestimation of the quantities of zinc eluted (10%) at pH 6 and 7, mostly in the desorption phase. These results show that the methodology used facilitates the correct modeling of both batch and transport experiments and formulation of the hypothesis on the interactions between the low reactive sand and a complex solution. 相似文献
12.
《Atmospheric environment (Oxford, England : 1994)》2007,41(31):6478-6496
A kinetic mechanism to predict secondary organic aerosol (SOA) formation from the photo-oxidation of toluene was developed. Aerosol phase chemistry that includes nucleation, gas–particle partitioning and particle-phase reactions as well as the gas-phase chemistry of toluene and its degradation products were represented. The mechanism was evaluated against experimental data obtained from the University of North Carolina (UNC) 270 m3 dual outdoor aerosol smog chamber facility. The model adequately simulates the decay of toluene, the nitric oxide (NO) to nitrogen dioxide (NO2) conversion and ozone formation. It also provides a reasonable prediction of SOA production under different conditions that range from 15 to 300 μg m−3. Speciation of simulated aerosol material shows that up to 70% of the aerosol mass comes from oligomers and polymers depending on initial reactant concentrations. The dominant particle-phase species predicted by the mechanism are glyoxal oligomers, ketene oligomers from the photolysis of the toluene OH reaction product 2-methyl-2,4-hexadienedial, organic nitrates, methyl nitro-phenol analogues, C7 organic peroxides, acylperoxy nitrates and for the low-concentration experiments, unsaturated hydroxy nitro acids. 相似文献
13.
Morral Eloi Dorado Antonio D. Gamisans Xavier 《Environmental science and pollution research international》2023,30(4):8698-8706
Environmental Science and Pollution Research - This work presents a novel bioscrubber configuration for the treatment of high ammonia loads at short contact times. The biological reactor was... 相似文献
14.
Takeyuki Sakuma Toshihiro Hattori 《Journal of the Air & Waste Management Association (1995)》2013,63(11):1567-1575
Abstract Four different biofilter packing materials (two porous ceramics, perlite, and open pore polyurethane foam) were compared for the removal of toluene vapors. The focus was on evaluating performance at relatively short gas retention time (13.5 and 27 sec). The reactors were initially operated as biotrickling filters with continuous feeding and trickling of a nutrient solution. After significant plugging of the biotrickling filter beds with biomass was observed, the operation mode was switched to biofiltration with only periodic supply of mineral nutrients. This resulted in stable conditions, which allowed detailed investigations over >6 months. The reactor packed with cattle bone Porcelite (CBP), a ceramic material containing some macronutrients and micronutrients, exhibited the highest performance. The critical load (i.e., load at which 95% removal occurred) was 29 g m?3 hr?1 at a gas retention time of 13.5 sec and 66 g m?3 hr?1 at a gas retention time of 27 sec. After the long-term experiment, the packing materials were taken from the reactors and examined. The reactors were divided into three sections, top, middle, and bottom, to determine whether spatial differentiation of biomass occurred. The assays included a double-staining technique to count total and live microorganisms and determination of moisture, protein, and dry weight contents. Microbial community analysis was also conducted by denaturing gradient gel electrophoresis. The results showed that most reactors had a significant fraction of inactive biomass. Comparatively, the CBP biofilter held significantly higher densities of active biomass, which may be the reason for the higher toluene removal performance. The analyses suggest that favorable material properties and the nutrients slowly released by the CBP provided better environmental conditions for the process culture. 相似文献
15.
Yonghua Yang Eric R. Allen 《Journal of the Air & Waste Management Association (1995)》2013,63(11):1315-1321
The kinetics of H2S oxidation in a biofilter were evaluated and the reaction rates determined to be first-order at low concentrations (<200 ppm), zero-order at high concentrations (>400 ppm), and fractional-order in the intermediate concentration range for H2S in the inlet waste gas. The overall performance of the biofilter system and changes in compost properties were investigated for 200 days of operation. The compost biofiiter showed good buffering capacities to variations in gas flow rate and pollutant (H2S) loading impacts. Hydrogen sulfide removal efficiencies exceeding 99.9% were consistently observed. System acidification and sulfate accumulation were identified as inhibitors of required biological activity. Routine washing of the compost effectively mitigated these deficiencies. System upset was determined to be caused by compost dry-out or system overloading. Methods were developed to provide for recovery of contaminated filter material. 相似文献
16.
The formation of toluene in municipal anaerobic primary and secondary sludge digestion processes was investigated. Experiments were carried out in a large laboratory-scale reactor using sludge from a primary settling tank of a municipal treatment plant. It was found that toluene was produced in the supernatant in relatively large concentrations for almost all cases tested. The concentration of toluene varied and was found to depend on the stage of the anaerobic process. During the acidity phase, which is the first stage of anaerobic digestion, an increase of toluene concentration was observed, while in the transition period, from the acidity phase to methanogenesis, the toluene concentration decreased. It was concluded that biosynthesis of toluene occurs in the acidogenic phase, while biodegradation was prevalent in the methanogenic stage. Depending on the type of experiments, an increase of toluene from a base value of approximately 200 microg/L up to 20,000 and 42,000 microg/L was measured in the first stage of anaerobic digestion. In the subsequent methane-production stage of digestion, the estimated rate of toluene decrease (biodegradation) varied from 400 to 900 microg/L-d. 相似文献
17.
研究不同孔结构的活性炭对于高浓度甲苯的吸附性能、吸附行为和吸附位的影响。结果表明,微孔活性炭对甲苯的吸附量随着微孔孔容的增大而增大,0.6~1.2 nm的微孔孔容和甲苯吸附量存在良好的线性正相关。当中孔孔容达到微孔孔容的0.32倍时,微孔利用率达到100%,甲苯首先吸附在微孔中,待微孔吸附饱和,吸附位向中孔转移,中孔不仅起到通道作用,同时也起到吸附作用;当中孔孔容继续增大,增加的中孔容量主要起到吸附作用,最高吸附量达565 mg·g-1,是已有研究的2.5倍。随着吸附温度升高,饱和吸附量减少,表明活性炭吸附甲苯是以物理吸附主。 相似文献
18.
19.
Awan Ambreen Mehmood Majeed Wafa Muhammad Faqir Faisal Muhammad Naeem 《Environmental science and pollution research international》2022,29(35):52605-52617
Environmental Science and Pollution Research - Acacia jacquemontii possess has numerous traditional therapeutic uses. The rationale of this study was to investigate the role of Acacia jacquemontii... 相似文献
20.