首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 978 毫秒
1.
It has long been known that heavy metals, when in high enough concentration, have the potential to be both phytotoxic and zootoxic. Heavy metals are frequently found as contaminants in green waste. Any such waste that is subsequently segregated for composting theoretically has the potential to retain that possible contamination. To date, there have been a limited number of publications addressing this issue. Most reports have concentrated on the types of heavy metals found in compost and their acceptable levels, rather than the fate of heavy metal contaminants throughout the composting process. This investigation was aimed to identify the fate of cadmium (Cd), copper (Cu), chromium (Cr), lead (Pb) and zinc (Zn) concentrations throughout a fourteen week composting cycle. The results of this study showed a general increase in the removal of Pb, Cu, Cr, and to a much smaller extent Zn, manifested by a decrease in their overall concentrations within the solid fraction of the final product, by 93, 49, 43, and 20 percent respectively. By contrast, there was no decrease in the overall concentration of Cd.  相似文献   

2.
ABSTRACT: For more than 30 years, a program of continuous monitoring of pH, acidity, alkalinity, and other parameters has been maintained on a network of large streams degraded by acid mine drainage in the northern Appalachian high sulfur coal region. Continuous records since 1952 are available at a number of stations, and at several stations, acidity records date back to 1930. Comparable analysis techniques were maintained over the period of record, assuring the long term continuity of the database. This monitoring program has captured integrated long term trends within large and complex watersheds with numerous and varied types of mine discharges. The focus of this paper is a historical trend analysis of lightly to severely acid degraded major tributaries of the Allegheny River. Over the past three decades, all of the Allegheny River drainage basin stations have demonstrated steady and substantial declines in acidity and associated increases in pH and alkalinity. The average recorded decline in total acidity at four stations monitored since the 1950s was 94 percent. Since the 1970s, acidity declined by an average of 63 percent at 10 stations. Oxidative exhaustion of pyritic minerals exposed by mining is proposed as a major factor influencing these trends.  相似文献   

3.
Thirty-five soil samples were taken from unconfined mine waste, stream sediments, and surfaces unoccupied by mining and presumably unaffected by it, in a sulphur-mining zone surrounded by carbonate material and characterized by a semi-arid climate with short torrential storms. These samples were analysed and the results compared to estimate the spread of pollution in the landscape and to assess potential environmental risk. The mean concentrations of S, Zn, Cd, Pb, and As in mine waste were between 3.5-fold (As) and 50-fold (S) greater than unaffected soils. Oxidation of S led to a sharp drop in pH, strong weathering of minerals, and solubilisation of the constituent elements, forming a toxic acidic mine drainage with highly concentrated pollutants that were discharged into the drainage channels. Successive acid mine drainage into the soil on the valley floor spreads acidification and pollution downstream. The high carbonate content in surrounding soils played an important role in the increase of the pH and precipitation of S, Pb, and Al of the affected soils. Meanwhile, high mobility of Zn, Cd and As under basic conditions and a low Fe concentration explain the broad spread of these elements, as high concentrations were detected in soil more than 2000 m from the source. Only the soil solutions from near the waste dump (first 500 m) were highly phytotoxic, and moderately phytotoxic from 500 to 1500 m away. The concentration of pollutants in the leachates was clearly higher than in soil solutions, even in the soils located over 2000 m from the source, implying that the size of the polluted area will increase with time.  相似文献   

4.
ABSTRACT: The uptake of ten chemical elements was measured in water, sediment, fly ash, and the major biotic components of an ash basin drainage system. The biota tested represent several trophic levels observed in the settling basin and receiving swamp of the system. Concentrations were measured by neutron activation (NAA) in the major biotic groups including aquatic bacteria, algae, macrophytes, midges, dragonflies, crayfish, tadpoles, and fish. Only three elements (Cu, Zn, Cd) were more highly concentrated in water from a nearby unpolluted stream than in the fly ash effluent. Sediment concentrations of all elements were highest in the ash drainage system with Al and Fe being consistently highest. Among the biota, Hydrodictyon sp. and Lemna perpusilla had the highest concentrations of Al and Fe while other macrophytes were the major accumulators of Mn and Ba. Invertebrates generally concentrated high amounts of Cu and Zn although Cd and Hg were accumulated most by crayfish. Selenium was selectively concentrated by bacteria, crayfish (Procambarus sp.) and mosquitofish (Gambusia afflnis). Consequences of elemental concentrations in sediment and in specific trophic level groups are discussed.  相似文献   

