首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low impact development (LID) practices are often applied to compensate for surface imperviousness caused by urban development. These practices can mitigate flood risk by reducing runoff volume and peak flow and by delaying the time to peak flow. To select a suitable LID practice type and its surface area during the preliminary design process, it is necessary to rapidly estimate the hydrologic performance of various LID designs under design storms. This study provides a method and a toolbox for rapid assessment of the hydrologic performance of various LID practices, which can be useful to developers for establishment of preliminary LID designs. The hydrologic performance of three common types of LID practices (i.e., green roofs, bioretention cells, and infiltration trenches) under various design storms is first simulated using the Storm Water Management Model (SWMM). The results are then presented as performance curves on a unit storage basis. Look‐up tables are further developed to assist the comparison and selection of the LID alternatives for various hydrologic performance targets. To facilitate SWMM modeling, a MATLAB toolbox is developed to automate the process of input modification, model simulation, result extraction, and postprocessing. Finally, the sensitivity of the look‐up curves to design storm types and design specifications of bioretention cells is also analyzed, and the assumptions used in the development of these look‐up curves are validated.  相似文献   

2.
Abstract: Runoff from urban catchments depends largely on the amount of impervious surface and the connectivity of these surfaces to the storm sewer drainage system. In residential areas, pervious lawns can be used to help manage stormwater runoff by intercepting and infiltrating runoff from impervious surfaces. The goal of this research was to develop and evaluate a simple method for estimating the reduction in stormwater runoff that results when runoff from an impervious surface (e.g., rooftop) is directed onto a pervious surface (e.g., lawn). Fifty‐two stormwater runoff reduction tests were conducted on six residential lawns in Madison, Wisconsin during the summer of 2004. An infiltration‐loss model that requires inputs of steady‐state infiltration rate, abstraction (defined here as surface storage, vegetation interception and cumulative total infiltration minus steady‐state infiltration during the period prior to steady‐state), and inundated area was evaluated using experimental data. The most accurate results were obtained using the observed steady‐state infiltration rates and inundated areas for each test, combined with a constant abstraction for all tests [root mean squared (RMS) difference = 1.0 cm]. A second case utilized lawn‐averaged steady‐state infiltration rates, a regression estimate of inundated area based on flow‐path length, and lawn‐specific abstractions based on infiltration rate (RMS difference = 2.2 cm). In practice, infiltration rates will likely be determined using double‐ring infiltration measurements (RMS difference = 3.1 cm) or soil texture (RMS difference = 5.7 cm). A generalized form of the model is presented and used to estimate annual stormwater runoff volume reductions for Madison. Results indicate the usefulness of urban lawns as a stormwater management practice and could be used to improve urban runoff models that incorporate indirectly connected impervious areas.  相似文献   

3.
Abstract: A simple spreadsheet model was used to evaluate potential water quality benefits of high‐density development. The question was whether the reduced land consumed by higher density development (vs. standard suburban developments) would offset the worse water quality generated by a greater amount of impervious surface in the smaller area. Total runoff volume and per acre loadings of total phosphorous, total nitrogen, and total suspended solids increased with density as expected, but per capita loadings and runoff decreased markedly with density. For a constant or given population, then, higher density can result in dramatically lower total loadings than more diffuse suburban densities. The model showed that a simple doubling of standard suburban densities [to 8 dwelling units per acre (DUA) from about 3 to 5 DUA] in most cases could do more to reduce contaminant loadings associated with urban growth than many traditional stormwater best management practices (BMPs), and that higher densities such as those associated with transit‐oriented development could outperform almost all traditional BMPs, in terms of reduced loadings per a constant population. Because higher density is associated with vibrant urban life, building a better city may be the best BMP to mitigate the water quality damage that will accompany the massive urban growth expected for the next several decades.  相似文献   

