首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Suspended solids and ammonium concentration profiles measured at five locations in Duluth-Superior Harbor during July-October 1985 were analyzed to quantify wind and ship effects on sediment resuspension and resulting harbor water quality. Wind components from the SE quadrant correlated strongly with depth-averaged suspended solids concentrations that were unaffected by ship passage or thermal stratification. Winds from that quadrant have the largest fetch in the harbor. The highest correlation (r2= 0.93) was with the 6-hour average of the ESE wind velocity component. Multiple linear regression analysis of data from post-ship passage concentration profiles yielded numerical estimates of settling velocities of 0.08 to 0.25 cm s?1, typical of ship-resuspended sediments, and vertical eddy diffusivities of 4 to 13 cm2 s1. The results suggest that ambient vertical eddy diffusivities in the harbor are less than 4 cm2 s?1 in the absence of ship passages and with winds less than 5 m s?1 (10 knots).  相似文献   

2.
    
ABSTRACT: The lower reaches of the Arroyo Colorado have historically failed to meet their use under subsection 303(b) of the U.S. Clean Water Act due to fecal coliform bacteria and low dissolved oxygen (DO). Fish kills, especially at the tidal confluence at the Port of Harlingen, Texas, have been reported. Oxygen demand from sediment (SOD) for a river typically has two states‐diffusion limited SOD (SOD) and potential SOD (pSOD), expressed when sediment is resuspended through increased flow or other disturbances. The objective of this research was to measure SOD in the Arroyo Colorado River in situ, estimate pSOD ex situ, and evaluate the relationship between SOD and the depositional environment. We measured SOD and pSOD in the Arroyo Colorado River at up to eight sites over three sampling events. We identified the sample sites based on a modified Rosgen geomorphic index for streambed stabilization. Sites with high sediment deposition potential had high SOD. The average values of SOD between sites were 0.62 g/m2/day (standard deviation 0.38 g/m2/day) and ranged from 0.13 to 1.2 g/m2/day. Potential SOD values ranged from as low as 19.2 to as high as 2,779 g/m3 sediment/ day. Potential SOD can serve as an indicator of the possible impact of SOD from resuspended sediment in stream systems.  相似文献   

3.
    
ABSTRACT: During waning flood flows in gravel-bed streams, finegrained bedload sediment (sand and fine gravel) is commonly winnowed from zones of high shear stress, such as riffles, and deposited in pools, where it mantles an underlying coarse layer. As sediment load increases, more fine sediment becomes available to fill pools. The volume of fine sediment in pools can be measured by probing with a metal rod, and, when expressed as the fraction (V*) of scoured residual pooi volume (residual pool volume with fine sediment removed), can be used as an index of the supply of mobile sediment in a stream channel. Mean values of V* were as high as 0.5 and correlated with qualitative evaluations of sediment supply in eight tributaries of the Trinity River, northwestern California. Fine-sediment volume correlated strongly with scoured pool volume in individual channels, but plots of V* versus pool volume and water surface slope revealed secondary variations in fines volume. In sediment-rich channels, V* correlated positively with scoured pool volume; in sediment-poor channels, V* correlated negatively with water-surface slope. Measuring fine sediment in pools can be a practical method to evaluate and monitor the supply of mobile sediment in gravel-bed streams and to detect and evaluate sediment inputs along a channel network.  相似文献   

4.
ABSTRACT: Sediment losses and water yields were measured for five years on nine forested watersheds in the Gulf Coastal Plain of Arkansas. After one year of pretreatment measurements, three watersheds were clearcut and mechanically site prepared, three were selectively harvested, and three control watersheds were left undisturbed. Sediment losses and water yields were similar for the selectively harvested and cohtrol watersheds during all four post-treatment years. However, clearcutting with mechanical site preparation significantly increased sediment losses and water yields above levels measured on other watersheds. Increased sediment losses persisted for two years, while water yields increased for one year. Although sediment losses from clear-cutting were greater than for other treatments, actual losses averaged only 264 kg/ha and 63 kg/ha for the first and second post-treatment years, respectively. The relatively low sediment losses are attributed to the flat terrain and the relatively low flow discharge rates that typify these sites.  相似文献   

5.
This work assessed the methods of erosion on different surfaces in Ilorin City, Nigeria. The data were sourced from direct fieldwork exercises utilising erosion pins and sediment traps. These were analysed using the Z-score additive model. It was observed that erosion problems are better studied on site utilising sediment traps, which were more efficient than the erosion pins.  相似文献   

6.
    
