首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: The purpose of this study was to evaluate the performance of Spatially Integrated Models for Phosphorus Loading and Erosion (SIMPLE) in predicting runoff volume, sediment loss, and phosphorus loading from two watersheds. The modeling system was applied to the 334 ha QOD subwatershed, part of the Owl Run watershed, located in Fauquier County, Virginia, and to the 2240 ha watershed, Battle Branch, located in Delaware County, Oklahoma. Simulation runs were conducted at cell and field scales, and simulation results were compared with observed data. Runoff volume and dissolved phosphorus loading were measured at the Battle Branch watershed. Runoff volume, sediment yield, and total phosphorus loading were measured at the QOD site. SIMPLE tended to underestimate runoff volumes during the dormant period, from November to March. The comparison between observed and predicted dissolved phosphorus showed better correlation than for observed and predicted total phosphorus loading. Cell level simulations provided similar estimates of runoff volume and phosphorus loading when compared to field level simulations for both watersheds. However, observed sediment yields better compared with the values predicted from the cell level simulation when compared to field level simulation. Finally, results of model evaluation indicated that SIMPLE's predictive ability is acceptable for screening applications but not for site-specific quantitative predictions.  相似文献   

2.
ABSTRACT: Soil erosion is the most significant threat to land productivity and environmental quality on the Loess Plateau of China. The annual total sediment load of the Yellow River is 1.6 billion tons, with about 90 percent coming from soil erosion from the Loess Plateau. To reduce soil erosion from the Loess Plateau, conservation practices, including tree planting, ridge construction between fields and around gullies, terrace and ditch construction perpendicular to the main slope, and dam construction are being implemented. An evaluation of these conservation practices is required before they are implemented at the large scale. The objective of this study is to evaluate the effectiveness of conservation practices to control runoff and sediment yield from paired watersheds in the hilly gully region of the Loess Plateau. The advantage of the paired watershed approach is its sensibility in detecting differences in runoff and sediment transport by monitoring both watersheds during two periods, an initial period with no conservation practices and a treatment period with only one watershed subjected to conservation practices. Implementation of the conservation practices resulted in (1) cumulative runoff and sediment yield that were, respectively, 25 and 38 percent less from the treatment watershed than from the control, (2) a decrease in the number of rainfall events producing runoff and sediment transport (94 in the control versus 63 in treatment), and (3) a reduction in the maximum discharge and maximum suspended sediment concentration.  相似文献   

3.
ABSTRACT: A grid cell geographic information system (GIS) is used to parameterize SPUR, a quasi-physically based surface runoff model in which a watershed is configured as a set of stream segments and contributing areas. GIS analysis techniques produce various watershed configurations by progressive simplification of a stream network delineated from digital elevation models (DEM). We used three watershed configurations: ≥ 2nd, ≥ 4th, and ≥ 13th Shreve order networks, where the watershed contains 28, 15, and 1 channel segments with 66, 37, and 3 contributing areas, respectively. Watershed configuration controls simulated daily and monthly sums of runoff volumes. For the climatic and topographic setting in southeastern Arizona the ≥ 4th order configuration of the stream network and contributing areas produces results that are typically as good as the ≥ 2nd order network. However both are consistently better than the ≥ 13th order configuration. Due to the degree of parameterization in SPUR, model simulations cannot be significantly improved by increasing watershed configuration beyond the ≥ 4th order network. However, a range of Soil Conservation Service curve numbers derived from rainfall/runoff data can affect model simulations. Higher curve numbers yield better results for the ≥ 2nd order network while lower curve numbers yield better results for the ≥ 4th order network.  相似文献   

4.
ABSTRACT: Winter Creek is a tributary of the Washita River in south-western Oklahoma. The Soil Conservation Service installed floodwater retarding structures which controlled runoff from 56 percent of a 33-square-mile (8550-hectare) gaged drainage area. Application of a hydrologic model to the flood peaks indicated that the structural treatment reduced the flood peaks an average of 61 percent. The Winter Creek channel has narrowed and deepened since the structural treatment was applied. The severe bank erosion occurring before treatment has been arrested and sediment yield from the watershed has been reduced 50 to 60 percent. In some reaches of the channel there has been a dense growth of trees in recent years.  相似文献   

