共查询到20条相似文献,搜索用时 15 毫秒
1.
Diana L. Karwan J. David. Allan Kathleen M. Bergen 《Journal of the American Water Resources Association》2001,37(6):1579-1587
ABSTRACT: The shape of a river channel is linked to surrounding land use through interacting hydrologic and geologic processes. This study analyzes the relationship between the change in near‐stream land use and the shape of the adjacent river channel over time. Three watersheds in the foothills of the Venezuelan Andes that have experienced differing degrees of development were studied to determine river channel width, sinuosity, and position relative to surrounding land use. Change in land use over time was obtained from multiple‐date aerial photographs (1946 and 1980) referenced to 1996 Landsat Thematic Mapper (TM) satellite imagery, and verified by field inspection. Measurements of land‐use type and amount and river channel morphology from the two dates were made using geographic information system (GIS) methods. The three watersheds differed in the extent of deforestation, the location of remaining forested land, and how much land‐use change had already occurred by 1946. Change in river channel morphology was greatest at the most deforested sites. Valley shape and channel constraint also had a discernible effect on change in channel morphology. This study introduces a method for analyzing change in coupled terrestrial‐aquatic systems based on multiple‐date, remotely sensed data and GIS analysis of spatial properties. The results document human impacts on river channels through a comparison of multiple watersheds over a 35‐year time interval. 相似文献
2.
Joseph P. Herring Richard C. Schultz Thomas M. Isenhart 《Journal of the American Water Resources Association》2006,42(1):145-155
An observational study was conducted at the watershed scale using land cover (vegetation) data to assess the absence or presence of riparian buffers in three northeastern Missouri watersheds. Forests and grasslands lying within a 61 m (200 ft) parallel band directly adjacent to streams were considered “buffers” for improving or protecting water quality and were characterized according to their length, width, and vegetation type. Results indicated that riparian buffers were abundant throughout the watersheds but were typically narrow along first‐order and second‐order streams; in many cases they may not have been wide enough to provide adequate stream protection. At least 90 percent of all streams had buffer vegetation immediately adjacent to the streambanks, but as few as 31 percent of first‐order streams had buffers extending to 61 m from the stream on at least one side. On‐site evaluations are needed to determine the condition of these forests and grasslands and their ability to process nonpoint source pollutants. The results will be useful for providing natural resource managers with knowledge of current watershed conditions as well as in identifying specific locations for future conservation efforts within each watershed. 相似文献
3.
Richard J. Horwitz Thomas E. Johnson Paul F. Overbeck T. Kevin O’Donnell W. Cully Hession Bernard W. Sweeney 《Journal of the American Water Resources Association》2008,44(3):724-741
Abstract: The joint influences of riparian vegetation and urbanization on fish assemblages were analyzed by depletion sampling in paired forested and nonforested reaches of 25 small streams along an urbanization gradient. Nonforested reaches were narrower than their forested counterparts, so densities based on surface area differ from linear densities (based on reach length). Linear densities (based on number or biomass of fish) of American eel, white sucker and tesselated darter, and the proportion of biomass of benthic invertivores were significantly higher in nonforested reaches, while linear densities of margined madtom and the number of pool species were significantly higher in forested reaches. Observed riparian effects may reflect differences in habitat and algal productivity between forested and nonforested reaches. These results suggest that relatively small‐scale riparian restoration projects can affect local geomorphology and the abundance of fish. Dense vegetative cover in riparian zones and similar or analogous habitats in both forested and nonforested reaches, the relatively small scale of the nonforested reaches, and the low statistical power to detect differences in abundance of rare species may have limited the observed differences between forested and nonforested reaches. There was a strong urbanization gradient, with reductions of intolerant species and increases of tolerant species and omnivores with increasing urbanization. Interactions between riparian vegetation type and urbanization were found for blacknose dace, creek chub, tesselated darter, and the proportion of biomass of lithophilic spawners. The study did not provide consistent support for the hypotheses that responses of fish to riparian vegetation would be overwhelmed by urban degradation or insignificant at low urbanization. 相似文献
4.