5.
This study presents the results of a laboratory investigation conducted to evaluate the efficiency of coal fly ash to control the formation of acid mine drainage (AMD) from mine waste. Site-specific materials, coal fly ash from Atikokan Thermal Generating Station and mine tailings from Musselwhite mine, were mixed at different proportions for the investigation of the drainage chemistry and the optimal mix using static testing (acid–base accounting) and kinetic (column) testing. The acid–base accounting (ABA) results indicated that the fly ash possessed strong alkaline (neutralization) potential (NP) and could be used in the management of reactive mine tailings, thus ensuring prevention of AMD in the long-term. Column tests conducted in the laboratory to further investigate long-term performance of fly ash in the neutralization and prevention of acid mine drainage from tailings similarly showed that mixing fly ash with mine tailings reduces dissolution of many heavy metals from tailings by providing alkalinity to the system. It was found that a fly ash to tailings mass ratio equal to or greater than 15% can effectively prevent AMD generation from Musselwhite mine tailings in the co-placement approach.  相似文献   

6.
ABSTRACT: The concentration of 10 [titanium (Ti), manganese (Mn), copper (Cu), chromium (CR), zinc (Zn), arsenic (As), selenium (Se), cobalt (Co), cadmium (Cd), and mercury (Hg)] toxic elements were measured in the water, benthic sediment, plants, invertebrates, and vertebrates of an ash basin and its drainage system at a coal-fired power plant of the Savannah River Project, Aiken, S.C., over a period of two years. During 12 months of this period the basin was essentially filled and little settling of ash occurred. In the remaining 12 months, dredging had been completed, adequate settling occurred and most of the effluent turbidity was removed. All elements were more concentrated in sediment and biota than in water, and five (Mn, Cu, As, Zn, and Se) were biomagnified by at least one biotic component as compared to concentration in benthic sediment. Plants had high accumulations of Ti, Mn, As, and Hg; invertebrates had high accumulations of Co, Hg, Cu, Cr, Cd, and As; and vertebrates greatly biomagnified Se and Zn. The streamlined biotic community of the system accomplished major removal of Mn, Zn, As, Se, and Cd from the effluent. The magnitude of bioaccumulation of Ti, Mn, Zn, As, Se, Cd, and Hg was increased during the period of adequate settling in the basin.  相似文献   

7.
The removal of heavy metals from plating factory wastewater with economical materials was investigated by the column method. Montmorillonite, kaolin, tobermorite, magnetite, silica gel and alumina were used as the economical adsorbents to wastewater containing Cd(II), Cr(VI), Cu(II) and Pb(II). This removal method of heavy metals proved highly effective as removal efficiency tended to increase with increasing pH and decrease with increasing metal concentration. The removal percentages by adsorption onto montmorillonite, tobermorite, magnetite, and silica gel showed high values for all metals. From the results for the heat of adsorption, the adsorption process in the present study might be chemisorption. The proposed method was successfully applied to the removal of Cd(II), Cr(VI) and Cu(II) in rinsing wastewater from plating factory in Nagoya City, Aichi Prefecture, Japan. Since the economical adsorbents used can be obtained commercially because they are easily synthesized, the wastewater treatment system developed is rapid, simple and cheap for the removal of heavy metals.  相似文献   