5.
To preserve the quality of surface water, official French regulations require farmers to keep a minimum acreage of grassland, especially bordering rivers. These agro-environmental measures do not account for the circulation of water within the catchment. This paper examines whether it is possible to design with the farmers agri-environmental measures at field and catchment scale to prevent soil erosion and surface water pollution. To support this participatory approach, the hydrology and erosion model STREAM was used for assessing the impact of a spring stormy event on surface runoff and sediment yield with various management scenarios. The study was carried out in collaboration with an agricultural committee in an area of south-western France where erosive runoff has a major impact on the quality of surface water. Two sites (A and B) were chosen with farmers to discuss ways of reducing total surface runoff and sediment yield at each site. The STREAM model was used to assess surface runoff and sediment yield under current cropping pattern at each site and to evaluate management scenarios including grass strips implementation or changes in cropping patterns within the catchment. The results of STREAM simulations were analysed jointly by farmers and researchers. Moreover, the farmers discussed each scenario in terms of its technical and economical feasibility. STREAM simulations showed that a 40 mm spring rainfall with current cropping patterns led to 3116 m3 total water runoff and 335 metric tons of sediment yield at site A, and 3249 m3 and 241 metric tons at site B. Grass strips implementation could reduce runoff for about 40% and sediment yield for about 50% at site A. At site B, grass strips could reduce runoff and sediment yield for more than 50%, but changes in cropping pattern could reduce it almost totally. The simulations led to three main results: (i) grass strips along rivers and ditches prevented soil sediments from entering the surface water but did not reduce soil losses, (ii) crop redistribution within the catchment was as efficient as planting grass strips, and (iii) efficient management of erosive runoff required coordination between all the farmers using the same watershed. This study shown that STREAM model was a useful support for farmers' discussions about how to manage runoff and sediment yield in their fields.  相似文献   

6.
Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivision. The objectives of this paper are to show that evaluation of BMPs using a model is strongly linked to the level of watershed subdivision; to suggest a methodology for identifying an appropriate subdivision level; and to examine the efficacy of different BMPs at field and watershed scales. In this study, the Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, sediment, and nutrient yields at the outlet of the Dreisbach (623 ha) and Smith Fry (730 ha) watersheds in Maumee River Basin, Indiana. Grassed waterways, grade stabilization structures, field borders, and parallel terraces are the BMPs that were installed in the study area in the 1970s. Sediment and nutrient outputs from the calibrated model were compared at various watershed subdivision levels, both with and without implementation of these BMPs. Results for the study watersheds indicated that evaluation of the impacts of these BMPs on sediment and nutrient yields was very sensitive to the level of subdivision that was implemented in SWAT. An optimal watershed subdivision level for representation of the BMPs was identified through numerical simulations. For the study watersheds, it would appear that the average subwatershed area corresponding to approximately 4 percent of total watershed area is needed to represent the influence of these BMPs when using the SWAT model.  相似文献   

7.
ABSTRACT: A curve number based model, Soil and Water Assessment Tool (SWAT), and a physically based model, Soil Moisture Distribution and Routing (SMDR), were applied in a headwater watershed in Pennsylvania to identify runoff generation areas, as runoff areas have been shown to be critical for phosphorus management. SWAT performed better than SMDR in simulating daily streamflows over the four‐year simulation period (Nash‐Sutcliffe coefficient: SWAT, 0.62; SMDR, 0.33). Both models varied streamflow simulations seasonally as precipitation and watershed conditions varied. However, levels of agreement between simulated and observed flows were not consistent over seasons. SMDR, a variable source area based model, needs further improvement in model formulations to simulate large peak flows as observed. SWAT simulations matched the majority of observed peak flow events. SMDR overpredicted annual flow volumes, while SWAT underpredicted the same. Neither model routes runoff over the landscape to water bodies, which is critical to surface transport of phosphorus. SMDR representation of the watershed as grids may allow targeted management of phosphorus sources. SWAT representation of fields as hydrologic response units (HRUs) does not allow such targeted management.  相似文献   

