首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: The Amazon basin is experiencing rapid forest loss and fragmentation. Fragmented forests are more prone than intact forests to periodic damage from El Niño–Southern Oscillation ( ENSO) droughts, which cause elevated tree mortality, increased litterfall, shifts in plant phenology, and other ecological changes, especially near forest edges. Moreover, positive feedbacks among forest loss, fragmentation, fire, and regional climate change appear increasingly likely. Deforestation reduces plant evapotranspiration, which in turn constrains regional rainfall, increasing the vulnerability of forests to fire. Forest fragments are especially vulnerable because they have dry, fire-prone edges, are logged frequently, and often are adjoined by cattle pastures, which are burned regularly. The net result is that there may be a critical "deforestation threshold" above which Amazonian rainforests can no longer be sustained, particularly in relatively seasonal areas of the basin. Global warming could exacerbate this problem if it promotes drier climates or stronger ENSO droughts. Synergisms among many simultaneous environmental changes are posing unprecedented threats to Amazonian forests.  相似文献   

2.
Clearance and perturbation of Amazonian forests are one of the greatest threats to tropical biodiversity conservation of our times. A better understanding of how soil communities respond to Amazonian deforestation is crucially needed to inform policy interventions that effectively protect biodiversity and the essential ecosystem services it provides. We assessed the impact of deforestation and ecosystem conversion to arable land on Amazonian soil biodiversity through a meta-analysis. We analyzed 274 pairwise comparisons of soil biodiversity in Amazonian primary forests and sites under different stages of deforestation and land-use conversion: disturbed (wildfire and selective logging) and slash-and-burnt forests, pastures, and cropping systems. Overall, 60% and 51% of responses of soil macrofauna and microbial community attributes (i.e., abundance, biomass, richness, and diversity indexes) to deforestation were negative, respectively. We found few studies on mesofauna (e.g., microarthropods) and microfauna (e.g., protozoa and nematodes), so those groups could not be analyzed. Macrofauna abundance and biomass were more vulnerable to the displacement of forests by pastures than by agricultural fields, whereas microbes showed the opposite pattern. Effects of Amazonian deforestation on macrofauna were more detrimental at sites with mean annual precipitation >1900 mm, and higher losses of microbes occurred in highly acidic soils (pH < 4.5). Limited geographic coverage, omission of meso- and microfauna, and low taxonomic resolution were main factors impairing generalizations from the data set. Few studies assessed the impacts of within-forest disturbance (wildfires and selective logging) on soil species in Amazonia, where logging operations rapidly expand across public lands and more frequent severe dry seasons are increasing the prevalence of wildfires.  相似文献   

3.
Smallholder agriculture is the main driver of deforestation in the western Amazon, where terrestrial biodiversity reaches its global maximum. Understanding the biodiversity value of the resulting mosaics of cultivated and secondary forest is therefore crucial for conservation planning. However, Amazonian communities are organized across multiple forest types that support distinct species assemblages, and little is known about smallholder impacts across the range of forest types that are essential for sustaining biodiversity. We addressed this issue with a large-scale field inventory of birds (point counts) and trees (transects) in primary forest and smallholder agriculture in northern Peru across 3 forest types that are key for Amazonian biodiversity. For birds smallholder agriculture supported species richness comparable to primary forest within each forest type, but biotic homogenization across forest types resulted in substantial losses of biodiversity overall. These overall losses are invisible to studies that focus solely on upland (terra firma) forest. For trees biodiversity losses in upland forests dominated the signal across all habitats combined and homogenization across habitats did not exacerbate biodiversity loss. Proximity to forest strongly predicted the persistence of forest-associated bird and tree species in the smallholder mosaic, and because intact forest is ubiquitous in our study area, our results probably represent a best-case scenario for biodiversity in Amazonian agriculture. Land-use planning inside and outside protected areas should recognize that tropical smallholder agriculture has pervasive biodiversity impacts that are not apparent in typical studies that cover a single forest type. The full range of forest types must be surveyed to accurately assess biodiversity losses, and primary forests must be protected to prevent landscape-scale biodiversity loss.  相似文献   