ABSTRACT: Relationships between wind velocity and the vertical light attenuation coefficient (K0) were determined at two locations in a large, shallow lake (Lake Okeechobee, Florida, USA). K0 was significantly correlated with antecedent wind conditions, which explained as much as 90 percent of the daily variation in K0. Sub-surface irradiance began to change within 60 to 90 minutes of the time when wind velocity exceeded or dropped below a threshold value. Maximum one hour changes in K0 were > 50 percent, however, 20 to 30 percent changes were more common. The magnitude of change in K0 varied spatially based on differences in sediment type. K0 never exceeded 2.8 at a location where bottom sediments were dominated by a mixture of coarse sand and shells. In comparison, K0 exceeded 9 during episodic wind events where the bottom sediment was comprised of fine grain mud. Underwater irradiance data can be used to determine threshold wind velocity and account for the influence sediment type has on K0. Once a threshold velocity has been established, the frequency, rate, and duration of expected change in underwater irradiance can be evaluated. This is critical information for scientists who are studying algal productivity or other light-related phenomena.  相似文献   

7.
ABSTRACT: The three basins of Reelfoot Lake, which is located in northwestern Tennessee, were investigated using the Cs-137 tracer technique to determine rates of sediment deposition and to estimate the time before the basins will fill with sediment. Blue Basin, the largest of the three basins with 2922 ha, had an average annual sedimentation rate of 0.9 cm/yr from 1984 to 1984. The basin will become too shallow for most boating and recreational activities in about 200 years. Buck Basin, the central basin with 774 ha, had an average annual sedimentation rate of 1.1 cm/yr and will become too shallow for most recreational uses in about 100 years. Upper Blue Basin, the most upstream and smallest basin with 439 ha, had an average annual sedimentation rate of 1.7 cm/yr and will become too shallow for most recreational uses in about 60 years. Two important sources of sediment to Reelfoot Lake are erosion from a large number of soybean fields and channelization of many of the streams that flow into the lake. Changes in land management that would reduce erosion could increase the time the lake would remain usable for recreational activities.  相似文献   

8.
ABSTRACT The movement of fallout 137Cs carried by soil particles was studied as an indicator of erosion and sedimentation in the Allerton watersheds and 4-H Memorial Lake located near Monticello, Illinois. Sediment deposition was greater in the waterway draining from watershed IB than in the waterway from watershed IA. At the average rate of 2.3 cm/yr of sediment deposition in the lake (from 1954 to 1979), there will be a loss of over 2 meters of water depth in the next century. However, there appears to be a decreasing rate of sediment deposition in the 4-H Memorial Lake as a result of improved conservation practices on the watersheds and the increased effectiveness of vegetated waterways and buffers for retaining sediment.  相似文献   

9.
ABSTRACT: Forest management activities in a second order drainage basin increased suspended sediment yields 7.7 fold in the first year following road construction, and two-fold following logging in the second year. Sediment supply limitations resulted in poor correlations between sediment concentrations with discharge. Sediment transport was strongly hysteretic, with the highest sediment concentrations occurring on the rising limbs of snowmelt hydrographs and individual peaks. In addition to discharge, hydrograph characteristics such as limb, dQ/dt, and the product of dQ/dt and limb aided in explaining variability of observed sediment concentrations. Sediment-turbidity relationships were strongly discharge dependent, reflecting the changing composition of the suspended load with stream power and sediment supplies.  相似文献   

10.
    
