共查询到20条相似文献,搜索用时 15 毫秒
1.
Toby N. Carlson 《Journal of the American Water Resources Association》2004,40(4):1087-1098
ABSTRACT: This paper demonstrates how satellite image data [e.g., from Landsat 5 Thematic Mapper (TM)], in conjunction with an urban growth model and simple runoff calculations, can be used to estimate future surface runoff and, by implication, water quality within a watershed. To illustrate the method, predictions of land use change and surface runoff are shown for Spring Creek Watershed, a medium sized urbanizing watershed in Central Pennsylvania. Land cover classifications for this watershed were created from images for summertime 1986 and 1996 and subsequently used as input to the Clarke urban growth model, called SLEUTH, to predict land use changes to the year 2025. Simulations with this model show a progressive growth in the percentage of urban pixels and in impervious surface area in the watershed but also an increase in woodland, primarily in previously clear‐cut areas. Given that woodland area will continue to increase in area, surface runoff into Spring Creek is predicted to remain only slightly above present level. However, should the woodland amount fail to increase, surface runoff is then predicted to increase more significantly during the next 25 years. Finally, the concept of urban sprawl is addressed within the context of predicted increases in urbanization by relating the implied increase in impervious surface area to population density within the watershed. 相似文献
2.
Bryan Boulanger Nikolaos P. Nikolaidis 《Journal of the American Water Resources Association》2003,39(2):337-345
ABSTRACT: A modeling framework was developed for managing copper runoff in urban watersheds that incorporates water quality characterization, watershed land use areas, hydrologic data, a statistical simulator, a biotic ligand binding model to characterize acute toxicity, and a statistical method for setting a watershed specific copper loading. The modeling framework is driven by export coefficients derived from water quality parameters and hydrologic inputs measured in an urban watershed's storm water system. This framework was applied to a watershed containing a copper roof built in 1992. A series of simulations was run to predict the change in receiving stream water chemistry caused by roof aging and to determine the maximum copper loading (at the 99 percent confidence level) a watershed could accept without causing acute toxicity in the receiving stream. Forecasting the amount of copper flux responsible for exceeding the assimilation capacity of a watershed can be directly related to maximum copper loadings responsible for causing toxicity in the receiving streams. The framework developed in this study can be used to evaluate copper utilization in urban watersheds. 相似文献
3.
Evan Shane Williams William R. Wise 《Journal of the American Water Resources Association》2006,42(2):443-455
Low impact development (LID) and other land development methods have been presented as alternatives to conventional storm water management and site design. Low impact development encourages land preservation and use of distributed, infiltration‐based storm water management systems to minimize impacts on hydrology. Such systems can include shallow retention areas, akin to natural depression storage. Other approaches to land development may emphasize land preservation only. Herein, an analysis of four development alternatives is presented. The first was Traditional development with conventional pipe/pond storm water management and half‐acre lots. The second alternative was Cluster development, in which implementation of the local cluster development ordnance was assumed, resulting in quarter‐acre lots with a pipe/pond storm water management system and open space preservation. The “Partial” LID option used the same lot layout as the Traditional option, with a storm water management system emphasizing shallow depression storage. The “Full” LID used the Cluster site plan and the depression storage‐based storm water management system. The alternatives were compared to the hydrologic response of existing site conditions. The analysis used two design storms and a continuous rainfall record. The combination of land preservation and infiltration‐based storm water management yielded the hydrologic response closest to existing conditions, although ponds were required to control peak flows for the design storms. 相似文献
4.
Richard C. Bost Philip B. Bedient Peter G. Rowe 《Journal of the American Water Resources Association》1980,16(4):710-716
ABSTRACT: The effect of urbanization on alternative flood control strategies was investigated for a large developing watershed in Texas. Urban and rural areas were modeled separately using a geographically-referenced data base and the U.S. Corps of Engineers HEC-1 and HEC-2 programs, and results yielded a double-peaked hydrograph. Hydrograph input parameters were modified to predict the effects of a wide range of management alternatives including on-site storage, reservoirs, channelization, and development controls. Results indicated a combination of alternatives is required to protect existing and future developments. 相似文献
5.