8.
Predicting soil erosion for alternative land uses   总被引:3,自引:0,他引:3  
The APEX (Agricultural Policy-Environmental eXtender) model developed in the United States was calibrated for northwestern China's conditions. The model was then used to investigate soil erosion effects associated with alternative land uses at the ZFG (Zi-Fang-Gully) watershed in northwestern China. The results indicated that the APEX model could be calibrated reasonably well (+/-15% errors) to fit those areas with >50% slope within the watershed. Factors being considered during calibration include runoff, RUSLE (Revised Universal Soil Loss Equation) slope length and steepness factor, channel capacity flow rate, floodplain saturated hydraulic conductivity, and RUSLE C factor coefficient. No changes were made in the APEX computer code. Predictions suggest that reforestation is the best practice among the eight alternative land uses (the status quo, all grass, all grain, all grazing, all forest, half tree and half grass, 70% tree and 30% grain, and construction of a reservoir) for control of water runoff and soil erosion. Construction of a reservoir is the most effective strategy for controlling sediment yield although it does nothing to control upland erosion. For every 1 Mg of crop yield, 11 Mg of soil were lost during the 30-yr simulation period, suggesting that expanding land use for food production should not be encouraged on the ZFG watershed. Grass species are less effective than trees in controlling runoff and erosion on steep slopes because trees generally have deeper and more stable root systems.  相似文献   

9.
A multi-tier approach for agricultural watershed management has been proposed. The approach involves identification of a watershed management issue/problem, selection or development of simple conceptual model suitable for the exploration of the issue/problem identified and appropriate to the database available, and application of the model the address the identified issue/problem. The procedure is repeated by increasing the complexity in the conceptual model until the identified issue/problem has been addressed satisfactorily. An application of the procedure to an example watershed in southern Ontario conditions is shown. The application example has revealed that for identification of temporal pattern of runoff and sediment loads a simple conceptual model is adequate. For identification of spatial location of the sediment source areas and for the development of a monitoring program for the evaluation of remedial strategies a more complex distributed agricultural watershed model is necessary.  相似文献   

10.
ABSTRACT: One-dimensional and two-dimensional modeling approaches were compared for their abilities in predicting overland runoff and sediment transport. Both 1-D and 2-D models were developed to test the hypothesis that the 2-D modeling approach could improve the model predictions over the 1-P approach, based on the same mathematical representations of physical processes for runoff and sediment transport. The models developed in this study were applied to overland areas with cross slopes. A hypothetical case and an experimental study reported by Storm (1991) were used. Based on the simulation results from the selected hypothetical case and experimental study, the 2-D model provided better representation of spatial distribution of flow depths and sediment concentrations than the 1-D model. However, no significant differences in predictions of total runoff volume and sediment yield at the outlet area were found between the 1-D and 2-D models.  相似文献   

11.
Land use planning is an important element of the integrated watershed management approach. It not only influences the environmental processes such as soil and stream bed erosion, sediment and nutrient concentrations in streams, quality of surface and ground waters in a watershed, but also affects social and economic development in that region. Although its importance in achieving sustainable development has long been recognized, a land use planning methodology based on a systems approach involving realistic computational modeling and meta-heuristic optimization is still lacking in the current practice of integrated watershed management. The present study proposes a new approach which attempts to combine computational modeling of upland watershed processes, fluvial processes and modern heuristic optimization techniques to address the water-land use interrelationship in its full complexity. The best land use allocation is decided by a multi-objective function that minimizes sediment yields and nutrient concentrations as well as the total operation/implementation cost, while the water quality and the production benefits from agricultural exploitation are maximized. The proposed optimization strategy considers also the preferences of land owners. The runoff model AnnAGNPS (developed by USDA), and the channel network model CCHE1D (developed by NCCHE), are linked together to simulate sediment/pollutant transport process at watershed scale based on any assigned land use combination. The greedy randomized adaptive Tabu search heuristic is used to flip the land use options for finding an optimum combination of land use allocations. The approach is demonstrated by applying it to a demonstrative case study involving USDA Goodwin Creek experimental watershed located in northern Mississippi. The results show the improvement of the tradeoff between benefits and costs for the watershed, after implementing the proposed optimal land use planning.  相似文献   