4.
We describe a simulation model representing the most important human and natural factors driving land use and cover changes (LUCC) in southern Chile. We evaluate the model by examining its ability to simulate LUCC observed over the past three decades, conduct a sensitivity analysis of simulated trends to changes in important model parameters, and use the model to project likely landscape transformations over the next decade under “as usual,” “pessimistic,” and four “optimistic” scenarios. The model consists of five submodels representing LUCC on two distinct soil formations (volcanic ash and gleysols) and four major land use categories: native forest, agricultural land, shrubland, and urban land. Land use and cover sub-categories include old growth forests, secondary forests, and low and flooded shrubland. The model simulated well general historic trends in forest cover, agricultural land, shrubland, and urban land: from a forest-dominated landscape in 1976 to a landscape dominated by shrubland and agricultural land by 2007. Forest loss, forest degradation by logging and clearing for agriculture were the most important direct drivers of LUCC: forest logging and clearing were most important from 1976 to 1985, whereas after 1985 logging for firewood, driven by population growth, was most important. Sensitivity analysis indicated that model projections of general trends in the main land use and cover categories were not overly sensitive to changes in important model parameters, although further study is necessary to improve our estimates of the proportion of pasture requirements supplied by clearing low shrubland. Projections of LUCC suggested that a reduced amount of secondary forest would be left by 2017 if no actions are taken to reduce forest loss (“as usual”). Increasing population (“pessimistic scenario”) resulted in similar trajectories than those predicted by the as usual scenario, whereas reducing logging for firewood and increasing forest recruitment from shrubland could reduce loss of native forest by nearly one-third (“optimistic scenarios”). Surprisingly, shrubland exhibited the most complex and influential dynamics in all scenarios, being the immediate outcome of forest loss and the main long-term source of land for agriculture, urban expansion, and forest recovery. Few studies in Chile, or elsewhere, have considered the importance of this intermediate successional stage. Of the scenarios simulated, financial incentives targeted toward channeling shrubland into regenerated forest seemed most promising, although obstacles to such a management strategy exist.  相似文献   

5.
An historical generalization about forest cover change in which rapid deforestation gives way over time to forest restoration is called "the forest transition." Prior research on the forest transition leaves three important questions unanswered: (1) How does forest loss influence an individual landowner's incentives to reforest? (2) How does the forest recovery rate affect the likelihood of forest transition? (3) What happens after the forest transition occurs? The purpose of this paper is to develop a minimum model of the forest transition to answer these questions. We assume that deforestation caused by landowners' decisions and forest regeneration initiated by agricultural abandonment have aggregated effects that characterize entire landscapes. These effects include feedback mechanisms called the "forest scarcity" and "ecosystem service" hypotheses. In the forest scarcity hypothesis, forest losses make forest products scarcer, which increases the economic value of forests. In the ecosystem service hypothesis, the environmental degradation that accompanies the loss of forests causes the value of ecosystem services provided by forests to decline. We examined the impact of each mechanism on the likelihood of forest transition through an investigation of the equilibrium and stability of landscape dynamics. We found that the forest transition occurs only when landowners employ a low rate of future discounting. After the forest transition, regenerated forests are protected in a sustainable way if forests regenerate slowly. When forests regenerate rapidly, the forest scarcity hypothesis expects instability in which cycles of large-scale deforestation followed by forest regeneration repeatedly characterize the landscape. In contrast, the ecosystem service hypothesis predicts a catastrophic shift from a forested to an abandoned landscape when the amount of deforestation exceeds the critical level, which can lead to a resource degrading poverty trap. These findings imply that incentives for forest conservation seem stronger in settings where forests regenerate slowly as well as when decision makers value the future.  相似文献   

6.
Sustainable use of the Amazon forest for timber production is conditioned by the effect of logging on the system's nutrient cycling. This paper reports the results of a soil moisture and soil water chemistry monitoring campaign before and immediately after a selective logging which removed 35 m3 wood/ha. Soil moisture was measured using tensiometers, and soil water chemistry using suction samplers in five disturbance classes: tractor tracks, clearing centres, clearing edges, forest edges and untouched forest. The results show that the soil under the tractor tracks and clearings contained more moisture than under the untouched forest. The suction samplers extracted substantially more nitrate, ammonium, calcium, magnesium and potassium from the clearing centres, the tractor tracks and the clearing edges than from the forest sites. The results are explained in terms of altered microbial activity, changes in crown interception and uptake by roots.  相似文献   