4.
Changes in land use and extreme rainfall trends can lead to increased flood vulnerability in many parts of the world, especially for urbanized watersheds. This study investigates the performance of existing stormwater management strategies for the Upper Yahara watershed in Dane County, WI to determine whether they are adequate to protect urban and suburban development from an extreme rainfall. Using extreme storm transposition, we model the performance of the stormwater infiltration practices required for new development under current county ordinances. We find during extreme rainfall the volume of post‐development runoff from impervious surfaces from a typical site would increase by over 55% over pre‐development conditions. We recommend the ordinance be strengthened to reduce vulnerability to flooding from future urban expansion and the likely increase in the magnitude and frequency of extreme storms.  相似文献   

5.
ABSTRACT: Peachtree Creek is a gaged watershed that has experienced a substantial increase in urbanization. The relationships of runoff to rainfall were studied for total annual flows, low flows, and peak flows. For each type of flow the relationship in the later, more urbanized period was compared to that in the earlier, less urbanized period. An increase in total runoff in wet years was observed as urbanization increased, but a decrease occurred during dry years. For low flows a similar decrease of runoff in dry years was found. An increase in peak runoff was observed over most of the range of precipitation. Increasing peak flows and declining low flows can be adequately explained by urban hydrologic theoryshed. which focuses on the effects of urban impervious surfaces upon direct runoff and infiltration. However, a decline of total runoff in dry years can be explained only by taking into account evapotranspiration as well. The concept of advectively assisted urban evapotranspiration, previously discovered by climatologists, is needed to explain such a loss of total runoff. Urban hydrologic theory must take into account vegetation and evapotranspiration, as well as impervious surfaces and their direct runoff, to explain the magnitude of total annual flows and low flows. Urban stormwater management should address the restoration of low flows, as well as the control of floods.  相似文献   

6.
Sustainable development requires the promulgation of guidelines for urban planning which consider the effects of the built environment on water resources. In this context, our paper focuses on the effects of urban development on the quantity and quality of rainwater which infiltrates into the soil on its way to recharge the aquifer. The paper includes: identification of the state of knowledge regarding the effect of urban development on runoff and infiltration; a case study-estimation of the effect of certain patterns of urban development in an Israeli neighbourhood,together with an option for mitigating them by relatively simple and inexpensive means; presentation of the components of urban planning which influence runoff and infiltration; and proposals for continuing research in this area which has been relatively neglected until recently.  相似文献   

7.
Urbanization increases directly connected impervious area (DCIA), the impervious area that is hydraulically connected to downstream drainage by closed pipelines. Although the benefits of low-impact development (LID) have been examined in other studies, its effect on alleviating DCIA levels has seldom been assessed. This study measured the DCIA of urban watersheds in Houston, TX, USA. Five land-use types were categorized and the contribution of LID facilities to reducing DCIA in each type was estimated by using Sutherland's equations. The results showed (1) DCIA in commercial areas was greater than that in residential areas, especially for big-box retailers; (2) the percentage of DCIA reduction by LID varied by land-use type; and (3) optimal combinations of LID application could maximize the effectiveness of DCIA reduction. The results contribute to prioritizing land-use type for implementing LID practices and providing local governments with a useful measure to estimate runoff volume.  相似文献   

8.
Mechanistic Simulation of Tree Effects in an Urban Water Balance Model1   总被引:1,自引:0,他引:1  
Abstract: A semidistributed, physical‐based Urban Forest Effects – Hydrology (UFORE‐Hydro) model was created to simulate and study tree effects on urban hydrology and guide management of urban runoff at the catchment scale. The model simulates hydrological processes of precipitation, interception, evaporation, infiltration, and runoff using data inputs of weather, elevation, and land cover along with nine channel, soil, and vegetation parameters. Weather data are pre‐processed by UFORE using Penman‐Monteith equations to provide potential evaporation terms for open water and vegetation. Canopy interception algorithms modified established routines to better account for variable density urban trees, short vegetation, and seasonal growth phenology. Actual evaporation algorithms allocate potential energy between leaf surface storage and transpiration from soil storage. Infiltration algorithms use a variable rain rate Green‐Ampt formulation and handle both infiltration excess and saturation excess ponding and runoff. Stream discharge is the sum of surface runoff and TOPMODEL‐based subsurface flow equations. Automated calibration routines that use observed discharge has been coupled to the model. Once calibrated, the model can examine how alternative tree management schemes impact urban runoff. UFORE‐Hydro model testing in the urban Dead Run catchment of Baltimore, Maryland, illustrated how trees significantly reduce runoff for low intensity and short duration precipitation events.  相似文献   