12.
Abstract: The watershed scale Soil and Water Assessment Tool (SWAT) model divides watersheds into smaller subwatersheds for simulation of rainfall‐runoff and sediment loading at the field level and routing through stream networks. Typically, the SWAT model first needs to be calibrated and validated for accurate estimation through adjustment of sensitive input parameters (i.e., Curve Number values, USLE P, slope and slope‐length, and so on). However, in some instances, SWAT‐simulated results are greatly affected by the watershed delineation and Digital Elevation Models (DEM) cell size. In this study, the SWAT ArcView GIS Patch II was developed for steep sloping watersheds, and its performance was evaluated for various threshold values and DEM cell size scenarios when delineating subwatersheds using the SWAT model. The SWAT ArcView GIS Patch II was developed using the ArcView GIS Avenue program and Spatial Analyst libraries. The SWAT ArcView GIS Patch II improves upon the SWAT ArcView GIS Patch I because it reflects the topographic factor in calculating the field slope‐length of Hydrologic Response Units in the SWAT model. The simulated sediment value for 321 subwatersheds (watershed delineation threshold value of 25 ha) is greater than that for 43 subwatersheds (watershed delineation threshold value of 200 ha) by 201% without applying the SWAT ArcView GIS Patch II. However, when the SWAT ArcView GIS Patch II was applied, the difference in simulated sediment yield decreases for the same scenario (i.e., difference in simulated sediment with 321 subwatersheds and 43 subwatersheds) was 12%. The simulated sediment value for DEM cell size of 50 m is greater than that for DEM cell size of 10 m by 19.8% without the SWAT ArcView GIS Patch II. However, the difference becomes smaller (3.4% difference) between 50 and 10 m with the SWAT ArcView GIS Patch II for the DEM scenarios. As shown in this study, the SWAT ArcView GIS Patch II can reduce differences in simulated sediment values for various watershed delineation and DEM cell size scenarios. Without the SWAT ArcView GIS Patch II, variations in the SWAT‐simulated results using various watershed delineation and DEM cell size scenarios could be greater than those from input parameter calibration. Thus, the results obtained in this study show that the SWAT ArcView GIS Patch II should be used when simulating hydrology and sediment yield for steep sloping watersheds (especially if average slope of the subwatershed is >25%) for more accurate simulation of hydrology and sediment using the SWAT model. The SWAT ArcView GIS Patch II is available at http://www.EnvSys.co.kr/~swat for free download.  相似文献   

13.
Abstract: We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall‐runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program‐Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (≤2%). The model predictions for loads of nutrients were also good (20‐30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1.  相似文献   

14.
ABSTRACT: A simulation model that computes sediment yield due to sheet and rill erosion at the outlet of a large watershed requires daily precipitation and the soil, topographic, and vegetative characteristics of the watershed. An important problem, particularly in a large watershed, is the transport of sediment produced in the sub-watersheds to the outlet of the whole watershed. This problem is approached mathematically by a sediment routing model that is used as a component of the total model.  相似文献   

15.
Cho, Jaepil, Richard R. Lowrance, David D. Bosch, Timothy C. Strickland, Younggu Her, and George Vellidis, 2010. Effect of Watershed Subdivision and Filter Width on SWAT Simulation of a Coastal Plain Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):586-602. DOI: 10.1111/j.1752-1688.2010.00436.x Abstract: The Soil and Water Assessment Tool (SWAT) does not fully simulate riparian buffers, but has a simple filter function that is responsive to filter strip width (FILTERW). The objectives of this study were to (1) evaluate SWAT hydrology and water quality response to changes in watershed subdivision levels and different FILTERW configurations and (2) provide guidance for selecting appropriate watershed subdivision for model runs that include the riparian buffer feature through the FILTERW parameter. Watershed subdivision level is controlled by the critical source area (CSA) which defines the minimum drainage area required to form the origin of a stream. SWAT was calibrated on a 15.7 km2 subdrainage within the Little River Experimental Watershed, Georgia. The calibrated parameter set was applied to 32 watershed configurations consisting of four FILTERW representations for each of eight CSA levels. Streamflow predictions were stable regardless of watershed subdivision and FILTERW configuration. Predicted sediment and nutrient loads from upland areas decreased as CSA increased when spatial variations of riparian buffers are considered. Sediment and nutrient yield at the watershed outlet was responsive to different combinations of CSA and FILTERW depending on selected in-stream processes. CSA ranges which provide stable sediment and nutrient yields at the watershed outlet was suggested for avoiding significant modifications in selected parameter set.  相似文献   