7.
Abstract:  The management of tropical forest in timber concessions has been proposed as a solution to prevent further biodiversity loss. The effectiveness of this strategy will likely depend on species-specific, population-level responses to logging. We conducted a survey (749 line transects over 3450 km) in logging concessions (1.2 million ha) in the northern Republic of Congo to examine the impact of logging on large mammal populations, including endangered species such as the elephant ( Loxodonta africana ), gorilla ( Gorilla gorilla ), chimpanzee ( Pan troglodytes ), and bongo ( Tragelaphus eurycerus ). When we estimated species abundance without consideration of transect characteristics, species abundances in logged and unlogged forests were not different for most species. When we modeled the data with a hurdle model approach, however, analyzing species presence and conditional abundance separately with generalized additive models and then combining them to calculate the mean species abundance, species abundance varied strongly depending on transect characteristics. The mean species abundance was often related to the distance to unlogged forest, which suggests that intact forest serves as source habitat for several species. The mean species abundance responded nonlinearly to logging history, changing over 30 years as the forest recovered from logging. Finally the distance away from roads, natural forest clearings, and villages also determined the abundance of mammals. Our results suggest that logged forest can extend the conservation estate for many of Central Africa's most threatened species if managed appropriately. In addition to limiting hunting, logging concessions must be large, contain patches of unlogged forest, and include forest with different logging histories.  相似文献   

8.
Political transitions often trigger substantial environmental changes. In particular, deforestation can result from the complex interplay among the components of a system—actors, institutions, and existing policies—adapting to new opportunities. A dynamic conceptual map of system components is particularly useful for systems in which multiple actors, each with different worldviews and motivations, may be simultaneously trying to alter different facets of the system, unaware of the impacts on other components. In Myanmar, a global biodiversity hotspot with the largest forest area in mainland Southeast Asia, ongoing political and economic reforms are likely to change the dynamics of deforestation drivers. A fundamental conceptual map of these dynamics is therefore a prerequisite for interventions to reduce deforestation. We used a system‐dynamics approach and causal‐network analysis to determine the proximate causes and underlying drivers of forest loss and degradation in Myanmar from 1995 to 2016 and to articulate the linkages among them. Proximate causes included infrastructure development, timber extraction, and agricultural expansion. These were stimulated primarily by formal agricultural, logging, mining, and hydropower concessions and economic investment and social issues relating to civil war and land tenure. Reform of land laws, the link between natural resource extraction and civil war, and the allocation of agricultural concessions will influence the extent of future forest loss and degradation in Myanmar. The causal‐network analysis identified priority areas for policy interventions, for example, creating a public registry of land‐concession holders to deter corruption in concession allocation. We recommend application of this analytical approach to other countries, particularly those undergoing political transition, to inform policy interventions to reduce forest loss and degradation.  相似文献   

9.
A major question in global environmental policy is whether schemes to reduce carbon pollution through forest management, such as Reducing Emissions from Deforestation and Degradation (REDD+), can also benefit biodiversity conservation in tropical countries. We identified municipalities in Brazil that are priorities for reducing rates of deforestation and thus preserving carbon stocks that are also conservation targets for the endangered jaguar (Panthera onca) and biodiversity in general. Preliminary statistical analysis showed that municipalities with high biodiversity were positively associated with high forest carbon stocks. We used a multicriteria decision analysis to identify municipalities that offered the best opportunities for the conservation of forest carbon stocks and biodiversity conservation under a range of scenarios with different rates of deforestation and carbon values. We further categorized these areas by their representativeness of the entire country (through measures such as percent forest cover) and an indirect measure of cost (number of municipalities). The municipalities that offered optimal co‐benefits for forest carbon stocks and conservation were termed REDDspots (n = 159), and their spatial distribution was compared with the distribution of current and proposed REDD projects (n = 135). We defined REDDspots as the municipalities that offer the best opportunities for co‐benefits between the conservation of forest carbon stocks, jaguars, and other wildlife. These areas coincided in 25% (n = 40) of municipalities. We identified a further 95 municipalities that may have the greatest potential to develop additional REDD+ projects while also targeting biodiversity conservation. We concluded that REDD+ strategies could be an efficient tool for biodiversity conservation in key locations, especially in Amazonian and Atlantic Forest biomes. Identificación de Áreas en Brasil que Optimizan la Conservación del Carbono del Bosque, Jaguares y la Biodiversidad.  相似文献   