8.
Use of successive alkalinity-producing systems (SAPS) for treatment of acidic mine drainage (AMD) has grown in recent years. However, inconsistent performance has hampered widespread acceptance of this technology. This research was conducted to determine the influence of system design and influent AMD chemistry on net alkalinity generation by SAPS. Monthly observations were obtained from eight SAPS cells in southern West Virginia and southwestern Virginia. Analysis of these data revealed strong, positive correlations between net alkalinity generation and three variables: the natural log of limestone residence time, influent dissolved Fe concentration, and influent non-Mn acidity. A statistical model was constructed to describe SAPS performance. Subsequent analysis of data obtained from five systems in western Pennsylvania (calibration data set) was used to reevaluate the model form, and the statistical model was adjusted using the combined data sets. Limestone residence time exhibited a strong, positive logarithmic correlation with net alkalinity generation, indicating net alkalinity generation occurs most rapidly within the first few hours of AMD-limestone contact and additional residence time yields diminishing gains in treatment. Influent Fe and non-Mn acidity concentrations both show strong positive linear relationships with net alkalinity generation, reflecting the increased solubility of limestone under acidic conditions. These relationships were present in the original and the calibration data sets, separately, and in the statistical model derived from the combined data set. In the combined data set, these three factors accounted for 68% of the variability in SAPS systems performance.  相似文献   

9.
ABSTRACT: Concentrations of 18 hydrophobic chlorinated organic compounds in streambed sediments from 100 sites throughout New Jersey were examined to determine (1) which compounds were detected most frequently, (2) whether detection frequencies differed among selected drainage basins, and (3) whether concentrations differed significantly among selected drainage basins. Twelve drainage basins across New Jersey that contain a range of land-use patterns and population densities were selected to represent various types and degrees of development. To ensure an adequate number of samples for statistical comparison among drainage basins, the 12 selected basins were consolidated into seven drainage areas on the basis of similarities in land-use patterns and population densities. Additionally, data for three classes of chlorinated organic compounds in streambed sediments from 255 sites throughout New Jersey were examined to determine whether the presence of these compounds in streambed sediments is related to the type and degree of development within the drainage area of each sampling site. Chlorinated organic compounds detected most frequently within the seven representative drainage areas were DDT, DDE, DDD, chlordane, dieldrin, and PCBs. DDT, DDE, and DDD, which were the most widely distributed organic compounds, were detected in about 60 to 100 percent of the samples from all drainage areas but one (where the detection rate for these compounds was about 20 to 40 percent). Chiordane and dieldrin were detected in about 80 to 100 percent of samples from highly urbanized and populated drainage areas; detection frequencies for these compounds tended to be smaller in less developed and populated areas. PCBs were detected in about 40 to 85 percent of samples from all drainage areas; detection frequencies were highest in the most heavily developed and populated areas. Analysis of variance on rank-transformed organic compound concentrations normalized to sediment organic carbon content was used to evaluate differences in concentrations among the seven representative drainage areas. Chlordane and PCBs were the chlorinated organic compounds with the most highly elevated concentrations in streambed sediments across the State. Median normalized concentrations of all six of the most frequently detected chlorinated organic compounds were highest in the most heavily urbanized and populated drainage area and lowest in the less populated, predominantly agricultural or forested areas. Concentrations of DDT and DDE, however, did not differ significantly among most of the drainage areas. Concentrations of DDD, chlordane, dieldrin, and PCBs differed significantly among drainage areas. The highest median normalized concentrations were found in samples from the most heavily urbanized and populated areas, and the lowest were in samples from the least developed, most heavily forested area. Logistic regression was used to examine relations between the presence of hydrophobic chlorinated organic compounds in streambed sediments at specified concentrations and variables that characterize the type and degree of development within the drainage areas of 255 sites across New Jersey. The explanatory variables found most useful for predicting the presence of chlorinated organic compounds in streambed sediments include total population and amounts (in square kilometers) of various land-use categories. Logistic regression equations were developed to identify significant relations between population and amounts of specific land-use categories within drainage areas and the probability of detecting chlorinated organic contaminants in streambed sediments. These relations can be used to assist in the identification of geographic regions of primary concern for contamination of bed sediments by chlorinated organic compounds across the State.  相似文献   

