共查询到20条相似文献,搜索用时 15 毫秒
1.
Garey A. Fox 《Journal of the American Water Resources Association》2004,40(3):755-763
ABSTRACT: Considerable advancements have been made in the development of analytical solutions for predicting the effects of pumping wells on adjacent streams and rivers. However, these solutions have not been sufficiently evaluated against field data. The objective of this research is to evaluate the predictive performance of recently proposed analytical solutions for unsteady stream depletion using field data collected during a stream/aquifer analysis test at the Tamarack State Wildlife Area in eastern Colorado. Two primary stream/aquifer interactions exist at the Tamarack site: (1) between the South Platte River and the alluvial aquifer and (2) between a backwater stream and the alluvial aquifer. A pumping test is performed next to the backwater stream channel. Drawdown measured in observation wells is matched to predictions by recently proposed analytical solutions to derive estimates of aquifer and streambed parameters. These estimates are compared to documented aquifer properties and field measured streambed conductivity. The analytical solutions are capable of estimating reasonable values of both aquifer and streambed parameters with one solution capable of simultaneously estimating delayed aquifer yield and stream flow recharge. However, for long term water management, it is reasonable to use simplified analytical solutions not concerned with early‐time delayed yield effects. For this site, changes in the water level in the stream during the test and a varying water level profile at the beginning of the pumping test influence the application of the analytical solutions. 相似文献
2.
Nancy T. Baker 《Journal of the American Water Resources Association》1993,29(3):445-448
ABSTRACT: A Geographic Information System (GIS) was used to develop an automated procedure for identifying the primary aquifers supplying ground water to individual wells in eastern Arkansas. As mandated by state law, water-use data are reported by ground-water withdrawers annually to the Arkansas Soil and Water Conservation Commission, and stored in the Arkansas Site-Specific Water-Use Data System provided and supported by the U.S. Geological Survey. Although most withdrawers are able to provide the amount of water withdrawn and the depth of their wells, very few are able to provide the name of the aquifer from which they withdraw water. GIS software was used to develop an automated procedure for identifying the primary aquifers supplying ground water to individual wells in eastern Arkansas. The software was used to generate a spatial representation of the bottom boundary for the Mississippi River Valley alluvial aquifer (the shallowest aquifer) in eastern Arkansas from well log-data collected by the U.S. Geological Survey. The software was then used to determine the depth of the aquifer bottom at reported well locations to ascertain whether the Mississippi River Valley alluvial aquifer or a deeper aquifer was the primary aquifer providing water to each well. The alluvial aquifer was identified as the primary aquifer for about 23,500 wells. 相似文献
3.
G. N. Rao J. N. Beck H. E. Murray D. J. Nyman 《Journal of the American Water Resources Association》1991,27(1):47-58
ABSTRACT: Specific capacity data obtained from Well Construction reports which are available from USGS offices, can provide useful estimates of tranamissivity (T), and hydraulic conductivity (K), of an aquifer. The Chicot Aquifer in Louisiana is one of the largest sources of fresh ground water in North America. Hydrologic data collected for the Chicot Aquifer indicate that specific capacity tests can be used in estimating local and regional values for T and K, if the Cooper-Jacob equation for transient flow is used with proper corrections for well loss and partial penetration. Where full scale pumping test data are scarce, specific capacity test data that are adequately distributed spatially can be used to map changes in T and K values and can be summarized statistically to indicate applicable regional values. A computer program called “TGUESS” which is available from International Ground Water Modeling Center, Holcomb Research Institute, was used in this study. The contour maps for T and K values are prepared for different well depth intervals to avoid wide variation of values. 相似文献
4.
