首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
ABSTRACT: We surveyed first‐to third‐order streams (channel widths from 1.4 to 10 m) in the southeastern slopes of the Cascade Range of Washington and found two distinct endpoints of riparian vegetation. Where the forest overstory is dominated by park‐like Ponderosa pine (Pinus ponderosa), channels are commonly bordered with a dense scrub‐shrub vegetation community. Where fire suppression and/or lack of active riparian zone management have resulted in dense encroachment of fir forests that create closed forest canopies over the channel, scrub‐shrub vegetation communities are virtually absent near the channel. Other factors being equal, distinct differences in channel morphology exist in streams flowing thru each riparian community. The scrub‐shrub channels have more box‐like cross‐sections, lower width‐to‐depth ratios, more pools, more undercut banks, more common sand‐dominated substrates, and similar amounts of woody debris (despite lower tree density). Temperature comparisons of forest and scrub‐shrub sections of two streams indicate that summer water temperatures are slightly lower in the scrub‐shrub streams. We surmise that these morphology and temperature effects are driven by differences in root density and canopy conditions that alter dynamic channel processes between each riparian community. We suspect that the scrub‐shrub community was more common in the landscape prior to the 20th century and may have been the dominant native riparian community for these stream types. We therefore suggest that managing these streams for dense riparian conifer does not mimic natural conditions, nor does it provide superior in‐stream habitat.  相似文献   

2.
Riparian forests attenuate solar radiation, thereby mediating an important component of the thermal budget of streams. Here, we investigate the relationship between riparian degradation, stream temperature, and channel width in the Chehalis River Basin, Washington State. We used lidar data to measure canopy opening angle, the angle formed between the channel center and trees on both banks; we assumed historical tree heights and calculated the change in canopy angle relative to historical conditions. We then developed an empirical relationship between canopy angle and water temperature using existing data, and simulated temperatures between 2002 and 2080 by combining a tree growth model with climate change scenarios from the NorWeST regional prediction. The greatest change between historical and current conditions (~7°C) occurred in developed portions of the river network, with the highest values of change predicted at channel widths less than ~40 m. Tree growth lessened climate change increases in maximum temperature and the length of river exceeding biologically critical thresholds by ~50%–60%. Moreover, the maximum temperature of channels with bankfull widths less than ~50 m remained similar to current conditions, despite climate change increases. Our findings are consistent with a possible role for the riparian landscape in explaining the low sensitivity of stream temperatures to air temperatures observed in some small mountain streams.  相似文献   

3.
ABSTRACT: The precision of width and pool area measurements has rarely been considered in relation to downstream or at section hydraulic geometry, fisheries studies, long-term or along a continuum research studies, or agency monitoring techniques. We assessed this precision and related it to other stream morphologic characteristics. Confidence limits (95 percent) around mean estimates with four transects (cross-sections perpendicular to the channel center-line) ranged from ± 0.4 to 1.8 m on streams with a width of only 2.2 m. To avoid autocorrelation, transects should be spaced about three channel widths apart. To avoid stochastic inhomogeneity, reach length should be about 30 channel widths or ten transects to optimize sampling efficiency. Precision of width measurements decreased with decreased depth and increased with stream size. Both observations reflect variability caused by features such as boulders or coarse woody debris. Pool area precision increased with pool area reflecting increased precision for flat, wide streams with regular pool-rime sequences. The least precision occurred on small, steep streams with random, boulder or coarse woody debris formed pools.  相似文献   

4.
This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by individual clasts or wood materials in the channel. Such channels are headwater channels in close proximity to sediment sources, so they reflect a mix of hillslope and channel processes. Sediment inputs are derived directly from adjacent hillslopes and from the channel banks. Morphologically significant sediments move mainly as bed load, mainly at low intensity, and there is no standard method for measurement. The larger clastic and woody elements in the channel form persistent structures that trap significant volumes of sediment, reducing sediment transport in the short term and substantially increasing channel stability. The presence of such structures makes modeling of sediment flux in these channels — a potential substitute for measurement — difficult. Channel morphology is discussed, with some emphasis on wood related features. The problem of classifying small channels is reviewed, and it is recognized that useful classifications are purpose oriented. Reach scale and channel unit scale morphologies are categorized. A “disturbance cascade” is introduced to focus attention on sediment transfers through the slope channel system and to identify management practices that affect sediment dynamics and consequent channel morphology. Gaps in knowledge, errors, and uncertainties have been identified for future research.  相似文献   