9.
ABSTRACT: An export coefficient modeling approach was used to assess the influence of land use on phosphorus loading to a Southern Ontario stream. A model was constructed for the 1995–1996 water year and calibrated within ± 3 percent of the observed mean concentration of total phosphorus. It was found that runoff from urban areas contributed most to the loading of phosphorus to the stream. When the model was assessed by running it for the 1977–1978 water year, using water quality and land use data collected independently, agreement within ± 7 percent was obtained. The model was then used to forecast the impact of future urban development proposed for the watershed, in terms of phosphorus loading, and to evaluate the reduction in loading resulting from several urban best management practices (BMP). It was determined that phosphorus removal will have to be applied to all the urban runoff from the watershed to appreciably reduce stream phosphorus concentration. Of the BMP designs assessed, an infiltration pond system resulted in the greatest phosphorus load reduction, 50 percent from the 1995–1996 baseline.  相似文献   

10.
Mismanagement of urban runoff can result in inundation which causes serious problems in providing urban services. Best management practices (BMPs) are used for urban runoff management. In this study, a method is proposed to determine the robust optimal set of BMPs for runoff management in data-poor catchments in urban areas. This method includes five main steps: (1) Sensitivity analysis to determine effective parameters in rainfall-runoff simulation model, (2) Calibration of the rainfall-runoff model based on selected effective parameters, (3) Developing a multi-objective optimization model to obtain the optimal sets of BMPs, (4) Selecting the final solutions using the Nash approach for ranking, (5) Evaluation of the robustness of the selected solution using the Management Option Rank Equivalence method. The proposed method is examined in an urban basin located in the north of Tehran, Iran. The results show that the proposed approach provides reliable results for urban runoff management in data-poor areas.  相似文献   

11.
Abstract: The summertime heating of runoff in urban areas is recognized as a common and consistent urban climatological phenomenon. In this study, a simple thermal urban runoff model (TURM) is presented for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. The first step in developing TURM consists of calculating the various factors that control how urban impervious areas absorb heat and transfer it to moving water on the surface. The runoff temperature is determined based on the interactions of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the impervious surface common in urban areas. Key surface and weather factors that affect runoff temperature predictions are type of impervious surface, air temperature, humidity, solar radiation before and during rain, rainfall intensity, and rainfall temperature. Runoff from pervious areas is considered separately and estimated using the Green‐Ampt Mein‐Larson rainfall excess method. Pervious runoff temperature is estimated as the rainfall temperature. Field measurements indicate that wet bulb temperature can be used as a surrogate for rainfall temperature and that runoff temperatures from sod average just 2°C higher than rainfall temperatures. Differences between measured and predicted impervious runoff temperature average approximately 2°C, indicating that TURM is a useful tool for determining runoff temperatures for typical urban areas.  相似文献   

12.
ABSTRACT: The proliferation of watershed databases in raster Geographic Information System (GIS) format and the availability of radar-estimated rainfall data foster rapid developments in raster-based surface runoff simulations. The two-dimensional physically-based rainfall-runoff model CASC2D simulates spatially-varied surface runoff while fully utilizing raster GIS and radar-rainfall data. The model uses the Green and Ampt infiltration method, and the diffusive wave formulation for overland and channel flow routing enables overbank flow storage and routing. CASC2D offers unique color capabilities to display the spatio-temporal variability of rainfall, cumulative infiltrated depth, and surface water depth as thunderstorms unfold. The model has been calibrated and independently verified to provide accurate simulations of catchment response to moving rainstorms on watersheds with spatially-varied infiltration. The model can accurately simulate surface runoff from flashfloods caused by intense thunderstorms moving across partial areas of a watershed.  相似文献   