Kolja Rotzoll Aly I. El‐Kadi Stephen B. Gingerich 《Journal of the American Water Resources Association》2007,43(2):334-345
Abstract: In recent years the ground‐water demand of the population of the island of Maui, Hawaii, has significantly increased. To ensure prudent management of the ground‐water resources, an improved understanding of ground‐water flow systems is needed. At present, large‐scale estimations of aquifer properties are lacking for Maui. Seven analytical methods using constant‐rate and variable‐rate withdrawals for single wells provide an estimate of hydraulic conductivity and transmissivity for 103 wells in central Maui. Methods based on constant‐rate tests, although not widely used on Maui, offer reasonable estimates. Step‐drawdown tests, which are more abundantly used than other tests, provide similar estimates as constant‐rate tests. A numerical model validates the suitability of analytical solutions for step‐drawdown tests and additionally provides an estimate of storage parameters. The results show that hydraulic conductivity is log‐normally distributed and that for dike‐free volcanic rocks it ranges over several orders of magnitude from 1 to 2,500 m/d. The arithmetic mean, geometric mean, and median values of hydraulic conductivity are respectively 520, 280, and 370 m/d for basalt and 80, 50, and 30 m/d for sediment. A geostatistical approach using ordinary kriging yields a prediction of hydraulic conductivity on a larger scale. Overall, the results are in agreement with values published for other Hawaiian islands. 相似文献
5.
John S. Koreny Terry T. Fish 《Journal of the American Water Resources Association》2001,37(2):453-466
ABSTRACT: The deep aquifers of the Portland Basin are used as a regional water supply by at least six municipalities in Oregon and Washington. Maximum continuous use of the aquifers in 1998 was 13 mgd and peak emergency use was 55 mgd. Continuous use of the deep aquifers at a rate of 55 mgd has been proposed and inchoate water rights have been reserved for expansion of pumping to 121 mgd. A study was completed, using a calibrated ground water flow model, to evaluate the role of induced recharge from the Columbia River in mitigating aquifer drawdown from continuous‐use and expanded pumping scenarios in the center and eastern areas of the basin. The absolute average residual was less than 3.6 feet for steady‐state model calibrations, and less than 8.0 feet for transient calibration to a 42 mgd pumping event in 1987 with 170 feet of drawdown. Continuous use of the aquifers at a rate of 55 mgd is predicted to increase drawdown to 210 feet. Expansion of pumping to 121 mgd in the center basin is predicted to cause 400 feet of drawdown. However, expansion of pumping in the east basin is predicted to result in only 220 feet of drawdown because of induced recharge from the Columbia River. 相似文献
6.
James L. Robinson Celeste A. Journey 《Journal of the American Water Resources Association》2004,40(4):851-861
ABSTRACT: Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium‐sodium‐chloride‐dominated type in the recharge area to calcium‐bicarbonate‐dominated type in the confined portion of the aquifer. Ground water in the recharge area was under saturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite‐plus‐nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals. 相似文献
7.
Dana W. Kolpin Jack E. Barbash Robert J. Gilliom 《Journal of the American Water Resources Association》2002,38(1):301-311
ABSTRACT: Since 1991, the U.S. Geological Survey has been conducting the National Water Quality Assessment (NAWQA) Program to determine the quality of the Nation's water resources. In an effort to obtain a better understanding of why pesticides are found in shallow ground water on a national scale, a set of factors likely to affect the fate and transport of two herbicides in the subsurface were examined. Atrazine and metolachlor were selected for this discussion because they were among the most frequently detected pesticides in ground water during the first phase of the NAWQA Program (1993 to 1995), and each was the most frequently detected compound in its chemical class (triazines and acetanilides, respectively). The factors that most strongly correlated with the frequencies of atrazine detection in shallow ground‐water networks were those that provided either: (1) an indication of the potential susceptibility of ground water to atrazine contamination, or (2) an indication of relative ground‐water age. The factors most closely related to the frequencies of metolachlor detection in ground water, however, were those that estimated or indicated the intensity of the agricultural use of metolachlor. This difference is probably the result of detailed use estimates for these compounds being available only for agricultural settings. While atrazine use is relatively extensive in nonagricultural settings, in addition to its widespread agricultural use, metolachlor is used almost exclusively for agricultural purposes. As a result, estimates of agricultural applications provide a less reliable indication of total chemical use for atrazine than for metolachlor. A multivariate analysis demonstrated that the factors of interest explained about 50 percent of the variance in atrazine and metolachlor detection frequencies among the NAWQA land‐use studies examined. The inclusion of other factors related to pesticide fate and transport in ground water, or improvements in the quality and accuracy of the data employed for the factors examined, may help explain more of the remaining variance in the frequencies of atrazine and metolachlor detection. 相似文献
8.