Monica Lipscomb Smith Weiqi Zhou Mary Cadenasso Morgan Grove Lawrence E. Band 《Journal of the American Water Resources Association》2010,46(2):429-442
Smith, Monica Lipscomb, Weiqi Zhou, Mary Cadenasso, Morgan Grove, and Lawrence E. Band, 2010. Evaluation of the National Land Cover Database for Hydrologic Applications in Urban and Suburban Baltimore, Maryland. Journal of the American Water Resources Association (JAWRA) 46(2):429-442. DOI: 10.1111/j.1752-1688.2009.00412.x Abstract: We compared the National Land Cover Database (NLCD) 2001 land cover, impervious, and canopy data products to land cover data derived from 0.6-m resolution three-band digital imagery and ancillary data. We conducted this comparison at the 1 km2, 9 km2, and gauged watershed scales within the Baltimore Ecosystem Study to determine the usefulness and limitations of the NLCD in heterogeneous urban to exurban environments for the determination of land-cover information for hydrological applications. Although the NLCD canopy and impervious data are significantly correlated with the high-resolution land-cover dataset, both layers exhibit bias at <10 and >70% cover. The ratio of total impervious area and connected impervious area differs along the range of percent imperviousness – at low percent imperviousness, the NLCD is a better predictor of pavement alone, whereas at higher percent imperviousness, buildings and pavement together more resemble NLCD impervious estimates. The land-cover composition and range for each NLCD urban land category (developed open space, low-intensity, medium-intensity, and high-intensity developed) is more variable in areas of low-intensity development. Fine-vegetation land-cover/lawn area is incorporated in a large number of land use categories with no ability to extract this land cover from the NLCD. These findings reveal that the NLCD may yield important biases in urban, suburban, and exurban hydrologic analyses where land cover is characterized by fine-scale spatial heterogeneity. 相似文献
5.
Nagendra H Tucker C Carlson L Southworth J Karmacharya M Karna B 《Environmental management》2004,34(5):748-760
The effectiveness of parks as management regimes is hotly contested. Much of the current discussion centered around comparisons of management regimes can be traced to a dearth of cross-site quantitative evaluations. Remote sensing provides a particularly effective tool for this purpose, yet analysis of remotely sensed data requires fieldwork to interpret human activities and the socioeconomic and political contexts that relate to land cover change. This paper examines the effect of establishment of the Celaque National Park, Honduras, and the Royal Chitwan National Park buffer zone, Nepal, on limiting deforestation. In Celaque, the park itself has been largely successful in maintaining forest cover. However, recent changes in land use patterns have led to increasing pressure on the park boundaries, exacerbated by the lack of involvement of local residents. In the Royal Chitwan National Park, in contrast, participatory approaches towards co-management have been implemented over the past decade in the park buffer zone. With significant incomes derived from ecotourism, complete protection of the buffer zone forest has been adopted, leading to significant regrowth of tree cover. However, local decision-making power is limited, and buffer zone management has largely proven successful due to the investment and support provided by international donor agencies. These two case studies demonstrate the utility of remote sensing and Geographical Information Systems analysis in providing a spatiotemporal perspective for assessing management policies. They also demonstrate the importance of fieldwork to provide a nuanced understanding of the socioeconomic and institutional conditions affecting the outcomes of forest management regimes. 相似文献
6.
Maeve McBride Derek B. Booth 《Journal of the American Water Resources Association》2005,41(3):565-580
ABSTRACT: An assessment of physical conditions in urban streams of the Puget Sound region, coupled with spatially explicit watershed characterizations, demonstrates the importance of spatial scale, drainage network connectivity, and longitudinal downstream trends when considering the effects of urbanization on streams. A rapid stream assessment technique and a multimetric index were used to describe the physical conditions of multiple reaches in four watersheds. Watersheds were characterized using geographic information system (GIS) derived landscape metrics that represent the magnitude of urbanization at three spatial scales and the connectivity of urban land. Physical conditions, as measured by the physical stream conditions index (PSCI), were best explained for the watersheds by two landscape metrics: quantity of intense and grassy urban land in the subwatershed and quantity of intense and grassy urban land within 500 m of the site (R2= 0.52, p > 0.0005). A multiple regression of PSCI with these metrics and an additional connectivity metric (proximity of a road crossing) provided the best model for the three urban watersheds (R2= 0.41, p > 0.0005). Analyses of longitudinal trends in PSCI within the three urban watersheds showed that conditions improved when a stream flowed through an intact riparian buffer with forest or wetland vegetation and without road crossings. Results demonstrate that information on spatial scale and patterns of urbanization is essential to understanding and successfully managing urban streams. 相似文献
7.
