首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Ground water nitrate contamination and water level decline are common concern in Nebraska. Effects of artificial recharge on ground water quality and aquifer storage recovery (ASR) were studied with spreading basins constructed in the highly agricultural region of the Central Platte, Nebraska. A total of 1.10 million m3 of Platte River water recharged the aquifer through 5000 m2 of the recharge basins during 1992, 1993, and 1994. This is equivalent to the quantity needed to completely displace the ground water beneath 34 ha of the local primary aquifer with 13 m thickness and 0.25 porosity. Successful NO3-N remediation was documented beneath and downgradient of the recharge basins, where NO3-N declined from 20 to 2 mg L-1. Ground water atrazine concentrations at the site decreased from 2 to 0.2 mg L-1 due to recharge. Both NO3-N and atrazine contamination dramatically improved from concentrations exceeding the maximum contaminant levels to those of drinking water quality. The water table at the site rose rapidly in response to recharge during the early stage then leveled off as infiltration rates declined. At the end of the 1992 recharge season, the water table 12 m downgradient from the basins was elevated 1.36 m above the preproject level; however, at the end of the 1993 recharge season, any increase in the water table from artificial recharge was masked by extremely slow infiltration rates and heavy recharge from precipitation from the wettest growing season in over 100 years. The water table rose 1.37 m during the 1994 recharge season. Resultant ground water quality and ASR improvement from the artificial recharge were measured at 1000 m downgradient and 600 m upgradient from the recharge basins. Constant infiltration rates were not sustained in any of the three years, and rates always decreased with time presumably because of clogging. Scraping the basin floor increased infiltration rates. Using a pulsed recharge to create dry and wet cycles and maintaining low standing water heads in the basins appeared to reduce microbial growth, and therefore enhanced infiltration.  相似文献   

2.
Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.  相似文献   

3.
ABSTRACT: Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri‐County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.  相似文献   

4.
ABSTRACT: Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.  相似文献   

5.
ABSTRACT: Ground water is intended to be administered in many western states as a flow or renewable resource. In Idaho, this administration is based on the appropriation doctrine of water rights. Two generalizations may be made concerning ground water. First, water artificially discharged from an aquifer system must deplete the total resource by that amount; water consumptively pumped from a well must be derived from either increased recharge, decreased discharge or a decrease of water in storage. Second, the annual rate of recharge to a ground-water system is often only a small percentage of the total resource in storage. Ground water may be divided into flow and stock portions. In those basins where the second generalization is true, most ground water may be classified as stock. However, only the flow portion of ground water may be developed if utilization of the resource is to be enjoyed over an infinite period. Data from the Raft River Basin in Idaho indicate that the flow and stock characteristics of ground water are time dependent. The resource exhibits the characteristics of both a renewable and nonrenewable resource. As a result, present administrative techniques do not provide for effective management of the resource.  相似文献   

6.
Few studies have documented spatial and temporal variations in ground water quality in areas with high densities of animal farming operations (AFOs), or the long-term effects on surface-water quality. Changes in ground water quality were characterized in an irrigated area with a high density of AFOs in southern Alberta, Canada to evaluate the effect on ground water quality of manure application to fields. Fifty-five piezometers in the oxidized zone were sampled once or twice annually from 1995 to 2001, and temporal changes were analyzed using mixed model analysis. Average NO3- -N increased significantly from 12.5 to 17.4 mg L(-1) and average Cl- increased significantly from 19.4 to 34.4 mg L(-1) in piezometers installed in an unconfined sand aquifer at locations receiving fertilizer and manure. Compared with these manured locations, nitrate and chloride concentrations were significantly lower in shallow aquifer water in areas of pasture or native range, and concentrations did not change significantly with time. Nitrate and chloride concentrations in shallow ground water in fine-textured manured locations did not change significantly. Ground water below about 6 m in till and fine lacustrine sediments contains 18O signatures indicative of recharge under preirrigation or glacially influenced conditions, suggesting this ground water has a low vulnerability to agricultural contamination. Evaluations suggest that shallow ground water discharge will cause NO3- -N and Cl- in the Oldman River to increase by factors of at least 4.3 and 1.3, respectively, with more significant effects in smaller streams and under low-flow conditions.  相似文献   

7.
This study applied hydrogeological characterization and isotope investigation to identify source locations and to trace a plume of ground water contaminated by nitrate. Most of the study site is agricultural fields with the remainder being residential. A poultry farm is also within the study area, so that potential point and nonpoint sources were present. Estimates of seasonal ground water recharge from irrigation and precipitation, leakage of sewage, and the regional ground water flow were linked to the seasonal changes in isotopic values. Ground water recharge largely occurred in spring and summer following precipitation or irrigation, depending on the locations. Natural and fertilized soils were identified as nonpoint sources of nitrate contamination in this area, while septic and animal wastes were identified as small point sources. The seasonal changes in the relative impact of these sources on ground water contamination were related to such factors as source distribution, the aquifer confining condition, precipitation rate, infiltration capacity, recharge rate, and the land use pattern.  相似文献   