Kaveh Khorzad 《Journal of the American Water Resources Association》2003,39(5):1093-1107
ABSTRACT: The Edwards Aquifer is one of the most studied and most prolific aquifers in the United States. The aquifer is a heavily fractured and faulted carbonate aquifer with transmissivities in excess of 100 ft2/s. The City of San Antonio relies upon the Edwards Aquifer as its sole source for water. Much work has been done on quantifying recharge to the aquifer and discharge from wells and acquiring aquifer characteristics from pumping tests, specific capacity tests, and geophysical logs. Although the aquifer has been well studied in Bexar County, much less is known about the Edwards Aquifer in Kinney County. This is partly due to the lower population within the county (approximately 3,500 people) relative to the eastern counties (Uvalde, Medina, Bexar, Comal, and Hays) and the great distance of Kinney County from high profile discharge areas such as the City of San Antonio and Comal and San Marcos Springs. Three key products resulted from this study: (1) exploratory well drilling and the largest aquifer test in the county that were conducted to evaluate the well yields within a 10,000 acre study area in which a drawdown of 2.5 ft approximately 1.2 miles away was observed while pumping at approximately 4,600 gpm; (2) a recharge estimate for the Edwards Aquifer within Kinney County of approximately 71,382 ac‐ft/yr; and (3) locating the Brackettville Groundwater Divide from an evaluation of ground water flow direction and hydrograph analysis. These results help evaluate the complex hydraulics occurring within Kinney County and aid in development of ground water modeling that will be used in managing the Edwards Aquifer. 相似文献
9.
Wayne M. Wendland 《Journal of the American Water Resources Association》2001,37(3):685-693
ABSTRACT: Illinois data from 168 months (1986–1999) were investigated to determine the responses of surface‐water and ground‐water resources to precipitation. Such responses were generally within the month of occurrence or one to two months later, with recovery being reached another one to three months into the future, depending on season of the year. Although the drought of 1988 immediately impacted surface‐water and ground‐water resources, the time of recovery was substantially longer compared to those of individual dry months, generally continuing for several months. The extremely wet summer of 1993 resulted in elevated responses in water resources almost immediately, but in this instance continued through the following fall and winter, into the spring of 1994. 相似文献
10.
A. Jason Hill Vincent S. Neary 《Journal of the American Water Resources Association》2007,43(6):1373-1382
Abstract: This study used measured diurnal surface‐water cycles to estimate daily evapotranspiration (ET) and seepage for a seasonally flooded sinkhole wetland. Diurnal surface‐water cycles were classified into five categories based on the relationship between the surface‐water body and the surrounding ground‐water system (i.e., recharge/discharge). Only one class of diurnal cycles was found to be suitable for application of this method. This subset of diurnal cycles was used to estimate ET and seepage and the relative importance of each transfer process to the overall water budget. The method has limited utility for wetlands with erratic hydrologic regimes (e.g., wetlands in urban environments). This is due to violation of the critical assumption that the inflow/outflow rate remains constant throughout the day. For application to surface‐water systems, the method is typically applied with an assumed specific yield of 1.0. This assumption was found to be invalid for application to surface‐water systems with a noncylindrical pond geometry. An overestimation of ET by as much as 60% was found to occur under conditions of low pond stage and high water loss. The results demonstrate the high ET rates that can occur in isolated wetlands due to contrasting roughness and moisture conditions (oasis and clothesline effects). Estimated ET rates ranged from 4.1 to 18.7 mm/day during the growing season. Despite these large ET rates, seepage (recharge) was found to be the dominant water loss mechanism for the wetland. 相似文献
11.
Stephen P. Opsahl Scott E. Chapal David W. Hicks Christopher K. Wheeler 《Journal of the American Water Resources Association》2007,43(5):1132-1141
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined. 相似文献
12.
Thomas C. Winter 《Journal of the American Water Resources Association》2001,37(2):335-349
ABSTRACT: Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land‐surface form, geology, and climate. The basic land‐surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground‐water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land‐surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake‐research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic‐land‐scapes concept to evaluate the effect of ground water on the degree of mineralization and major‐ion chemistry of lakes that lie within ground‐water flow systems. 相似文献
13.