David L. Jordan Peggy Barroll 《Journal of the American Water Resources Association》2013,49(3):484-497
A time series of estimates of irrigated area was developed for the Lower Rio Grande valley (LRG) in New Mexico from the 1970s to present day. The objective of the project was to develop an independent, accurate, and scientifically justifiable evaluation of irrigated area in the region for the period spanning from the mid‐1970s to the present. These area estimates were used in support of groundwater modeling of the LRG region, as well as for other analyses. This study used a remote‐sensing‐based methodology to evaluate overall irrigated area within the LRG. We applied a methodology that involved the normalization of vegetation indices derived from satellite imagery to get a more accurate estimation of irrigated area across multiple time periods and multiple Landsat platforms. The normalization allows more accurate evaluation of vegetation index data that span several decades. An accuracy assessment of the methodology and results from this study was performed using field‐collected crop data from the 2008 growing season. The comparisons with field data indicate that the accuracy of the remote‐sensing‐based estimates of historical irrigated area is very good, with rates of false positives (areas identified as irrigated that are not truly irrigated) of only about 4%, and rates of false negatives (areas identified as not irrigated that are truly irrigated) in the range of 0.6‐2.0%. 相似文献
8.
Richard M. Vogel Chad Yaindl Meghan Walter 《Journal of the American Water Resources Association》2011,47(3):464-474
Vogel, Richard M., Chad Yaindl, and Meghan Walter, 2011. Nonstationarity: Flood Magnification and Recurrence Reduction Factors in the United States. Journal of the American Water Resources Association (JAWRA) 47(3):464‐474. DOI: 10.1111/j.1752‐1688.2011.00541.x Abstract: It may no longer be reasonable to model streamflow as a stationary process, yet nearly all existing water resource planning methods assume that historical streamflows will remain unchanged in the future. In the few instances when trends in extreme events have been considered, most recent work has focused on the influence of climate change, alone. This study takes a different approach by exploring trends in floods in watersheds which are subject to a very broad range of anthropogenic influences, not limited to climate change. A simple statistical model is developed which can both mimic observed flood trends as well as the frequency of floods in a nonstationary world. This model is used to explore a range of flood planning issues in a nonstationary world. A decadal flood magnification factor is defined as the ratio of the T‐year flood in a decade to the T‐year flood today. Using historical flood data across the United States we obtain flood magnification factors in excess of 2‐5 for many regions of the United States, particularly those regions with higher population densities. Similarly, we compute recurrence reduction factors which indicate that what is now considered the 100‐year flood, may become much more common in many watersheds. Nonstationarity in floods can result from a variety of anthropogenic processes including changes in land use, climate, and water use, with likely interactions among those processes making it very difficult to attribute trends to a particular cause. 相似文献
9.