5.
Chongming, the world’s largest alluvial island, is located within the municipality of Shanghai, China. Recent projects have now linked peri-urban Chongming to Shanghai’s urban core and as a result will soon undergo substantial changes from urbanization. We quantitatively analyzed the structure and composition of woody vegetation across subtropical, peri-urban Chongming as a basis for sustainable management of these rapidly urbanizing subtropical ecosystems elsewhere. We used 178 permanent, random plots to statistically and spatially analyze woody plant composition and tree structure across the 1,041 km2 of Chongming. A total of 2,251 woody plants were measured comprising 42 species in 37 genera. We statistically and geospatially analyzed field data according to land uses and modeled air pollution removal by trees. Average tree diameter at breast height, total height, and crown widths on transportation land uses were greater than other land uses. These same values were lowest on forest land use and greater tree cover was associated with areas of increased anthropogenic activity. Less than 20 % of the woody vegetation was exotic and a species richness index was significantly different between land uses due to legacy effects. Composition of agriculture and forest land uses were similar to residential and transportation. Tree cover across Chongming was also estimated to annually remove 1,400 tons of air pollutants. We propose that this integrated and quantitative method can be used in other subtropical, peri-urban areas in developing countries to establish baseline trends for future sustainability objectives and to monitor the effects of urbanization and climate change.  相似文献   

6.
ABSTRACT: Combinations of vegetation and structure were applied to control streambank erosion along incised stream channels in northwest Mississippi. Eleven sites along seven channels with contributing drainage areas ranging from 12–300 km2 were used for testing. Tested configurations included eroding banks protected by vegetation alone, vegetation with structural toe protection, vegetation planted on re-graded banks, and vegetation planted on regraded banks with toe protection. Monitoring continued for up to 10 years, and casual observation for up to 18 years. Sixteen woody and 13 nonwoody species were tested. Native woody species, particularly willow, appear to be best adapted to stream-bank environments. Sericea lespedeza and Alamo switchgrass were the best nonwoody species tested. Vegetation succeeded in reaches where the bed was not degrading, competition from kudzu was absent, and bank slopes were stabilized by grading or toe protection. Natural vegetation invaded planted and unplanted stable banks composed of fertile soils. Designs involving riprap toe protection in the form of a longitudinal dike and woody vegetation appeared to be most cost-effective. The exotic vine kudzu presents perhaps the greatest long-term obstacle to restoring stable, functional riparian zones along incised channels in our region. (KEY TERMS: vegetation; streambank protection; bioengineering; stream restoration; channel incision; riparian zone.)  相似文献   

7.
In urban watersheds, stormwater inputs largely bypass the buffering capacity of riparian zones through direct inputs of drainage pipes and lowered groundwater tables. However, vegetation near the stream can still influence instream nutrient transformations via maintenance of streambank stability, input of woody debris, modulation of organic matter sources, and temperature regulation. Stream restoration seeks to mimic many of these functions by engineering channel complexity, grading stream banks to reconnect incised channels, and replanting lost riparian vegetation. The goal of this study was to quantify these effects by measuring nitrate and phosphate uptake in five restored streams in Charlotte and Raleigh, North Carolina, with a range of restoration ages. Using nutrient spiraling methods, uptake velocity of nitrate (0.02‐3.56 mm/min) and phosphate (0.14‐19.1 mm/min) was similar to other urban restored streams and higher than unimpacted forested streams with variability influenced by restoration age and geomorphology. Using a multiple linear regression approach, reach‐scale phosphate uptake was greater in newly restored sites, which was attributed to assimilation by algal biofilms, whereas nitrate uptake was highest in older sites potentially due to greater channel stability and establishment of microbial communities. The patterns we observed highlight the influence of riparian vegetation on energy inputs (e.g., heat, organic matter) and thereby on nutrient retention.  相似文献   