John L. Hammen Philip J. Gerla 《Journal of the American Water Resources Association》1994,30(5):833-840
ABSTRACT: The 1986 Amendments to the Safe Drinking Water Act mandate a multifaceted approach to wellhead protection. This approach includes: (1) delineating wellhead protection areas; (2) identifying and managing potential contaminants; (3) developing contingency plans in the event of weilfield contamination; (4) siting new wells; and (5) encouraging public participation. These elements encompass technical, administrative, and educational considerations. In functioning both as a research tool and as a decision support system, a geographic information system (GIS) is shown to have proven utility in addressing these issues. This article describes the application of common GIS functionality in facilitating a comprehensive wellhead protection scheme for an agricultural municipality in North Dakota. 相似文献
14.
Grant Ferguson Scott St. George 《Journal of the American Water Resources Association》2003,39(5):1249-1259
ABSTRACT: Long term well hydrographs and estimated ground water levels derived from hydroclimatic and biological data were used to evaluate trends within the Upper Carbonate Aquifer (UCA) near Winnipeg, Canada, during the 20th Century. Ground water records from instruments have been kept since the early 1960s and are derived from piezometers in the overlying sediments and in open boreholes in the UCA. Some boreholes extend into an underlying Paleozoic carbonate sequence. Shallow well hydrographs show no obvious long term trends but do exhibit variations on the order of three to four years that are correlated with changes in annual temperature and precipitation at lags up to 24 months. Trends observed in deeper wells appear to be largely related to ground water usage patterns and show little correlation with climate over the past 35 years. Stepwise multiple regression modeled average annual hydraulic head in the shallow wells as a function of regional temperature, precipitation, and tree ring variables. Estimated hydraulic heads had a slightly greater range prior to the 1960s, most prominently during an interval of lowered ground water levels between 1930 and 1942. Regression results demonstrate that moisture sensitive tree ring data are viable predictors of past ground water levels and may be useful for studies of aquifers in regions that lack long, high quality precipitation records. 相似文献
15.
Paul H. Martin Eugene J. LeBoeuf James P. Dobbins Edsel B. Daniel Mark D. Abkowitz 《Journal of the American Water Resources Association》2005,41(6):1471-1487
Two distinctive, independently developed technologies, geographic information systems (GIS) and predictive water resource models, are being interfaced with varying degrees of sophistication in efforts to simultaneously examine spatial and temporal phenomena. Neither technology was initially developed to interact with the other, and as a result, multiple approaches to interface GIS with water resource models exist. Additionally, continued model enhancements and the development of graphical user interfaces (GUIs) have encouraged the development of application “suites” for evaluation and visualization of engineering problems. Currently, disparities in spatial scales, data accessibility, modeling software preferences, and computer resources availability prevent application of a universal interfacing approach. This paper provides a state‐of‐the‐art critical review of current trends in interfacing GIS with predictive water resource models. Emphasis is placed on discussing limitations to efficient interfacing and potential future directions, including recommendations for overcoming many current challenges. 相似文献
16.
J. G. Arnold R. Srinivasan R. S. Muttiah P. M. Allen 《Journal of the American Water Resources Association》1999,35(5):1037-1051
This paper describes the application of a continuous daily water balance model called SWAT (Soil and Water Assessment Tool) for the conterminous U.S. The local water balance is represented by four control volumes; (1) snow, (2) soil profile, (3) shallow aquifer, and (4) deep aquifer. The components of the water balance are simulated using “storage” models and readily available input parameters. All the required databases (soils, landuse, and topography) were assembled for the conterminous U.S. at 1:250,000 scale. A GIS interface was utilized to automate the assembly of the model input files from map layers and relational databases. The hydrologic balance for each soil association polygon (78,863 nationwide) was simulated without calibration for 20 years using dominant soil and land use properties. The model was validated by comparing simulated average annual runoff with long term average annual runoff from USGS stream gage records. Results indicate over 45 percent of the modeled U.S. are within 50 mm of measured, and 18 percent are within 10 mm without calibration. The model tended to under predict runoff in mountain areas due to lack of climate stations at high elevations. Given the limitations of the study, (i.e., spatial resolution of the data bases and model simplicity), the results show that the large scale hydrologic balance can be realistically simulated using a continuous water balance model. 相似文献
17.