E.G. Stets V.J. Kelly C.G. Crawford 《Journal of the American Water Resources Association》2015,51(5):1394-1407
Riverine nitrate (NO3) is a well‐documented driver of eutrophication and hypoxia in coastal areas. The development of the elevated river NO3 concentration is linked to anthropogenic inputs from municipal, agricultural, and atmospheric sources. The intensity of these sources has varied regionally, through time, and in response to multiple causes such as economic drivers and policy responses. This study uses long‐term water quality, land use, and other ancillary data to further describe the evolution of river NO3 concentrations at 22 monitoring stations in the United States (U.S.). The stations were selected for long‐term data availability and to represent a range of climate and land‐use conditions. We examined NO3 at the monitoring stations, using a flow‐weighting scheme meant to account for interannual flow variability allowing greater focus on river chemical conditions. River NO3 concentration increased strongly during 1945‐1980 at most of the stations and have remained elevated, but stopped increasing during 1981‐2008. NO3 increased to a greater extent at monitoring stations in the Midwest U.S. and less so at those in the Eastern and Western U.S. We discuss 20th Century agricultural development in the U.S. and demonstrate that regional differences in NO3 concentration patterns were strongly related to an agricultural index developed using principal components analysis. This unique century‐scale dataset adds to our understanding of long‐term NO3 patterns in the U.S. 相似文献
10.
Michael M. Pollock Timothy J. Beechie Martin Liermann Richard E. Bigley 《Journal of the American Water Resources Association》2009,45(1):141-156
Abstract: We compared summer stream temperature patterns in 40 small forested watersheds in the Hoh and Clearwater basins in the western Olympic Peninsula, Washington, to examine correlations between previous riparian and basin‐wide timber harvest activity and stream temperatures. Seven watersheds were unharvested, while the remaining 33 had between 25% and 100% of the total basin harvested, mostly within the last 40 years. Mean daily maximum temperatures were significantly different between the harvested and unharvested basins, averaging 14.5°C and 12.1°C, respectively. Diurnal fluctuations between harvested and unharvested basins were also significantly different, averaging 1.7°C and 0.9°C, respectively. Total basin harvest was correlated with average daily maximum temperature (r2 = 0.39), as was total riparian harvest (r2 = 0.32). The amount of recently clear‐cut riparian forest (<20 year) within 600 m upstream of our monitoring sites ranged from 0% to 100% and was not correlated to increased stream temperatures. We used Akaike’s Information Criteria (AIC) analysis to assess whether other physical variables could explain some of the observed variation in stream temperature. We found that variables related to elevation, slope, aspect, and geology explain between 5% and 14% more of the variability relative to the variability explained by percent of basin harvested (BasHarv), and that the BasHarv was consistently a better predictor than the amount of riparian forest harvested. While the BasHarv is in all of the models that perform well, the AIC analysis shows that there are many models with two variables that perform about the same and therefore it would be difficult to choose one as the best model. We conclude that adding additional variables to the model does not change the basic findings that there is a relatively strong relationship between maximum daily stream temperatures and the total amount of harvest in a basin, and strong, but slightly weaker relationship between maximum daily stream temperatures and the total riparian harvest in a basin. Seventeen of the 40 streams exceeded the Washington State Department of Ecology’s (DOE) temperature criterion for waters defined as “core salmon and trout habitat” (class AA waters). The DOE temperature criterion for class AA waters is any seven‐day average of daily maximum temperatures in excess of 16°C. The probability of a stream exceeding the water quality standard increased with timber harvest activity. All unharvested sites and five of six sites that had 25‐50% harvest met DOEs water quality standard. In contrast, only nine of eighteen sites with 50‐75% harvest and two of nine sites with >75% harvest met DOEs water quality standard. Many streams with extensive canopy closure, as estimated by the age of riparian trees, still had higher temperatures and greater diurnal fluctuations than the unharvested basins. This suggests that the impact of past forest harvest activities on stream temperatures cannot be entirely mitigated through the reestablishment of riparian buffers. 相似文献
11.