ABSTRACT: The tailwater of Bridgewater Dam, below Lake James, North Carolina, is a designated trout stream. It has environmental attributes for a good cold water fishery with the exception of high suspended sediments. Muddy Creek, a tributary about 1.5 km downstream of the dam, is a major source of sediments. The Muddy Creek Watershed Restoration Initiative was established to develop and implement a sediment control plan. The Watershed Analysis Risk Management Framework was applied to simulate soil erosion and sedimentation and to help determine appropriate action. The simulated sediment concentrations of the river were comparable to observed data from November 1994 to November 2001. For the base condition, the sediment load was 135,000 kg/d from surface erosion and 1,300,000 kg/d from bank erosion. Increasing the buffer strip from existing 50 to 80 percent to 100 percent of stream segments would only reduce surface erosion to 70,400 kg/d with little change in sediment concentrations. Eliminating riverbank erosion would reduce the sediment load from 920,000 to 87,700 kg/d. The bank stabilization project would not only lower suspended sediment concentrations for Muddy Creek, but also reduce the lake sediment accumulation in the downstream Lake Rhodhiss by approximately 13 percent.  相似文献   

11.
ABSTRACT: The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeechobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspend. ed solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is light-limited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sediment-water interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.  相似文献   

12.
    
Environmental and economic damages caused by agricultural nonpoint source inputs of sediment and associated pollutants are examined. Widespread water quality problems are identified in lakes, rivers, and estuaries in agricultural areas, and billions of dollars of on-site and offsite costs result from this eroded soil every year. Some water bodies have been irretrievably damaged, and expensive rehabilitation programs are needed to remedy in-place water pollution problems if Clean Water Act goals are to be achieved. Unless effective abatement and rehabilitation programs are established, billions of dollars of benefits to future generations will not be realized as more waters become irretrievably damaged, and billions more will continue to be spent by government to treat symptoms of these sediment-related problems.  相似文献   

13.
    
This review summarizes how conservation benefits are maximized when in‐field and edge‐of‐field buffers are integrated with each other and with other conservation practices such as residue management and grade control structures. Buffers improve both surface and subsurface water quality. Soils under permanent buffer vegetation generally have higher organic carbon concentrations, higher infiltration capacities, and more active microbial populations than similar soils under annual cropping. Sediment can be trapped with rather narrow buffers, but extensive buffers are better at transforming dissolved pollutants. Buffers improve surface runoff water quality most efficiently when flows through them are slow, shallow, and diffuse. Vegetative barriers ‐ narrow strips of dense, erect grass ‐ can slow and spread concentrated runoff. Subsurface processing is best on shallow soils that provide increased hydrologic contact between the ground water plume and buffer vegetation. Vegetated ditches and constructed wetlands can act as “after‐field” conservation buffers, processing pollutants that escape from fields. For these buffers to function efficiently, it is critical that in‐field and edge‐of‐field practices limit peak runoff rate and sediment yield in order to maximize contact time with buffer vegetation and minimize the need for cleanout excavation that destroys vegetation and its processing capacity.  相似文献   

14.
Abstract: A study was conducted between September 2003 and September 2006 to obtain baseline sediment inventories and monitor sediment transport and storage along a 3.7 km length of the channel of Valley Creek within Valley Forge National Historical Park, Pennsylvania. Valley Creek is a tributary of the Schuylkill River and drains an urbanizing 60.6 km2 watershed that currently has 18% impervious land cover. Numerous field methods were employed to measure the suspended sediment yield, longitudinal profile, cross‐sections, banklines, and particle size distribution of the streambed. Suspended sediment yield for the watershed was measured at a USGS gage located just upstream of the park boundary between July 2004 and July 2005, the period corresponding to field surveys of bank erosion and channel change. The estimated suspended sediment yield of 95.7 t/km2/year is representative of a year with unusually high discharge, including a storm event that produced a peak of 78 m3/s, the second highest discharge on record for the USGS gage. Based on the median annual streamflow for the 24 years of record at the USGS gage from 1983 to 2006, the median annual sediment yield is estimated to be closer to 34 t/km2/year, considerably lower than median and mean values for other sites within the region. The mass of silt, clay, and fine sand derived from bank erosion along the 3.7 km study reach during the field survey period accounts for an estimated 2,340 t, equivalent to about 43% of the suspended sediment load. The mass of fine sediment stored in the bed along the study reach was estimated at 1,500 t, with about 330 t of net erosion during the study period. Although bank erosion appears to be a potentially dominant source of sediment by comparison with annual suspended sediment load, bed sediment storage and potential for remobilization is of the same order of magnitude as the mass of sediment derived from bank erosion.  相似文献   

15.
ABSTRACT: Following major floods in 1990 which resulted in widespread bank erosion in southern British Columbia, four streams typical of the region were evaluated for the effect which riparian vegetation played in reducing erosion. A total of 748 bends in the four stream reaches were assessed by comparing pre- and post-flood aerial photography. Bends without riparian vegetation were found to be nearly five times as likely as vegetated bends to have undergone detectable erosion during the flood events. Major bank erosion was 30 times more prevalent on non-vegetated bends as on vegetated bends. The likelihood of erosion on semi-vegetated bends was between that of the vegetated and non-vegetated categories of bends.  相似文献   

16.
    