10.
In the carbonate soils contaminated by a toxic spill from a pyrite mine (Aznalcóllar, southern Spain), a study was made of a thin layer (thickness = 4 mm) of polluted soil located between the pyrite tailings and the underlying soil. This layer, reddish-yellow in color due to a high Fe content, formed when sulfates (from the oxidation of sulfides) infiltrated the soil, causing acidification (to pH 5.6 as opposed to 8.0 of unaffected soil) and pollution (in Zn, Cu, As, Pb, Co, Cd, Sb, Bi, Tl, and In). The less mobile elements (As, Bi, In, Pb, Sb, and Tl) concentrated in the uppermost part of the reddish-yellow layer, with concentration decreasing downward. The more mobile elements (Co, Cd, Zn, and Cu) tended to precipitate where the pH was basic, toward the bottom of the layer or in the upper part of the underlying soil. The greatest accumulations occurred within the first 6 mm in overall soil depth, and were negligible below 15 mm. In addition, the acidity of the solution from the tailings degraded the minerals of the clay fraction of the soils, both the phyllosilicates as well as the carbonates. Also, within the reddish-yellow layer, gypsum formed autigenically, together with complex salts of sulfates of Fe, Al, Zn, Ca, and Mn, jarosite, and oxihydroxides of Fe.  相似文献   

11.
ABSTRACT: Declines in concentrations of dissolved lead occurred at nearly two-thirds of 306 locations on major U.S. rivers from 1974 to 1985. Declines in dissolved lead concentrations are statistically significant (p < 0.10) at approximately one-third of the sampling locations. Statistically significant increases in dissolved lead concentrations occurred at only 6 percent of the sites, but are clustered in the Texas-Gulf and Lower Mississippi regions. Possible explanations for the observed trends in lead concentrations are tested through comparisons with (1) records of lead discharges from major sources including leaded-gasoline consumption and municipal- and industrial-point source discharges, (2) trends in various water-quality constituents such as pH and total alkalinity, and (3) basin characteristics such as drainage area. Statistically significant declines in lead concentrations in streams and gasoline lead (i.e., the largest source of lead at these sites) are highly coincident for the 1979 to 1980 period at most sampling locations. The greatest amount of decline in gasoline lead occurred at sites showing statistically significant downtrends in stream concentrations of lead from 1974 to 1985. No more than 5 percent of the trends in stream lead are influenced by municipal- and industrial-point sources of lead. Factors that affect the transport of dissolved lead, including lead solubility, suspended sediment, and basin characteristics such as drainage basin size, are not significantly related to trends in dissolved lead. Trends in streamflow explain no more than 7 percent of the downtrends in concentrations of lead and may partly explain the frequent increases in lead concentrations in the Texas-Gulf and Lower Mississippi regions.  相似文献   

12.
The focus of this study is to investigate processes causing the observed spatial variation of total mercury (THg) in the soil O horizon of watersheds within the Superior National Forest (Minnesota) and to determine if results have implications toward understanding long-term changes in THg concentrations for resident fish. Principal component analysis was used to evaluate the spatial relationships of 42 chemical elements in three soil horizons over 10 watersheds. Results indicate that soil organic carbon is the primary factor controlling the spatial variation of certain metals (Hg, Tl, Pb, Bi, Cd, Sn, Sb, Cu, and As) in the O and A soil horizons. In the B/E horizon, organic carbon appeared to play a minor role in metal spatial variation. These characteristics are consistent with the concentration of soil organic matter and carbon decreasing from the O to the B/E horizons. We also investigated the relationship between percent change in upland soil organic content and fish THg concentrations across all watersheds. Statistical regression analysis indicates that a 50% reduction in age-one and age-two fish THg concentration could result from an average 10% decrease in upland soil organic content. Disturbances that decrease the content of THg and organic matter in the O and A horizons (e.g., fire) may cause a short-term increase in atmospherically deposited mercury but, over the long term, may lead to decreased fish THg concentrations in affected watersheds.  相似文献   