Liz Dent Danielle Vick Kyle Abraham Stephen Schoenholtz Sherri Johnson 《Journal of the American Water Resources Association》2008,44(4):803-813
Abstract: Cool summertime stream temperature is an important component of high quality aquatic habitat in Oregon coastal streams. Within the Oregon Coast Range, small headwater streams make up a majority of the stream network; yet, little information is available on temperature patterns and the longitudinal variability for these streams. In this paper we describe preharvest spatial and temporal patterns in summer stream temperature for small streams of the Oregon Coast Range in forests managed for timber production. We also explore relationships between stream and riparian attributes and observed stream temperature conditions and patterns. Summer stream temperature, channel, and riparian data were collected on 36 headwater streams in 2002, 2003, and 2004. Mean stream temperatures were consistent among summers and generally warmed in a downstream direction. However, longitudinal trends in maximum temperatures were more variable. At the reach scale of 0.5‐1.7 km, maximum temperatures increased in 17 streams, decreased in seven streams and did not change in three reaches. At the subreach scale (0.1‐1.5 km), maximum temperatures increased in 28 subreaches, decreased in 14, and did not change in 12 subreaches. Models of increasing temperature in a downstream direction may oversimplify fine‐scale patterns in small streams. Stream and riparian attributes that correlated with observed temperature patterns included cover, channel substrate, channel gradient, instream wood jam volume, riparian stand density, and geology type. Longitudinal patterns of stream temperature are an important consideration for background characterization of water quality. Studies attempting to evaluate stream temperature response to timber harvest or other modifications should quantify variability in longitudinal patterns of stream temperature prior to logging. 相似文献
12.
Klemas VV 《Environmental management》2001,27(1):47-57
Advances in technology and decreases in cost are making remote sensing (RS) and geographic information systems (GIS) practical and attractive for use in coastal resource management. They are also allowing researchers and managers to take a broader view of ecological patterns and processes. Landscape-level environmental indicators that can be detected by Landsat Thematic Mapper (TM) and other remote sensors are available to provide quantitative estimates of coastal and estuarine habitat conditions and trends. Such indicators include watershed land cover, riparian buffers, shoreline and wetland changes, among others. With the launch of Landsat 7, the cost of TM imagery has dropped by nearly a factor of 10, decreasing the cost of monitoring large coastal areas and estuaries. New satellites, carrying sensors with much finer spatial (1-5 m) and spectral (200 narrow bands) resolutions are being launched, providing a capability to more accurately detect changes in coastal habitat and wetland health. Advances in the application of GIS help incorporate ancillary data layers to improve the accuracy of satellite land-cover classification. When these techniques for generating, organizing, storing, and analyzing spatial information are combined with mathematical models, coastal planners and managers have a means for assessing the impacts of alternative management practices. 相似文献
13.
Sonia Binte Murshed Md. Rezaur Rahman Jagath J. Kaluarachchi 《Journal of the American Water Resources Association》2019,55(4):800-823
The Ganges Delta in Bangladesh is an example of water‐related catastrophes in a major rural river basin where limitations in quantity, quality, and timing of available water are producing disastrous conditions. Water availability limitations are modifying the hydrologic characteristics especially when water allocation is controlled from the upstream Farakka Barrage. This study presents the changes and consequences in the hydrologic regime due to climate‐ and human‐induced stresses. Flow duration curves (FDCs), rainfall elasticity, and temperature sensitivity were used to assess the pre‐ and post‐barrage water flow patterns. Hydrologic and climate indices were computed to provide insight on hydro‐climatic variability and trend. Significant increases in temperature, evapotranspiration, hot days, heating, and cooling degree days indicate the region is heading toward a warmer climate. Moreover, increase in high‐intensity rainfall of short duration is making the region prone to extreme floods. FDCs depict a large reduction in river flows between pre‐ and post‐barrage periods, resulting in lower water storage capacity. The reduction in freshwater flow increased the extent and intensity of salinity intrusion. This freshwater scarcity is reducing livelihood options considerably and indirectly forcing population migration from the delta region. Understanding the causes and directions of hydrologic changes is essential to formulate improve water resources management in the region. 相似文献
14.