ABSTRACT: A mathematical model to predict both velocity and concentration distributions for sediment‐laden open channel flow is developed. Velocity profiles are derived by theoretical analysis and numerical method. Logarithmic law and semi‐empirical wake function concept are not adopted. An empirical equation for the ratio of sediment exchange and fluid diffusion coefficients is considered to solve the diffusion equation for suspended‐sediment concentration profiles. Four sets of experimental data from previous researchers are compared to numerical calculation. In the engineering applications, velocity and concentration profiles of sediment‐laden flow can be predicted simultaneously by the present model with the measured velocity and sediment‐concentration at reference level.  相似文献   

17.
通过多种内河水质净化方法的对比,分析了絮凝沉淀法净化内河水质的优势,阐述了絮凝剂投加和絮凝沉淀设备选用的要点,并以福州市安泰河水质净化工程为例,介绍了絮凝沉淀法净化内河水质的应用效果。  相似文献   

18.
    
ABSTRACT: An intensive water quality investigation was conducted in western North Carolina to determine whether water quality problems existed from point and nonpoint source inputs of sediment from surface mining activities. Depth integrated measurements of sediment transport and biological sampling of benthic communities indicated that very serious water quality problems were caused by erosion from a concentrated area of open pit mining for mica, kaolin, and feldspar. The erosion occurred on haul roads, active mines, inactive mines, and tailings disposal piles. The need for using specific “Best Management Practices” for erosion control on the mining operation is discussed. These practices need to be implemented to restore populations of trout to the degraded reaches of the river. Additional monitoring data are presented that indicate that the biological integrity of surface waters can be preserved in the vicinity of point source mining discharges when the operators utilize proper practices in settling and neutralizing their effluent. While much has been done to abate the point source discharges, attention now needs to be focused on the nonpoint sources of sediment from mining operations.  相似文献   

19.
ABSTRACT: Theoretical equations that establish the relationship between sediment oxygen demand (SOD) in a lake and the flow velocity and dissolved oxygen concentration in the bulk water already exist. These theoretical equations for oxygen consumption in the sediment express biological consumption with Michaelis-Menten kinetics, and chemical consumption by a first order reaction. Data from laboratory experiments that were conducted to validate the theoretical equations also exist. These experiments were performed in a laboratory channel with well defined flow characteristics for three types of sediments. Herein, the theoretical equations are used to model the experimental data for the three types of sediments. The values used for the parameters in the theoretical equations are determined by iteration until a best fit is obtained for the relationship of SOD to flow velocity from both the theoretical model and experimental data. The goodness of fit is measured by the standard error of prediction and the regression coefficient.  相似文献   

20.
    
A robotic water quality monitoring network is used to resolve the coupled patterns of a natural tracer, specific conductance (SC), and metrics of light scattering and turbidity for Schoharie Creek and downstream Schoharie Reservoir, with particular emphasis on the impacts of runoff events. Strong relationships between these parameters and streamflow, and the propensity for this tributary to plunge in the reservoir in summer and fall based on its lower temperature, are reported. The entry of this stream, the primary tributary, into the reservoir as a turbid density current during runoff events is depicted as distinct and vertically coincident subsurface SC minima and peaks in measures of light scattering. The magnitudes of these signatures imparted to the reservoir's water column are demonstrated to be strongly dependent on the magnitude of the runoff event. The time course of the diminishment of these signatures and longitudinal differences in turbidity within the reservoir are described. The documented patterns of SC and metrics of light scattering provided by the robotic monitoring network offer a rare opportunity to support development and testing of a turbidity model with the necessary attributes of fine temporal and spatial resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号