8.
ABSTRACT: Seven sets of ground water samples from 103 observation wells were analyzed for total dissolved phosphorus (TDP) in four areas and five materials including loess and loess derived alluvium in the Deep Loess Hills of western Iowa, outwash and fractured till adjacent to Clear Lake in north central Iowa, fractured till in central Iowa, and a sand and gravel aquifer in northwest Iowa. Land use in ground water recharge zones in all four areas is dominated by crop or animal production or both. Concentrations of TDP exceeding the minimum laboratory detection limit of 20 μg/l as P were found in all areas and in all materials sampled. Samples from the outwash deposits associated with Clear Lake contained significantly larger concentrations than all other areas and materials with a median of 160 μg/l. Water from fractured till in three areas produced the smallest range of concentrations with a median of 40 μg/l. The mean value of TDP in all sample sets exceeded 50 μg/l, an important ecological threshold that causes increased productivity in lakes and perennial streams and one being considered as a surface water nutrient standard by regulatory agencies. These results clearly show that ground water in essentially all near‐surface aquifers and aquitards discharging to Iowa's streams and lakes is capable of sustaining P concentrations of 50 to 100 μg/l in streams, lakes, and reservoirs. Consequently, even if point discharges and sediment sources of P are substantially reduced, ground‐water discharge to surface water may exceed critical thresholds under most conditions.  相似文献   

9.
Abstract: Interactions between surface irrigation water, shallow ground water, and river water may have effects on water quality that are important for both drinking water supplies and the ecological function of rivers and floodplains. We investigated water quality in surface water and ground water, and how water quality is influenced by surface water inputs from an unlined irrigation system in the Alcalde Valley of the Rio Grande in northern New Mexico. From August 2005 to July 2006, we sampled ground water and surface water monthly and analyzed for concentrations of major cations and anions, specific conductance, pH, dissolved oxygen, and water levels. Results indicate that irrigation ditch seepage caused an increase in ground water levels and that the Rio Grande is a gaining stream in this region. Temporal and spatial differences were found in ion concentrations in shallow ground water as it flowed from under the ditch toward the river. Ground‐water ion concentrations were higher when the ditch was not flowing compared with periods during peak irrigation season when the ditch was flowing. Ditch inputs diluted ion concentrations in shallow ground water at well positions near the ditch. Specifically, lower ion concentrations were detected in ground water at well positions located near the ditch and river compared with well positions located in the middle of an agricultural field. Results from this project showed that ditch inputs influenced ion concentrations and were associated with ground‐water recharge. In arid region river valleys, careful consideration should be given to management scenarios that change seepage from irrigation systems, because in some situations reduced seepage could negatively affect ground‐water recharge and water quality.  相似文献   

10.
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.  相似文献   

11.
ABSTRACT: The Dakota aquifer, composed of the Dakota Sandstone and stratigraphically equivalent sandstone units of Cretaceous age, is the upper-most regional aquifer underlying the extensively developed High Plains aquifer of the midwestern United States. The concentration of dissolved solids in ground water of the Dakota aquifer ranges from less than 500 milligrams per liter in calcium bicarbonate type water in the eastern outcrop area to more than 100,000 milligrams per liter in sodium chloride type oilfield brine in the Denver Basin to the west. Preliminary maps showing the distribution of dissolved solids confirm the complex nature of the Dakota aquifer as inferred from stratigraphic and hydraulic evidence. Extensive vertical leakage through confining layers, local recharge at the truncated eastern boundary, and a barrier to recharge along the western edge of the Denver Basin are consistent with the distribution of hydraulic head and dissolved solids.  相似文献   

12.
ABSTRACT: The Nebraska Sand Hills have a unique hydrologic system with very little runoff and thick aquifers that constantly supply water to rivers, lakes, and wetlands. A ground water flow model was developed to determine the interactions between ground water and streamflow and to simulate the changes in ground water systems by reduced precipitation. The numerical modeling method includes a water balance model for the vadose zone and MOD‐FLOW for the saturated zone. The modeling results indicated that, between 1979 and 1990, 13 percent of the annual precipitation recharged to the aquifer and annual ground water loss by evapotranspiration (ET) was only about one‐fourth of this recharge. Ground water discharge to rivers accounts for about 96 percent of the streamflow in the Dismal and Middle Loup rivers. When precipitation decreased by half the average amount of the 1979 to 1990 period, the average decline of water table over the study area was 0.89 m, and the streamflow was about 87 percent of the present rate. This decline of the water table results in significant reductions in ET directly from ground water and so a significant portion of the streamflow is maintained by capture of the salvaged ET.  相似文献   