13.
ABSTRACT: A concentration of 2.5 mg/1 Pro-Noxfish® (0.063 mg/1 rotenone and 0.063 mg/1 sulfoxide) was applied to Bug Lake, Wisconsin, on November 17, 1975. There was an immediate toxicity to zooplankton and Chironomus. All taxa of benthic organisms and zooplankton that were present before toxicant application survived the treatment except for Pleuroxus denticulatus which was collected in only one sample before treatment. Comparable densities of benthic and zooplankton taxa were found on individual sampling dates before and after treatment; however, mean densities of trichopterans and dipterans were lower after treatment. The high variance in the samples along with the change in fish population after treatment are believed responsible for this indicated change in benthos density rather than the effects of the rotenone.  相似文献   

14.
Lead arsenate was a commonly used insecticide during the first half of the 20th century, particularly in deciduous tree fruit orchards. Antimony is cotransported with As during the ore refining process and could occur as an impurity in commercial lead arsenate products. The total concentrations of As and Sb in eight soil samples collected from eight orchards located throughout central Washington State were analyzed by neutron activation analysis. Total soil Sb concentrations ranged between 0.4 and 1.5 mg kg(-1), while total soil As concentration ranged from 1 to 170 mg kg(-1). Total soil Sb and As concentrations were positively related. Total Pb and As concentrations in four of the soils were substantially higher than natural background, while the Sb to As concentration ratios in these soils were consistent with values measured in three lead arsenate insecticide products. These results confirm that Sb impurity is present in lead arsenate insecticide and has contributed to Sb enrichment of soils on which lead arsenate-treated plants were grown. Although higher than in uncontaminated soils from the same region, the Sb concentrations in the affected soils fall within the normal range observed worldwide and are substantially lower than values associated with impaired human or environmental health.  相似文献   

15.
ABSTRACT: An export coefficient modeling approach was used to assess the influence of land use on phosphorus loading to a Southern Ontario stream. A model was constructed for the 1995–1996 water year and calibrated within ± 3 percent of the observed mean concentration of total phosphorus. It was found that runoff from urban areas contributed most to the loading of phosphorus to the stream. When the model was assessed by running it for the 1977–1978 water year, using water quality and land use data collected independently, agreement within ± 7 percent was obtained. The model was then used to forecast the impact of future urban development proposed for the watershed, in terms of phosphorus loading, and to evaluate the reduction in loading resulting from several urban best management practices (BMP). It was determined that phosphorus removal will have to be applied to all the urban runoff from the watershed to appreciably reduce stream phosphorus concentration. Of the BMP designs assessed, an infiltration pond system resulted in the greatest phosphorus load reduction, 50 percent from the 1995–1996 baseline.  相似文献   

16.
Effects of impurities on the removal of heavy metals by natural limestones in aqueous solutions were studied by evaluating various factors including limestone concentration, pH, contact time and temperature. Solutions of Pb(II), Cd(II), Cu(II) and Zn(II), prepared from chloride reagents at a concentration of 10 mg/L, were studied in a batch method. Four natural limestone samples, collected from the Campanian-Maastrichtian limestone beds in Tunisia, were used as adsorbents. Sorption experiments indicated that high removal efficiencies could be achieved. Limestone samples containing impurities, such as silica, iron/aluminum oxides and different kinds of clay minerals, demonstrated enhanced sorption capacity, nearing 100% removal in some cases. Kinetic experiments showed that the sorption of metal ions occurred rapidly at a low coverage stage, and that solutions were nearly at equilibrium after 60 min. Data trends generally fit pseudo-second order kinetic, and intra-particle diffusion, models. The following conditions were found to promote optimum, or near-optimum, sorption of heavy metals: 1) contact time of more than 60 min, 2) pH = 5, 3) >3 g/L limestone concentration and 4) T = 35 °C. The results of this study suggest that the limestones from northern Tunisia, that contain higher amounts of silica and iron/aluminum oxides, are promising adsorbents for the effective removal of toxic heavy metals from wastewaters.  相似文献   