16.
Abstract: A study was conducted between September 2003 and September 2006 to obtain baseline sediment inventories and monitor sediment transport and storage along a 3.7 km length of the channel of Valley Creek within Valley Forge National Historical Park, Pennsylvania. Valley Creek is a tributary of the Schuylkill River and drains an urbanizing 60.6 km2 watershed that currently has 18% impervious land cover. Numerous field methods were employed to measure the suspended sediment yield, longitudinal profile, cross‐sections, banklines, and particle size distribution of the streambed. Suspended sediment yield for the watershed was measured at a USGS gage located just upstream of the park boundary between July 2004 and July 2005, the period corresponding to field surveys of bank erosion and channel change. The estimated suspended sediment yield of 95.7 t/km2/year is representative of a year with unusually high discharge, including a storm event that produced a peak of 78 m3/s, the second highest discharge on record for the USGS gage. Based on the median annual streamflow for the 24 years of record at the USGS gage from 1983 to 2006, the median annual sediment yield is estimated to be closer to 34 t/km2/year, considerably lower than median and mean values for other sites within the region. The mass of silt, clay, and fine sand derived from bank erosion along the 3.7 km study reach during the field survey period accounts for an estimated 2,340 t, equivalent to about 43% of the suspended sediment load. The mass of fine sediment stored in the bed along the study reach was estimated at 1,500 t, with about 330 t of net erosion during the study period. Although bank erosion appears to be a potentially dominant source of sediment by comparison with annual suspended sediment load, bed sediment storage and potential for remobilization is of the same order of magnitude as the mass of sediment derived from bank erosion.  相似文献   

17.
18.
ABSTRACT: An excellent hydrologic record on sagebrush range-land has been developed at the Reynolds Creek Experimental Watershed in southwestern Idaho. The objectives of this paper were two-fold: (1) to analyze and describe the hydrologic record (8–18 years) from four sagebrush watersheds (1–83 ha); and (2) to evaluate the hydrology component of SPUR, a comprehensive rangeland model. The watersheds represent a gradient in elevation (1180–1658 m) and precipitation (240–350 mm/yr). Runoff was a small fraction (> 2 percent) of the total water budget for all of the watersheds. It occurred very infrequently at the three lower elevation watersheds: Summit, Flats, and Nancy Gulch. At Lower Sheep, the highest elevation watershed, runoff occurred most years for a period of 1 to 17 weeks in the winter. Frozen soil combined with rainfall or snowmelt was associated with most of the runoff from Flats and Nancy Gulch. At Summit summertime thunderstorms produced all of the runoff. The average annual sediment yield from all of the watersheds was low (17–950 kg/ha). It was highest from Summit, which had well developed alluvial channels and very steep slopes. SPUR was able to simulate runoff with reasonable accuracy only at Summit, where frozen soils were not a factor. There was poor correlation between predicted and actual annual 8ediment loss. The model tended to overpredict evapotranspiration early in the growing season and underpredict it in the late summer.  相似文献   

19.
Abstract: Earlier measurements of stream channel geometry on 19 reaches were repeated to provide a longitudinal study of stream channel adjustment over 13 years (1987‐2000) in the urbanizing Gwynns Falls, Maryland watershed. We observed both enlargement and reduction in channel size, depending on the extent of upstream development, the timing and location of urbanization and upstream channel adjustment, and the presence of hydrologic constrictions and grade controls. Based on a relatively simple visual assessment of the composition, size, and extent of instream sediment storage, we categorized stream reaches into three phases: aggraded (7 sites), early erosion (7 sites), and late erosion (5 sites). Aggraded sites had point and lateral bars mantled with fine‐grained sediment and experienced some reduction in cross‐sectional area, primarily through the deposition of fine‐grained material on bars in the channel margins. Early erosion sites had smaller bars and increases in channel cross‐sectional area as a consequence of the evacuation of in‐channel fine‐grained sediment. Fine‐grained sediments were either entirely absent or found only at a few high bar elevations at late erosion sites. Sediment evacuation from late erosion sites has both enlarged and simplified channels, as demonstrated by an increase in cross‐sectional area and a strong decrease in channel width variation. Channel cross‐sectional area enlargement, reduced channel width variation, and channel incision were ubiquitous at erosion sites. As a result, overbank flows were less common in the erosion sites as determined by high water marks left by a 2‐year flood that occurred during the study period. Principal causes for channel changes appear to be increased high flow durations and reduced sediment supply. Spatial variation in channel conditions could not be tied simply to sub‐basin impervious cover or watershed area. In‐channel sediment storage is a useful indicator of channel form and adjustment. When combined with information on development and sedimentation conditions in the contributing drainage, instream sediment storage can be used to effectively assess future channel adjustments.  相似文献   

20.
ABSTRACT The impacts of milled peat mining on runoff quality in northern Minnesota were determined using a multiple watershed approach. The frequency distributions of water quality constituents were used to detect whether runoff from a mined bog differed from that of 15 unmined (control) bogs. Peat mining increased water temperature, suspended sediment, specific conductance and concentrations of acidity, iron, sodium, and nitrogen species, although drinking water standards were not exceeded (α= 0.05). The method presented may be applicable for other nonpoint pollution investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号