13.
ABSTRACT: Stable isotopes of deuterium and oxygen-18 of surface and ground water, together with anion concentrations and hydraulic gradients, were used to interpret mixing and flow in ground water impacted by artificial recharge. The surface water fraction (SWF), the percentage of surface water in the aquifer impacted via recharge, was estimated at different locations and depths using measured deuterium/hydrogen (DIH) ratios during the 1992, 1993, and 1994 recharge seasons. Recharged surface water completely displaced the ground water beneath the recharge basins from the regional water table at 7.60 m to 12.16 m below the land surface. Mixing occurred beneath the recharge structures in the lower portions of the aquifer (>12.16 m). Approximately 12 m down-gradient from the recharge basin, the deeper zone (19.15 m depth) of the primary aquifer was displaced completely by recharged surface water within 193, 45, and 55 days in 1992, 1993, and 1994, respectively. At the end of the third recharge season, recharged surface water represented ~50 percent of the water in the deeper zone of the primary aquifer ~1000 m downgradient from the recharge basin. A classic asymmetrical distribution of recharged surface water resulted from the recharge induced horizontal and vertical hydraulic gradients. The distribution and breakthrough times of recharged surface water obtained with stable isotopes concurred with those of major anions and bromide in a tracer test conducted during the 1995 recharge season. This stable isotope procedure effectively quantified mixing between surface and ground water.  相似文献   

14.
ABSTRACT: Artificial recharge as a means of augmenting water sup plies for irrigation is a management alternative which policy makers in ground water decline areas are beginning to consider seriously. A conceptual model is developed to evaluate the economic benefits from ground water recharge under conditions where the major water use is irrigation. The methodology presented separates recharge benefits into two components: pumping cost savings and aquifer extension benefits. This model is then applied to a Nebraska case to approximate the value of recharge benefits as a function of aquifer response. discount rate, and commodity prices. It was found that recharge benefits vary from less than $2 to over $6 an acre foot recharged.  相似文献   

15.
ABSTRACT: The ground water quality of a shallow unconfined aquifer was monitored before and after implementation of a border strip irrigation scheme, by taking monthly samples from an array of 13 shallow wells. Two 30 m deep wells were sampled to obtain vertical concentration profiles. Marked vertical, temporal, and spatial variabilities were recorded. The monthly data were analyzed for step and linear trends using nonparametric tests that were adjusted for the effects of serial correlation. Average nitrate concentrations increased in the preirrigation period and decreased after irrigation began. This was attributed to wetter years in 1978–1979 than in 1976–1977 which increased leaching, and to disturbance of the topsoil during land contouring before irrigation, followed by excessive drainage after irrigation. Few significant trends were recorded for other determinants, possibly because of shorter data records. Nitrate, sulphate, and potassium concentrations decreased with depth, whereas sodium, calcium, bicarbonate, and chloride concentrations increased. These trends allowed an estimation to be made of the depth of ground water affected by percolating drainage. This depth increased during the irrigation season and after periods of winter recharge. Furthermore, an overall increase in the depth of drainage-affected ground water occurred with time, which paralleled the development of the irrigation scheme.  相似文献   

16.
Abstract: Two karst springs in the Mississippian Carbonate Aquifer of northern Alabama were sampled between March 1999 and March 2001 to characterize the variability in concentration of nitrate, pesticides, selected pesticide degradates, water temperature, and inorganic constituents. Water temperature and inorganic ion data for McGeehee Spring indicate that this spring represents a shallow flow system with a relatively short average ground‐water residence time. Water issuing from the larger of the two springs, Meridianville Spring, maintained a constant temperature, and inorganic ion data indicate that this water represents a deeper flow system having a longer average ground‐water residence time than McGeehee Spring. Although water‐quality data indicate differing short‐term responses to rainfall at the two springs, the seasonal variation of nitrate and pesticide concentrations generally is similar for the two springs. With the exception of pesticides detected at low concentrations, the coefficient of variation for most constituent concentrations was less than that of flow at both springs, with greater variability in concentration at McGeehee Spring. Degradates of the herbicides atrazine and fluometuron were detected at concentrations comparable to or greater than the parent pesticides. Decreases in concentration of the principal degradate of fluometuron from about July to November indicate that the degradation rate may decrease as fluometuron (demethylfluometuron) moves deeper into the soil after application. Data collected during the study show that from about November to March when recharge rates increase, nitrate and residual pesticides in the soil, unsaturated zone, and storage within the aquifer are transported to the spring discharges. Because of the increase in recharge, fluometuron loads discharged from the springs during the winter were comparable to loads discharged at the springs during the growing season.  相似文献   