Alan R. Hill 《Journal of the American Water Resources Association》2018,54(1):240-254
This study uses data from 46 riparian sites to examine the influence of landscape hydrogeology on patterns of groundwater flux and the buffer width required for effective nitrate removal in humid temperate agricultural regions. There is a considerable imbalance in the research focus on different hydrogeologic settings. More than 40% of the buffers are located in landscapes with surficial sand aquifers, whereas few buffers have been studied in glacial till and weathered bedrock landscapes which cover large areas. Annual groundwater fluxes for 29 of these sites ranged from <20 L/m/day for buffers on flat sand plains and uplands with fine‐textured deposits to 50‐1,200 L/m/day for many sites with upland sand aquifers. Despite a similar range of water fluxes, buffers in gently to moderately sloping landscapes with <4 m depths of sand sediments reached a 90% removal efficiency within 30‐60 m while sites with >4 m depths required a 150‐200 m width. The width for 90% efficiency in buffers with loamy sand and sandy loam sediments also increased from 10‐20 m with <4 m sediment depths to 50‐100 m for >4 m depths. Limited data for buffers with fine‐textured sediments suggest that 90% of the nitrate flux was often depleted in a 10‐20 m width. Groundwater flux did not have a significant relationship with nitrate removal percent per meter buffer width because of the variation in efficiency that occurred in buffers with similar fluxes in different hydrogeologic settings. 相似文献
15.
高分辨率遥感影像的土地利用分类 总被引:5,自引:0,他引:5
高分辨率遥感影像在我国土地利用动态监测中展现出良好的应用前景,但与此相关的关键技术问题亟待解决.结合Ikonos影像,分析高分辨率遥感影像的特点,并在我国土地利用现状类型划分的基础上,针对高分辨遥感影像土地利用分类这一关键技术问题,概述常规分类方法,提出一套适宜高分辨率遥感影像土地利用分类的技术路线. 相似文献
16.
Marcia N. Snyder Scott J. Goetz Robb K. Wright 《Journal of the American Water Resources Association》2005,41(3):659-677
ABSTRACT: Land cover and land use change have long been known to influence the chemical, physical, and biological characteristics of streams. This study makes use of land cover maps derived from fine resolution satellite imagery and an extensive stream quality dataset to determine the relationship between small watershed health rankings and land cover composition and configuration. Landscape metrics were derived from digital impervious surface area (ISA), tree cover (percent), and agricultural crop maps within Montgomery County, Maryland. Watershed rankings were developed by state and county collaborators (MD‐DNR and MCDEP) using extensive biological and chemical measurements. In stepwise logistic regression models the factors accounting for the most variation in stream health ranking were the percent ISA, followed by the percent of tree cover. Riparian buffer zone tree cover was also a significant predictor. Of the metrics that considered the spatial configuration of the landscape, a contagion index and the percent of ISA in the flow path from the ISA to the stream were also found to be significant predictors of stream health. Despite limited ability to characterize landscape configuration or narrow riparian buffer zone vegetation with coarser resolution imagery (from Landsat), model results were not significantly different from those based on the use of fine‐resolution ISA information, suggesting that broader area applications of the approach are possible. The results indicate that management practices designed to improve stream water quality should focus on the amount of ISA and tree cover in both the watershed and within the buffer zone. 相似文献
17.
Richard Deitchman Steven P. Loheide II 《Journal of the American Water Resources Association》2012,48(6):1091-1103
Abstract: Airborne thermal remote sensing from four flights on a single day from a single‐engine airplane was used to collect thermal infrared data of a 10.47‐km reach of the upper East Branch Pecatonica River in southwest Wisconsin. The study uses a one‐dimensional stream temperature model calibrated with the longitudinal profiles of stream temperature created from the four thermal imaging flights and validated with three days of continuous stream temperature data from instream data loggers on the days surrounding the thermal remote‐sensing campaign. Model simulations were used to quantify the sensitivity of stream thermal habitat to increases in air and groundwater temperature and changes in base flow. The simulations indicate that stream temperatures may reach critical maximum thresholds for brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) mortality, particularly if both air temperature increases and base flow declines. The approach demonstrates that thermal infrared data can greatly assist stream temperature model validation due to its high spatial resolution, and that this spatially continuous stream temperature data can be used to pinpoint spatial heterogeneity in groundwater inflow to streams. With this spatially distributed data on thermal heterogeneity and base‐flow accretion, stream temperature models considering various climate change scenarios are able to identify thermal refugia that will be critical for fisheries management under a changing climate. 相似文献
18.