Jin‐Yong Choi Bernard A. Engel Suresh Muthukrishnan Jon Harbor 《Journal of the American Water Resources Association》2003,39(3):623-635
ABSTRACT: To adequately manage impacts of ongoing or future land use changes in a watershed, the magnitude of their hydrologic impacts needs to be assessed. A grid based daily streamflow model was calibrated with two years of observed streamflow data, using time periods when land use data are available and verified by comparison of model predictions with observed streamflow data. Streamflow data were separated into direct runoff and baseflow to estimate the impacts of urbanization on each hydrologic component. Analysis of the ratio between direct runoff and total runoff from 30 years of simulation results and the change in these ratios with urbanization shows that estimated annual direct runoff increased from 49.2 percent (1973) to 63.1 percent (1984) and 65.0 percent (1991), indicating the effects of urbanization are greater on direct runoff than on total runoff. The direct runoff ratio also varies with annual rainfall, with dry year ratios larger than those for wet years. This suggests that the impact of urbanization on areas that are sensitive to runoff ratios, such as stream ecosystems, might be more serious during drier years than in wetter years in terms of water quality and water yield. This indicates that sustainable base‐flow is important to maintaining sound stream ecosystems. 相似文献
6.
Jennifer K. Holman‐Dodds A. Allen Bradley Kenneth W. Potter 《Journal of the American Water Resources Association》2003,39(1):205-215
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins. 相似文献
7.
William Whipple 《Journal of the American Water Resources Association》1991,27(6):895-902
ABSTRACT: Water quality controls of storm water runoff and infiltration should be a major part of a nonpoint source control program. Although surface runoff and ground water controls are often approached separately, coordination between the two is essential. For practical reasons, a rather simplified technology-based approach appears to be desirable. Areas affected vary greatly as to their sensitivity to pollution; and the various classes of pollutant source vary greatly as to their potential harmfulness. In effect, a matrix approach appears best, in which both vulnerability of the area and harmfulness of the pollutant source would have weight in determining which level of best management practices (BMP) would be appropriate, whether standard, special, or complete prohibition of the type facility under given circumstances. 相似文献
8.
Bryan Boulanger Nikolaos P. Nikolaidis 《Journal of the American Water Resources Association》2003,39(2):325-336
ABSTRACT: Abundant use of copper based products has resulted in increased violation of copper water quality criteria in runoff from urban storm water systems. The objectives of this work were to understand the mobility and toxicity of copper in an urban watershed and to apportion the amount of copper entering the freshwater receiving stream from different urban land covers using a mass balance approach. Sixteen rainfall events collected from the University of Connecticut study watershed between August 1998 and September 2000 were analyzed to assess copper flux in an urban storm water system. Mean flow weighted dissolved copper concentrations observed in the study for copper based architectural material runoff, pervious area runoff, impervious area runoff, and in the receiving stream were 1210 ± 840, 9 ± 3, 8 ± 2, and 14 ± 7 μg/L, respectively. Mean dissolved copper concentrations in the receiving stream exceeded Connecticut's water quality criteria. Despite exceeding the dissolved concentration based criteria, cupric ion concentrations at the system outlet remained below 0.05 μg/L for all storms analyzed, and no acute toxicity (using Daphnia pulex as the test organism) was measured in samples collected from the stream. 相似文献
9.