8.
Channel changes from 1919 to 1989 were documented in two study reaches of the Merced River in Yosemite National Park through a review of historical photographs and documents and a comparison of survey data. Bank erosion was prevalent and channel width increased an average of 27% in the upstream reach, where human use was concentrated. Here, trampling of the banks and riparian vegetation was common, and banks eroded on straight stretches as frequently as on meander bends. Six bridges in the upper reach constrict the channel by an average of 38% of the original width, causing severe erosion. In the downstream control reach, where human use was minimal, channel widths both decreased and increased, with a mean increase of only 4% since 1919. Bank erosion in the control reach occurred primarily on meander bends. The control reach also had denser stands of riparian vegetation and a higher frequency of large woody debris in channels. There is only one bridge in the lower reach, located at the downstream end. Since 1919, bank erosion in the impacted upstream reach contributed a significant amount of sediment (74,800 tonnes, equivalent to 2.0 t/km2/yr) to the river. An analysis of 75 years of precipitation and hydrologic records showed no trends responsible for bank erosion in the upper reach. Sediment input to the upper reach has not changed significantly during the study period. Floodplain soils are sandy, with low cohesion and are easily detached by lateral erosion. The degree of channel widening was positively correlated with the percentage of bare ground on the streambanks and low bank stability ratings. Low bank stability ratings were, in turn, strongly associated with high human use areas. Channel widening and bank erosion in the upper reach were due primarily to destruction of riparian vegetation by human trampling and the effect of bridge constrictions on high flow, and secondarily to poorly installed channel revetments. Several specific recommendations for river restoration were provided to park management.  相似文献   

9.
Abstract: Mapping stream channels and their geomorphic attributes is an important step in many watershed research and management projects. Often insufficient field data exist to map hydromorphologic attributes across entire drainage basins, necessitating the application of hydrologic modeling tools to digital elevation models (DEMs) via a geographic information system (GIS). In this article, we demonstrate methods for deriving synthetic stream networks via GIS across large and diverse basins using drainage‐enforced DEMs, along with techniques for estimating channel widths and gradient on the reach scale. The two‐step drainage enforcement method we used produced synthetic stream networks that displayed a high degree of positional accuracy relative to the input streams. The accuracies of our estimated channel parameters were assessed with field data, and predictions of bankfull width, wetted width and gradient were strongly correlated with measured values (r2 = 0.92, r2 = 0.95, r2 = 0.88, respectively). Classification accuracies of binned channel attributes were also high. Our methodology allows for the relatively rapid mapping of stream channels and associated morphological attributes across large geographic areas. Although initially developed to provide salmon recovery planners with important salmon habitat information, we suggest these methodologies are relevant to a variety of research and management questions.  相似文献   

10.
Huang, Jung-Chen, William J. Mitsch, and Andrew D. Ward, 2010. Design of Experimental Streams for Simulating Headwater Stream Restoration. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00467.x Abstract: Headwater streams flowing through agricultural fields in the midwestern United States have been extensively modified to accommodate subsurface drainage systems, resulting in deepened, straightened, and widened streams. To restore these headwater streams, partial or total reconstruction of channels is frequently attempted. There are different approaches to reconstructing the channel, yet there is little evidence that indicates which promises more success and there has been no experimental work to evaluate these approaches. This study designs three experimental channels – two-stage, self-design, and straightened channels – on a human-created swale at the Olentangy River Wetland Research Park, Columbus, Ohio, for long-term evaluation of headwater stream evolution after restoration. The swale receives a continuous flow of pumped river water from upstream wetlands. Using streamflow and stage data for the past 12 years, a channel-forming discharge of 0.18 m3/s was estimated from bankfull discharge, effective discharge, and recurrence interval. These stream channels, after construction, will be monitored to evaluate physical, chemical, and biological responses to different channels over a decade-long experiment. We hypothesize that the three stream restoration designs will eventually evolve to a similar channel form but with different time periods for convergence. Monitoring the frequency and magnitude of changes over at least 10 years is needed to document the most stable restored channel form.  相似文献   

11.
This paper synthesizes information on the spatial and temporal dynamics of wood in small streams in the Pacific Northwest region of North America. The literature on this topic is somewhat confused due to a lack of an accepted definition of what constitutes “small” streams and what is the relative size of woody debris contained within the channel. This paper presents a matrix that defines woody debris relative to channel size and then discusses the components of a wood budget. Headwater streams are in close proximity to wood sources and, in steeplands, are often tightly constrained by steep hillslopes. Special consideration is given to ecosystem characteristics and to management practices that affect the wood dynamics in this context. Knowledge gaps and uncertainties that can be used to guide future research are identified. Very little is currently known about the role of mass wasting in wood recruitment and storage relative to other processes, such as bank erosion and mortality, in larger streams. Further, very little work has addressed the relative importance of different wood depletion processes, especially those associated with wood transport. The effect of other ecosystem variables on wood dynamics locally across a watershed (from valley bottom to mountaintop) and regionally across the landscape (from maritime to continental climates) is not addressed. Finally, the scientific community has only begun to deal with the effects of management practices on wood quantity, structure, and movement in small streams.  相似文献   