Theodore A. Endreny Peter Kwon Tanja N. Williamson Richard Evans 《Journal of the American Water Resources Association》2019,55(5):1268-1287
We examined the impacts of changes in land cover and soil conditions on the flow regime of the upper Delaware River Basin using the Water Availability Tool for Environmental Resources. We simulated flows for two periods, c. 1600 and 1940, at three sites using the same temperature and precipitation conditions: the East Branch, West Branch, and mainstem Delaware River at Callicoon, New York. The 1600 period represented pristine forest and soils. The 1940 period included reduced forest cover, increased agriculture, and degraded soils with reduced soil macropore fractions. A model‐sensitivity test examined the impact of soil macropore and land cover change separately. We assessed changes in flow regimes between the 1600 and 1940 periods using a variety of flow statistics, including established ecological limits of hydrologic alteration (ELOHA) thresholds. Reduced forest soil macropore fraction significantly reduced summer and fall baseflows. The 1940 period had significantly lower Q50 flows (50% exceedance) than the 1600 period, as well as summer and fall Q90 and Q75–Q90 flows below the ELOHA thresholds. The one‐ to seven‐day minimum flows were also lower for the 1940 period, by 17% on the mainstem. 1940 flows were 6% more likely than the 1600 period to fall below the low‐flow threshold for federally endangered dwarf wedgemussel (Alasmidonta heterodon) habitat. In contrast, the 1940 period had higher flows than the 1600 period from late fall to early winter. 相似文献
19.
Michael R. Meador 《Journal of the American Water Resources Association》2013,49(2):253-263
Abstract: Relationships between nutrient concentrations and fish nutrient tolerance were assessed relative to established nutrient criteria. Fish community, nitrate plus nitrite (nitrate), and total phosphorus (TP) data were collected during summer low‐flow periods in 2003 and 2004 at stream sites along a nutrient‐enrichment gradient in an agricultural basin in Indiana and Ohio and an urban basin in the Atlanta, Georgia, area. Tolerance indicator values for nitrate and TP were assigned for each species and averaged separately for fish communities at each site (TIVo). Models were used to predict fish species expected to occur at a site under minimally disturbed conditions and average tolerance indicator values were determined for nitrate and TP separately for expected communities (TIVe). In both areas, tolerance scores (TIVo/TIVe) for nitrate increased significantly with increased nitrate concentrations whereas no significant relationships were detected between TP tolerance scores and TP concentrations. A 0% increase in the tolerance score (TIVo/TIVe = 1) for nitrate corresponded to a nitrate concentration of 0.19 mg/l (compared with a USEPA summer nitrate criterion of 0.17 mg/l) in the urban area and 0.31 mg/l (compared with a USEPA summer nitrate criterion of 0.86 mg/l) in the agricultural area. Fish nutrient tolerance values offer the ability to evaluate nutrient enrichment based on a quantitative approach that can provide insights into biologically relevant nutrient criteria. 相似文献
20.
Samuel D. Brody Wesley E. Highfield Russell Blessing 《Journal of the American Water Resources Association》2015,51(6):1556-1567
Major coastal flooding events over the last decade have led decision makers in the United States to favor structural engineering solutions as a means to protect vulnerable coastal communities from the adverse impacts of future storms. While a resistance‐based approach to flood mitigation involving large‐scale construction works may be a central component of a regional flood risk reduction strategy, it is equally important to consider the role of land use and land cover (LULC) patterns in protecting communities from floods. To date, little observational research has been conducted to quantify the effects of various LULC configurations on the amount of property damage occurring across coastal regions over time. In response, we statistically examine the impacts of LULC on observed flood damage across 2,692 watersheds bordering the Gulf of Mexico. Specifically, we analyze statistical linear regression models to isolate the influence of multiple LULC categories on over 372,000 insured flood losses claimed under the National Flood Insurance Program per year from 2001 to 2008. Results indicate that percent increase in palustrine wetlands is the equivalent to, on average, a $13,975 reduction in insured flood losses per year, per watershed. These and other results provide important insights to policy makers on how protecting specific types of LULC can help reduce adverse impacts to local communities. 相似文献