Derek B. Booth David Hartley Rhett Jackson 《Journal of the American Water Resources Association》2002,38(3):835-845
ABSTRACT: For 20 years, King County, Washington, has implemented progressively more demanding structural and nonstructural strategies in an attempt to protect aquatic resources and declining salmon populations from the cumulative effects of urbanization. This history holds lessons for planners, engineers, and resource managers throughout other urbanizing regions. Detention ponds, even with increasingly restrictive designs, have still proven inadequate to prevent channel erosion. Costly structural retrofits of urbanized watersheds can mitigate certain problems, such as flooding or erosion, but cannot restore the predevelopment flow regime or habitat conditions. Widespread conversion of forest to pasture or grass in rural areas, generally unregulated by most jurisdictions, degrades aquatic systems even when watershed imperviousness remains low. Preservation of aquatic resources in developing areas will require integrated mitigation, which must including impervious‐surface limits, forest‐retention policies, stormwater detention, riparian‐buffer maintenance, and protection of wetlands and unstable slopes. New management goals are needed for those watersheds whose existing development precludes significant ecosystem recovery; the same goals cannot be achieved in both developed and undeveloped watersheds. 相似文献
10.
Jonathan B. Butcher 《Journal of the American Water Resources Association》1999,35(3):555-565
ABSTRACT: Protecting surface water quality in watersheds undergoing demographic change requires both the management of existing threats and planning to address potential future stresses arising from changing land use. Many reservoirs and threatened waterbodies are located in areas undergoing rapid population growth, and increases in density of residential and commercial land use, accompanied by increased amount of impervious surface area, can result in increased pollutant loading and degradation of water quality. Effective planning to address potential threats, including zoning and growth management, requires analytical tools to predict and compare the impacts of different management options. The focus of this paper is not on developing demographic projections, but rather the translation of such projections into changes in land use which form the basis for assessment of future watershed loads. Land use change can be forecast at a variety of spatial and temporal scales. A semi-lumped, GIS-based, transition matrix approach is recommended as consistent with the level of complexity achievable in most watershed models. Practical aspects of forecasting future land use for watershed assessment are discussed. Several recent reservoir water supply projection studies are used to demonstrate a general framework for simulating changes in land use and resulting impacts on water quality. In addition to providing a technical basis for selecting optimal management alternatives, such a tool is invaluable for demonstrating to different stakeholder groups the trade-offs among management alternatives, both in terms of water quality and future land use patterns within the watershed. 相似文献
11.
L.A. Schifman M.E. Tryby J. Berner W.D. Shuster 《Journal of the American Water Resources Association》2018,54(1):148-159
The U.S. Environmental Protection Agency National Stormwater Calculator (NSWC) simplifies the task of estimating runoff through a straightforward simulation process based on the EPA Stormwater Management Model. The NSWC accesses localized climate and soil hydrology data, and options to experiment with low‐impact development (LID) features for parcels up to 5 ha in size. We discuss how the NSWC treats the urban hydrologic cycle and focus on the estimation uncertainty in soil hydrology and its impact on runoff simulation by comparing field‐measured soil hydrologic data from 12 cities to corresponding NSWC estimates in three case studies. The default NSWC hydraulic conductivity is 10.1 mm/h, which underestimates conductivity measurements for New Orleans, Louisiana (95 ± 27 mm/h) and overestimates that for Omaha, Nebraska (3.0 ± 1.0 mm/h). Across all cities, the NSWC prediction, on average, underestimated hydraulic conductivity by 10.5 mm/h compared to corresponding measured values. In evaluating how LID interact with soil hydrology and runoff response, we found direct hydrologic interaction with pre‐existing soil shows high sensitivity in runoff prediction, whereas LID isolated from soils show less impact. Simulations with LID on higher permeability soils indicate that nearly all of pre‐LID runoff is treated; while features interacting with less‐permeable soils treat only 50%. We highlight the NSWC as a screening‐level tool for site runoff dynamics and its suitability in stormwater management. 相似文献
12.
Thomas N. Debo 《Journal of the American Water Resources Association》1980,16(4):654-660
ABSTRACT: Storm water management is a concept being applied in many urban areas to deal with the increasing problems of storm runoff control and flood damage prevention. This paper introduces the concept and describes the recently completed storm water management program in Columbus, Georgia. Columbus has spent five years and over $200,000 in the development of their problem which includes several basic elements: soils inventory and analysis, hydrologic data collection, sediment and erosion control ordinance, storm water management handbook, urban flood simulation model, interdepartment coordination study, drainage problem categorization study, and a pilot basin study. The results of the pilot basin study are presented including example output from the urban simulation model. The computer output illustrates both the hydrologic-hydraulic and economic capabilities of the model. 相似文献
13.