13.
To avoid eutrophication of receiving waters, effective methods to remove P in urban and agricultural runoff are needed. Crushed concrete may be an effective filter material to remove dissolved and particulate P. Five types of crushed concrete were tested in the laboratory to evaluate the retention capacity of dissolved P. All types removed P very effectively (5.1-19.6 g P kg(-1) concrete), while the possible release of bound P varied between 0.4 and 4.6%. The retention rate was positively related to a decreasing concrete grain size due to an increasing surface area for binding. The P retention was also related to a marked increase in pH (up to pH 12), and the highest retention was observed when pH was high. Under these circumstances, column experiments showed outlet P concentrations <0.0075 mg P L(-1). Furthermore, experiments revealed that release of heavy metals is of no importance for the treated water. We demonstrate that crushed concrete can be an effective tool to remove P in urban and agricultural runoff as filter material in sedimentation/infiltration ponds provided that pH in the treated water is neutralized or the water is diluted before outlet to avoid undesired effects caused by the high pH.  相似文献   

14.
Woltemade, Christopher J., 2010. Impact of Residential Soil Disturbance on Infiltration Rate and Stormwater Runoff. Journal of the American Water Resources Association (JAWRA) 46(4): 700-711. DOI: 10.1111/j.1752-1688.2010.00442.x Abstract: Soil disturbances such as excavation and compaction in residential developments affect lawn infiltration rates and stormwater runoff. These effects were investigated via measuring saturated infiltration rates at 108 residential sites and 18 agricultural sites near Shippensburg, south-central Pennsylvania, using a double-ring infiltrometer. Residential sites included four neighborhoods distributed across three soil series classified as hydrologic soil group (HSG) B. Additional parcel data included date of house construction, percentage impervious area, lawn condition, and woody vegetation condition. Measured infiltration rates ranged from 0 to >40 cm/hour. Analysis of variance indicated significantly different mean infiltration rates (p < 0.001) for lots constructed pre-2000 (9.0 cm/hour) and those constructed post-2000 (2.8 cm/hour). Test results were used to determine a “field-tested” HSG for each site, representing disturbed soil conditions. Stormwater runoff was estimated from residential lots for a range of 24-hour design storms using the TR-55 model and several alternative methods of determining curve numbers, including five different representations of soil conditions. Curve numbers and stormwater runoff were substantially higher when based on field-tested HSGs for lots constructed post-2000 compared with lots built pre-2000 and when based on the HSG for undisturbed soils, documenting the magnitude of possible error in stormwater runoff models that neglect soil disturbance.  相似文献   

15.
We coupled rainfall–runoff and instream water quality models to evaluate total suspended solids (TSS) in Wissahickon Creek, a mid‐sized urban stream near Philadelphia, Pennsylvania. Using stormwater runoff and instream field data, we calibrated the model at a subdaily scale and focused on storm responses. We demonstrate that treating event mean concentrations as a calibration parameter rather than a fixed input can substantially improve model performance. Urban stormwater TSS concentrations vary widely in time and space and are difficult to represent simply. Suspended and deposited sediment pose independent stressors to stream biota and model results suggest that both currently impair stream health in Wissahickon Creek. Retrofitting existing detention basins to prioritize infiltration reduced instream TSS loads by 20%, suggesting that infiltration mitigates sediment more effectively than detention. Infiltrating stormwater from 30% of the watershed reduced instream TSS loads by 47% and cut the frequency of TSS exceeding 100 mg/L by half. Settled loads and the frequency of high TSS values were reduced by a smaller fraction than suspended loads and duration at high TSS values. A widely distributed network of infiltration‐focused projects is an effective stormwater management strategy to mitigate sediment stress. Coupling rainfall–runoff and water quality models is an important way to integrate watershed‐wide impacts and evaluate how management directly affects urban stream health.  相似文献   

16.
This review summarizes how conservation benefits are maximized when in‐field and edge‐of‐field buffers are integrated with each other and with other conservation practices such as residue management and grade control structures. Buffers improve both surface and subsurface water quality. Soils under permanent buffer vegetation generally have higher organic carbon concentrations, higher infiltration capacities, and more active microbial populations than similar soils under annual cropping. Sediment can be trapped with rather narrow buffers, but extensive buffers are better at transforming dissolved pollutants. Buffers improve surface runoff water quality most efficiently when flows through them are slow, shallow, and diffuse. Vegetative barriers ‐ narrow strips of dense, erect grass ‐ can slow and spread concentrated runoff. Subsurface processing is best on shallow soils that provide increased hydrologic contact between the ground water plume and buffer vegetation. Vegetated ditches and constructed wetlands can act as “after‐field” conservation buffers, processing pollutants that escape from fields. For these buffers to function efficiently, it is critical that in‐field and edge‐of‐field practices limit peak runoff rate and sediment yield in order to maximize contact time with buffer vegetation and minimize the need for cleanout excavation that destroys vegetation and its processing capacity.  相似文献   