17.
ABSTRACT Field investigations were conducted at three sites in the Washington, D.C., area to detect accumulation patterns of the trace metals, cadmium, copper, lead, and zinc in the soils of urban stormwater detention basins. The research results seemed to indicate that the use of detention basins to control urban stormwater runoff had few harmful effects to fine textured soils with respect to the study trace metals. Although the trace metals, especially lead and zinc, were found to accumulate in the surface soils of the basins, little significant downward movement of metals in the soil profiles had occurred. Accumulations of metals in the surface soils appeared to be a function of microtopography and the resultant residence time of standing water. The fractions of trace metals that were present in a leachable form in surface soils and stormwater solids were small, with median values ranging from 7.7 percent of the total concentration for Cd to 0.01 percent for Pb.  相似文献   

18.
典型天然吸附剂对重金属的吸附性能研究   总被引:2,自引:0,他引:2  
焦芳  李明利  梁磊 《四川环境》2011,30(2):88-92
天然吸附剂由于其本身结构的特殊性,对重金属离子有一定的吸附效果,但是原始的吸附剂在工程处理应用中有一定的局限性,如耐酸碱性不高、吸附量不大等,因此在实际应用中采用较多的典型吸附剂多为改性材料,改性后的吸附剂提高了对环境的耐受性和对金属离子的吸附量,对于去除和回收水体中重金属有很大的优势和发展前景。  相似文献   

19.
Anaerobic bioreactors were used to test the effect of the pH of influent on the removal efficiency of heavy metals from acid-rock drainage. Two studies used a near-neutral-pH, metal-laden influent to examine the heavy metal removal efficiency and hydraulic residence time requirements of the reactors. Another study used the more typical low-pH mine drainage influent. Experiments also were done to (i) test the effects of oxygen content of feed water on metal removal and (ii) the adsorptive capacity of the reactor organic substrate. Analysis of the results indicates that bacterial sulfate reduction may be a zero-order kinetic reaction relative to sulfate concentrations used in the experiments, and may be the factor that controls the metal mass removal efficiency in the anaerobic treatment systems. The sorptive capacities of the organic substrate used in the experiments had not been exhausted during the experiments as indicated by the loading rates of removal of metals exceeding the mass production rates of sulfide. Microbial sulfate reduction was less in the reactors receiving low-pH influent during experiments with short residence times. Sulfate-reducing bacteria may have been inhibited by high flows of low-pH water. Dissolved oxygen content of the feed waters had little effect on sulfate reduction and metal removal capacity.  相似文献   

20.
Acid pre-treated powdered waste sludge (PWS) was used for removal of textile dyestuffs from aqueous medium by adsorption as an alternative to the use of powdered activated carbon (PAC). The rate and extent of dysetuff removals were determined for four different dyestuffs at different PWS concentrations varying between 1 and 6 gl(-1). Biosorbed dyestuff concentrations at equilibrium decreased with increasing PWS concentration for all dyestuffs tested. PWS was more effective for adsorption of Remazol red RR and Chrisofonia direct yellow 12 as compared to the other dyestuffs tested. More than 80% percent dyestuff removal was obtained for all dyestuffs at PWS concentrations above 4 gl(-1) after 6h of incubation. Similar to percent dyestuff removal, the rate of adsorption was maximum at a PWS concentration of 4 gl(-1). Kinetics of adsorption of dyestuffs was investigated by using the first- and second-order kinetic models and the kinetic constants were determined. Second-order kinetics was found to fit the experimental data better than the first-order model for all dyestuffs tested. Adsorption isotherms were established for all dyestuffs used and the isotherm constants were determined by using the experimental data. Langmuir and the generalized adsorption isotherms were found to be more suitable than the Freundlich isotherm for correlation of equilibrium adsorption data. Acid pre-treated PWS was proven to be an effective adsorbent for dyestuff removal as compared to the other adsorbents reported in literature studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号