Andres R. Garcia-Martin Frederick N. Scatena Glenn S. Warner Daniel L. Civco 《Journal of the American Water Resources Association》1996,32(6):1259-1271
ABSTRACT: Statistical analysis of watershed parameters derived using a Geographical Information system (GIS) was done to develop equations for estimating the 7d–10yr, 30d–10yr, and 7d–2yr low flow for watersheds in humid montane regions of Puerto Rico. Digital elevation models and land use, geology, soils, and stream network coverages were used to evaluate 21 geomorphic, 10 stream channel, 9 relief, 7 geology, 4 climate, and 2 soil parameters for each watershed. To assess which parameters should be used for further investigation, a correlation analysis was used to determine the independence and collinearity among these parameters and their relationship with low flows. Multiple regression analyses using the selected parameters were then performed to develop the statistical models of low flows. The final models were selected in the basis of the Mallow Cp statistic, the adjusted R2, the Press statistic, the degree of collinearity, and an analysis of the residuals. In the final models, drainage density, the ratio of length of tributaries to the length of the main channel, the percent of drainage area with northeast aspect, and the average weighted slope of the drainage were the most significant parameters. The final models had adjusted standard errors of 58.7 percent, 59.2 percent, and 48.6 percent for the 7d–10yr, 30d–10yr, and 7d–2yr low flows respectively. For comparison, the best model based on watershed parameters that can be easily measured without a GIS had an adjusted standard error of 82.8 percent. 相似文献
18.
Kerim E. Dickson David A. Dzombak 《Journal of the American Water Resources Association》2017,53(5):1121-1132
Interbasin transfers (IBTs) are man‐made transfers of water that cross basin boundaries. These transfers are used to distribute water resources according to supply and demand. The objectives of this work were to quantify the number of IBTs that exist in the United States (U.S.) and to examine the distribution of IBTs and potential causes associated with any observed clustering of IBTs. Defining “basin” was important to enable determination of which transfers qualify as “interbasin.” A variety of definitions are employed by states, with no federal definition. The most recent national studies of IBTs were conducted by the U.S. Geological Survey (USGS) in 1985 and 1986 using USGS Hydrologic Unit Code (HUC) definitions of basins. To build a 2016 inventory of IBTs in the U.S., and to identify where they most commonly occur, the USGS National Hydrography Database (NHD) was utilized in conjunction with the Watershed Boundary Dataset (WBD). Transfers across HUC6 basin boundaries were considered interbasin. Geographical information analysis with the NHD and WBD databases revealed that there are a total of 2,161 man‐made waterways crossing HUC6 basin boundaries in the U.S. IBTs are somewhat concentrated: Florida, Texas, and North Carolina account for over 50% of the total identified IBTs. For some states, identified IBTs are locally clustered. Analysis of these clusters suggests a variety of reasons that IBTs have been built, including population, drainage, and agricultural factors. 相似文献
19.
Ronald T. Green James R. Winterle James D. Prikryl 《Journal of the American Water Resources Association》2008,44(4):887-901
Abstract: Analysis of results from an electrical resistivity survey, a magnetic survey, and an aquifer test performed on the Leona River floodplain in south‐central Texas indicates that ground‐water discharge from the Edwards Aquifer through the Leona River floodplain may be as great as 91.7 Mm3/year. When combined with an estimate of 8.8 Mm3/year for surface flow in the Leona River, as much as 100.5 Mm3/year could be discharged from the Edwards Aquifer through the Leona River floodplain. A value of 11,200 acre‐ft/year (13.82 Mm3/year) has been used as the calibration target in existing ground‐water models for total discharge from Leona Springs and the Leona River. Including ground water or underflow discharge would significantly increase the calibration target in future models. This refinement would improve the conceptualization of ground‐water flow in the western portion of the San Antonio segment of the Edwards Aquifer and would thereby allow for more accurate assessment and management of the ground‐water resources provided by the Edwards Aquifer. 相似文献
20.
Ross S. Lunetta Richard G. Greene John G. Lyon 《Journal of the American Water Resources Association》2005,41(5):1129-1147
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr). 相似文献