17.
Agricultural tillage influences runoff and infiltration, but consequent effects on watershed hydrology are poorly documented. This study evaluated 25 yr (1971-1995) hydrologic records from four first-order watersheds in Iowa's loess hills. Two watersheds were under conventional tillage and two were under conservation (ridge) tillage, one of which was terraced. All four watersheds grew corn (Zea mays L.) every year. Flow-frequency statistics and autoregressive modeling were used to determine how conservation treatments influenced stream hydrology. The autoregressive modeling characterized variations in discharge, baseflow, and runoff at multi-year, annual, and shorter time scales. The ridge-tilled watershed (nonterraced) had 47% less runoff and 36% more baseflow than the conventional watershed of similar landform and slope. Recovery of baseflow after drought was quicker in the conservation watersheds, as evidenced by 365-d moving average plots, and 67% greater baseflow during the driest 2 yr. The two conventional watersheds were similar, except the steeper watershed discharged more runoff and baseflow during short (<30 d), wet periods. Significant multi-year and annual cycles occurred in all variables. Under ridge-till, seasonal (annual-cycle) variations in baseflow had greater amplitude, showing the seasonality of subsurface contaminant movement could increase under conservation practices. However, deviations from the modeled cycles of baseflow were also more persistent under conservation practices, indicating baseflow was more stable. Indeed, flow-frequency curves showed wet-weather discharge decreased and dry-weather discharge increased under conservation practices. Although mean discharge increased in the conservation watersheds, variance and skewness of daily values were smaller. Ridge tillage with or without terraces increased stream discharge but reduced its variability.  相似文献   

18.
ABSTRACT: Storm runoff from four characteristic types of residential roofs and incident rainwater were monitored for 47 storm events over a six-month period at Nacogdoches, Texas, to study water quality conditions for 20 element and four chemical variables. The total element concentration in storm runoff from each roof type was greater than that of rainwater in the open. Differences in element concentrations in storm runoff among the four roof types were statistically significant (α≤ 0.05) with the differences for the wood shingle roof being the greatest and that for terra cotta clay roof being the least. The median concentrations of four element variables exceeded the Texas surface water quality standards, while 12 variables exceeded the standards at least one time in all samples collected. Zinc concentrations violated the Standard ranging from 85.7 percent of the samples for the wood shingle roof to 66.0 percent for the composite shingle, the greatest exceedances of all 24 variables studied. Storm characteristics and gutter maintenance level had some effects on these water quality conditions. The study suggested that roof types can be important to water pollution management programs. More detailed studies on roof water quality in major municipalities are required.  相似文献   

19.
Understanding the role of land use in urban stormwater quality management   总被引:12,自引:0,他引:12  
Urbanisation significantly impacts water environments with increased runoff and the degradation of water quality. The management of quantity impacts are straight forward, but quality impacts are far more complex. Current approaches to safeguard water quality are largely ineffective and guided by entrenched misconceptions with a primary focus on 'end-of-pipe' solutions. The outcomes of a research study presented in the paper, which investigated relationships between water quality and six different land uses offer practical guidance in the planning of future urban developments. In terms of safeguarding water quality, high-density residential development which results in a relatively smaller footprint would be the preferred option. The research study outcomes bring into question a number of fundamental concepts and misconceptions routinely accepted in stormwater quality management. The research findings confirmed the need to move beyond customary structural measures and identified the key role that urban planning can play in safeguarding urban water environments.  相似文献   

20.
ABSTRACT: Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes ‐ saturation excess and infiltration excess ‐ on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service‐Curve Number (SCS‐CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号