17.
ABSTRACT: Cedar Rapids obtains its municipal water supply from a shallow alluvial aquifer along the Cedar River in east-central Iowa. Water samples were collected and analyzed for selected isotopes and chlorofluorocarbons to characterize the ground-water flow system near the municipal well fields. Analyses of deuterium and oxygen-18 indicate that water in the alluvial aquifer and in the underlying carbonate bedrock aquifer was recharged from precipitation during modern climatic conditions. Analyses of tritium indicate modern, post-1952, water in the alluvial aquifer and older, pre-1952, water in the bedrock aquifer. Mixing of the modern and older waters occurs in areas where (1) the confining layer between the two aquifers is discontinuous, (2) the bedrock aquifer is fractured, or (3) pumping of supply wells induces the flow of water between aquifers. Analyses of chlorofluorocarbons were used to determine the date of recharge of water samples. Water in the bedrock aquifer likely was recharged prior to the 1950s. Water in the alluvial aquifer likely was recharged from the 1960s to 1990s. Biodegradation or sorption probably affected some of the ground water analyzed for chlorofluorocarbons. These processes reduce the concentrations of CFCs, which results in older than actual calculated dates of recharge.  相似文献   

18.
ABSTRACT: Ground water contamination by excess nitrate leaching in row‐crop fields is an important issue in intensive agricultural areas of the United States and abroad. Giant cane and forest riparian buffer zones were monitored to determine each cover type's ability to reduce ground water nitrate concentrations. Ground water was sampled at varying distances from the field edge to determine an effective width for maximum nitrate attenuation. Ground water samples were analyzed for nitrate concentrations as well as chloride concentrations, which were used as a conservative ion to assess dilution or concentration effects within the riparian zone. Significant nitrate reductions occurred in both the cane and the forest riparian buffer zones within the first 3.3 m, a relatively narrow width. In this first 3.3 m, the cane and forest buffer reduced ground water nitrate levels by 90 percent and 61 percent, respectively. Approximately 40 percent of the observed 99 percent nitrate reduction over the 10 m cane buffer could be attributed to dilution by upwelling ground water. Neither ground water dilution nor concentration was observed in the forest buffer. The ground water nitrate attenuation capabilities of the cane and forest riparian zones were not statistically different. During the spring, both plant assimilation and denitrification were probably important nitrate loss mechanisms, while in the summer nitrate was more likely lost via denitrification since the water table dropped below the rooting zone.  相似文献   

19.
Abstract: The population of Collier and Lee Counties in southwestern Florida has increased 11‐fold from 1960 to 2004 with a concomitant increase in freshwater demand. Water levels and salinity within the water table aquifer over the past two to three decades have generally been stable, with more monitoring wells showing statistically significant temporal increases in water level than decreases. Residential development has had a neutral impact on the water table aquifer because the total annual evapotranspiration of residential communities is comparable to that of native vegetation and less than that of most agricultural land uses. Public water supply systems and private wells also result in net recharge to the water table aquifer with water produced from deeper aquifers. Confined freshwater aquifers have overall trends of decreasing water levels. However, with the exception of the mid‐Hawthorn aquifer, water levels in most areas recover to near background levels each summer wet season. Freshwater resources in humid subtropical areas, such as southwestern Florida, are relatively robust because of the great aquifer recharge potential from the excess of rainfall over ET during the wet season. Proper management can result in sustainable water resources.  相似文献   

20.
ABSTRACT: The Edwards Aquifer is one of the most studied and most prolific aquifers in the United States. The aquifer is a heavily fractured and faulted carbonate aquifer with transmissivities in excess of 100 ft2/s. The City of San Antonio relies upon the Edwards Aquifer as its sole source for water. Much work has been done on quantifying recharge to the aquifer and discharge from wells and acquiring aquifer characteristics from pumping tests, specific capacity tests, and geophysical logs. Although the aquifer has been well studied in Bexar County, much less is known about the Edwards Aquifer in Kinney County. This is partly due to the lower population within the county (approximately 3,500 people) relative to the eastern counties (Uvalde, Medina, Bexar, Comal, and Hays) and the great distance of Kinney County from high profile discharge areas such as the City of San Antonio and Comal and San Marcos Springs. Three key products resulted from this study: (1) exploratory well drilling and the largest aquifer test in the county that were conducted to evaluate the well yields within a 10,000 acre study area in which a drawdown of 2.5 ft approximately 1.2 miles away was observed while pumping at approximately 4,600 gpm; (2) a recharge estimate for the Edwards Aquifer within Kinney County of approximately 71,382 ac‐ft/yr; and (3) locating the Brackettville Groundwater Divide from an evaluation of ground water flow direction and hydrograph analysis. These results help evaluate the complex hydraulics occurring within Kinney County and aid in development of ground water modeling that will be used in managing the Edwards Aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号