12.
ABSTRACT: Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged streams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the relationship between average discharge and drainage area in streams draining less than 200 acres was consistent with that of larger basins in the size range (> 10 square miles) typically gaged by the U.S. Geological Survey (USGS). This study was designed to evaluate predictors of average discharge in small ungaged streams for regulatory purposes, since many stream regulations, as well as recommendations for best management practices, are based on measures of stream size, including average discharge. The average discharge/drainage area relationship determined from gages on large streams held true down to the perennial flow initiation point. For the southern Appalachians, basin size corresponding to perennial flow is approximately 19 acres, ranging from 11 to 32 acres. There was a strong linear relationship (R2= 0.85) between average discharge and drainage area for all streams draining between 16 and 200 acres, and the average discharge for these streams was consistent with that predicted by the USGS Unit Area Runoff Map for Georgia. Drainage area was deemed an accurate predictor of average discharge, even in very small streams. Channel morphological features, such as active channel width, cross‐sectional area, and bankfull flow predicted from Manning's equation, were not accurate predictors of average discharge. Monthly baseflow statistics also were poor predictors of average discharge.  相似文献   

13.
ABSTRACT: Throughout the United States, land managers are becoming increasingly aware of the importance of small streams for a wide range of resource benefits. Where channel morphology is modified or structural features are added, stream dynamics and energy dissipation need to be considered. Unit stream power, defined here as the time-rate loss of potential energy per unit mass of water, can be reduced by adding stream obstructions, increasing channel sinuosity, or increasing flow resistance with large roughness elements such as woody root systems, logs, boulders, or bedrock. Notable morphological features of small streams are pools, riffles, bed material, and channel banks. Pools, which vary in size, shape, and causative factors, are important rearing habitat for fish. Riffles represent storage locations for bed material and are generally utilized for spawning. The particle sizes and distributions of bed material influence channel characteristics, bedload transport, food supplies for fish, spawning conditions, cover, and rearing habitat. Riparian vegetation helps stabilize channel banks and contributes in various ways to fish productivity. Understanding each stream feature individually and in relation to all others is essential for proper stream management. Although engineered structures for modifying habitat may alter stream characteristics, channel morphology must ultimately be matched to the hydraulic, geologic, and (especially) vegetative constraints of a particular location.  相似文献   

14.
The effect of stream geomorphology, maturity, and management of riparian forests on abundance, role, and mobility of wood was evaluated in 20 contrasting reaches in the Agüera stream catchment (northern Iberian Peninsula). During 1 year the volume of woody debris exceeding 1 cm in diameter was measured in all reaches. All large woody debris (φ > 5 cm) pieces were tagged, their positions mapped, and their subsequent changes noted. Volume of woody debris was in general low and ranged from 40 to 22,000 cm3 m−2; the abundance of debris dams ranged from 0 to 5.5 per 100 m of channel. Wood was especially rare and unstable in downstream reaches, or under harvested forests (both natural or plantations). Results stress that woody debris in north Iberian streams has been severely reduced by forestry and log removal. Because of the important influence of woody debris on structure and function of stream systems, this reduction has likely impacted stream communities. Therefore, efforts to restore north Iberian streams should include in-channel and riparian management practices that promote greater abundance and stability of large woody debris whenever possible.  相似文献   

15.
Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks (“habitat rehabilitation”). Fish and their habitats were sampled semiannually during 1–2 years before rehabilitation, 3–4 years after rehabilitation, and 10–11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means ≥40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat measures are ineffective tools for ecosystem restoration in incised, warmwater streams of the Southeastern U.S., even if applied at the watershed scale and accompanied by significant reductions in suspended sediment concentration.  相似文献   