Enjie Li Shujuan Li Joanna Endter-Wada 《Journal of Environmental Planning and Management》2017,60(6):1056-1072
Linking water and land is essential in planning for the future of the western United States. We propose the concept of ‘water-smart growth’ and explore its implications through incorporating water considerations into the SLEUTH land-use model. The urban growth trajectory in Cache County, Utah, is modeled from 2007 to 2030 under four different scenarios: current trend; smart growth; water-smart growth with moderate implementation; and water-smart growth with full implementation. Comparisons of simulation results illustrate the extent and ways in which water-smart growth would alter current established land-use growth patterns. The approach represents an initial step to better integrate land and water in urban growth modeling and planning. This study's purposes are to provide improved understanding and representation of linkages between water and land in urbanizing environments, offer insights from a set of modeled options, and demonstrate the significance of integrating land and water in planning practices. 相似文献
14.
Gaylord V. Skogerboe Thomas L. Huntzinger 《Journal of the American Water Resources Association》1971,7(5):1027-1037
ABSTRACT. Most of Utah's rapid population and industrial expansion is taking place along the western base of the Wasatch Mountains, with consequent increases in water demand. As a part of Utah's “Developing a State Water Plan,” a foundation investigation of the Utah Lake drainage area, which is at the Southern end of the Wasatch Front, was completed which delineated the quantity and quality of the water resources, present water uses, and opportunities for further water conservation. To prepare water budgets, land use data was collected to delineate all areas using water in excess of normal precipitation, which includes agricultural croplands, phreatophytes, open water surfaces, industrial areas, and urban areas. The water budgets were prepared for the time base 1931-1960, but adjusted to physical conditions existing in 1960. The Initial Phase of the Bonneville Unit of the Central Utah Project is presently under construction, with costs expected to exceed 300 million dollars. The principal feature of this project is the exportation of waters from the Colorado River Basin into the Utah Lake drainage area (Great Basin). This importation provides a large number of alternatives for allocation, reallocation of present supplies, and exportation. The possible effects of the Central Utah Project for realizing some of the above alternatives is delineated. Fortunately, the features of this project allow a wide latitude for water management in Utah, thereby facilitating its corporation into a “State Water Plan.” 相似文献
15.
Melissa Vernon Carle Patrick N. Halpin Craig A. Stow 《Journal of the American Water Resources Association》2005,41(3):693-708
ABSTRACT: Urban runoff contributes to nonpoint source pollution, but there is little understanding of the way that pattern and extent of urbanization contributes to this problem. Indicators of type and density of urbanization and access to municipal services were examined in six urban watersheds in Durham, North Carolina. Principal components analysis (PCA) was used to identify patterns in the distribution of these variables across the urban landscape. While spatial variation in urban environments is not perfectly captured by any one variable, the results suggest that most of the variation can be explained using several variables related to the extent and distribution of urban development. Multiple linear regression models were fit to relate these urbanization indicators to total phosphorus, total kjeldahl nitrogen, total suspended solids, and fecal coliforms. Development density was correlated to decreased water quality in each of the models. Indicators of urbanization type such as the house age, amount of contiguous impervious surface, and stormwater connectivity explained additional variation. In the nutrient models, access to city services was also an important factor. The results indicate that while urbanization density is important in predicting water quality, indicators of urbanization type and access to city services help explain additional variation in the models. 相似文献
16.