16.
ABSTRACT: Since the majority of road drainage points in western Washington and Oregon enter small, often ephemeral streams rather than large, fish-bearing waters, impact of road-surface sediment on biota in permanent streams depends, to a large extent, on transport through these small watercourses. A series of experimental additions of road-surface sediment was made to two ephemeral streams to examine the downstream transport of this material as a function of discharge and channel characteristics. These small streams were found to store large amounts of sediment washed from road surface. In no instance did either stream transport more than 45 percent of the added material to their mouths, distances of 95 and 125 m. Larger-sized sediment particles were delivered at a lower rate than finer material. Added sediment <0.063 mm in size was transported efficiently through the systems at all but the lowest flows tested. Material between 0.5 and 0.063 mm and from 2.0 to 0.5 mm in size were retained at progressively higher rates, with sediment in the coarser size category never exceeding a delivery of 10 percent of the added material. There were significant differences in the transport of sediment in the two larger size categories between the two streams. These differences were due to a much greater amount of woody debris in the stream with the lower delivery rates, which acted to trap and hold sediment, as well as a slightly longer and less steep channel.  相似文献   

17.
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   

18.
In northeastern Austria, marshlands have been turned into the most productive arable land of the country. As a result, most headwater streams show structurally degraded channels, lacking riparian buffer zones, which are heavily loaded with nutrients from the surrounding crop fields. The present study examines whether longitudinally restricted riparian forest buffers can enhance the in-stream nutrient retention in nutrient-enriched headwater streams. We estimated nutrient uptake from pairwise, short-term addition experiments with NH, NH, PO, and NaCl within reaches with riparian forest buffers (RFB) and degraded reaches (DEG) of the same streams. Riparian forest buffers originated from the conservation of the pristine vegetation or from restoration measures. Hydrologic retention was calculated with the model OTIS-P on the basis of conductivity break-through curves from the salt injections. A significant increase in surface transient storage was revealed in pristine and restored RFB reaches compared with DEG reaches due to the longitudinal step-pool pattern and the frequent occurrence of woody debris on the channel bed. Ammonium uptake lengths were significantly shorter in RFB reaches than in DEG reaches, resulting from the higher hydrologic retention. Uptake velocities did not differ significantly between RFB and DEG reaches, indicating that riparian forest buffers did not affect the biochemical nutrient demand. Uptake of NH was mainly driven by autotrophs. Net PO uptake was not affected by riparian forest buffers. The study shows that the physical and biogeochemical effects of riparian forest buffers on the in-stream nutrient retention are limited in the case of highly eutrophic streams.  相似文献   

19.
ABSTRACT: Cattle grazing practices in the western United States have contributed to widespread riparian degradation resulting in unstable channel morphologies and the loss of fish habitat. Because of prolonged disturbance, numerous riparian areas on both public and private lands have been fenced to exclude cattle in order to promote vegetation establishment and riparian improvement. We selected four gravel-bedded, steep alluvial streams in eastern Oregon with cattle exclosures greater than 14 years old for an analysis of geomorphic adjustments following the removal of cattle grazing. We compare channels inside exclosures and in adjacent grazed reaches to identify the salient stream channel properties that respond to the removal of riparian stresses and to document the magnitude of these changes. Results indicate that significant changes occur, with reductions in bankfull dimensions and increases in pool area being the most common and identifiable changes. At all four sites, bankfull widths are narrower by 10 to 20 percent, and the percentage of channel area occupied by pools is higher in the exclosure by 8 to 15 percent. The increase in pool area is primarily offset by a reduction in the percent glide area. Not all of the channel properties demonstrate adjustment, indicating that perhaps 14 years is an insufficient duration for these variables to adjust.  相似文献   

20.
Estimation of stream channel heads is an important task since ephemeral channels play a significant role in the transport of sediment and materials to perennial streams. The slope‐area method utilizes digital elevation model (DEM) and related information to develop slope‐area threshold relationships used to estimate the position of channel heads in the watershed. A total of 162 stream channel heads were mapped across the three physiographic regions of Alabama, including the Southwestern Appalachians (51), Piedmont/Ridge and Valley (61), and Coastal Plains (51). Using Geographic Information System and DEM, the local slope and drainage area for each mapped channel head was calculated and region‐specific models were developed and evaluated. Results demonstrated the local slope and drainage area had an inverse and strong correlation in the Piedmont/Ridge and Valley region (r2 = 0.71) and the Southwestern Appalachian region (r2 = 0.61). Among three physiographic regions, the weakest correlation was observed in the Coastal Plain region (r2 = 0.45). By comparing the locations of modeled channel heads to those located in the field, calculated reliability and sensitivity indices indicated model accuracy and reliance were weak to moderate. However, the slope‐area method helped define the upstream boundaries of a more detailed channel network than that derived from the 1:24,000‐scale National Hydrography Dataset, which is commonly used for planning and regulatory purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号