Yang Yang Ting Fong May Chui 《Journal of the American Water Resources Association》2018,54(3):613-630
Low impact development (LID) practices are often applied to compensate for surface imperviousness caused by urban development. These practices can mitigate flood risk by reducing runoff volume and peak flow and by delaying the time to peak flow. To select a suitable LID practice type and its surface area during the preliminary design process, it is necessary to rapidly estimate the hydrologic performance of various LID designs under design storms. This study provides a method and a toolbox for rapid assessment of the hydrologic performance of various LID practices, which can be useful to developers for establishment of preliminary LID designs. The hydrologic performance of three common types of LID practices (i.e., green roofs, bioretention cells, and infiltration trenches) under various design storms is first simulated using the Storm Water Management Model (SWMM). The results are then presented as performance curves on a unit storage basis. Look‐up tables are further developed to assist the comparison and selection of the LID alternatives for various hydrologic performance targets. To facilitate SWMM modeling, a MATLAB toolbox is developed to automate the process of input modification, model simulation, result extraction, and postprocessing. Finally, the sensitivity of the look‐up curves to design storm types and design specifications of bioretention cells is also analyzed, and the assumptions used in the development of these look‐up curves are validated. 相似文献
17.
James E. Coufal 《Journal of the American Water Resources Association》1997,33(1):13-19
ABSTRACT: A forester shares personal reflections on biodiversity, finding he must deal with the question of “What is biodiversity?” before dealing with “What is biodiversity good for?” Even before that, the complexity of the scientific and social aspects of biodiversity must be looked at to set a context. The author believes that biodiversity has scientific, recreational, wildness, natural history, and spiritual values and contributes to sustainability and productivity. Aesthetic values also are found to be very important, and the author concludes “that biodiversity has values that are worth protecting, even in the face of scientific uncertainty.” Personal reflection on environmental issues is necessary to fully understand what one believes, and to be an active participant in issues of environmental ethics. 相似文献
18.
Scott A. Sheeder Jeremy D. Ross Toby N. Carlson 《Journal of the American Water Resources Association》2002,38(4):1027-1040
ABSTRACT: Many studies can be found in the literature pertaining to the effects of urbanization on surface runoff in small watersheds and the hydrologic response of undeveloped watersheds. However, an extensive literature review yielded few published studies that illustrate differing hydrologic responses from multiple source areas within a watershed. The concepts discussed here are not new, but the methods used provide a unique, basic procedure for investigating stormwater hydrology in topographically diverse basins. Six storm hydrographs from three small central Pennsylvania watersheds were analyzed for this paper; five are presented. Two important conclusions are deduced from this investigation. First, in all cases we found two distinct peaks in stream discharge, each representing different contributing areas to direct discharge with greatly differing curve numbers and lags representative of urban and rural source regions. Second, the direct discharge represents only a small fraction of the total drainage area with the urban peak becoming increasingly important with respect to the rural peak with the amount of urbanization and as the magnitude of the rain event decreases. 相似文献
19.
K.B. Khatri C. Strong N. von Stackelberg M. Buchert A.K. Kochanski 《Journal of the American Water Resources Association》2019,55(6):1540-1563
This study investigates the impact of climate and land use change on the magnitude and timing of streamflow and sediment yield in a snow‐dominated mountainous watershed in Salt Lake County, Utah using a scenario approach and the Hydrological Simulation Program — FORTRAN model for the 2040s (year 2035–2044) and 2090s (year 2085–2094). The climate scenarios were statistically and dynamically downscaled from global climate models. Land use and land cover (LULC) changes were estimated in two ways — from a regional planning scenario and from a deterministic model. Results indicate the mean daily streamflow in the Jordan River watershed will increase by an amount ranging from 11.2% to 14.5% in the 2040s and from 6.8% to 15.3% in the 2090s. The respective increases in sediment load in the 2040s and 2090s is projected to be 6.7% and 39.7% in the canyons and about 7.4% to 14.2% in the Jordan valley. The historical 50th percentile timing of streamflow and sediment load is projected to be shifted earlier by three to four weeks by mid‐century and four to eight weeks by late‐century. The projected streamflow and sediment load results establish a nonlinear relationship with each other and are highly sensitive to projected climate change. The predicted changes in streamflow and sediment yield will have implications for water supply, flood control and stormwater management. 相似文献