10.
Abstract: The Tierras Bajas is an area of 20,000 km 2 of lowland deciduous forest in eastern Santa Cruz, Bolivia, that has undergone rapid change during the past two decades. As part of the largest remaining area of intact deciduous tropical forest in the world, it has been nominated a priority area for conservation by several environmental organizations. We quantified the spatial and temporal patterns of deforestation in the area by digital processing of high-resolution satellite imagery from 1975 through 1998. The estimated rate of deforestation was among the highest in the world for such a limited area, ranging from 160 km 2/year in the early1980s to almost 1200 km 2/year in the late 1990s. Although most deforestation up to 1984 was in Bolivian peasant and Mennonite colonies, most deforestation after 1984 was in non-Mennonite industrial soybean farms. The level of fragmentation of uncut forest, caused by the spatial patterns of deforestation, also differed among these broad land-use types. Deforestation in planned and spontaneous peasant colonies was complex in shape, forming relatively large areas of edge-affected forest, whereas that in Mennonite and other industrial farms was in large, rectangular increments, creating relatively less edge. But the distribution of these farms and the practice of initially clearing around the peripheries of properties resulted in the isolation of large areas of forest. In 1998 four-fifths of the remaining forest were either within 1 km of a clearance edge or in isolated fragments of <50 km2. Compared with deforested areas, the areas of isolated and edge-affected forest were disproportionately large during the early stages of frontier colonization. These results imply that if the fragmentation effects of deforestation are to be minimized, conservation planning must occur at the earliest stages of frontier development.  相似文献   

11.
Abstract:  The rainforests of the Amazon basin are being cut by humans at a rate >20,000 km2/year, leading to smaller and more isolated patches of forest, with remaining fragments often in the range of 1–100 ha. We analyzed samples of understory birds collected over 20 years from a standardized mist-netting program in 1– to 100-ha rainforest fragments in a dynamic Amazonian landscape near Manaus, Brazil. Across bird guilds, the condition of second growth immediately surrounding fragments was often as important as fragment size or local forest cover in explaining variation in abundance. Some fragments surrounded by 100 m of open pasture showed reductions in insectivorous bird abundance of over 95%, even in landscapes dominated by continuous forest and old second growth. These extreme reductions may be typical throughout Amazonia in small (≤10 ha), isolated fragments of rainforest. Abundance for some guilds returned to preisolation levels in 10- and 100-ha fragments connected to continuous forest by 20-year-old second growth. Our results show that the consequences of Amazonian forest loss cannot be accurately described without explicit consideration of vegetation dynamics in matrix habitat. Any dichotomous classification of the landscape into "forest" and "nonforest" misses essential information about the matrix.  相似文献   

12.
Abstract: In recent decades the rate and geographic extent of land‐use and land‐cover change has increased throughout the world's humid tropical forests. The pan‐tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long‐term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large‐scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small‐scale deforestation, low‐intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis.  相似文献   

13.
Protected areas (PAs) are a commonly used strategy to confront forest conversion and biodiversity loss. Although determining drivers of forest loss is central to conservation success, understanding of them is limited by conventional modeling assumptions. We used random forest regression to evaluate potential drivers of deforestation in PAs in Mexico, while accounting for nonlinear relationships and higher order interactions underlying deforestation processes. Socioeconomic drivers (e.g., road density, human population density) and underlying biophysical conditions (e.g., precipitation, distance to water, elevation, slope) were stronger predictors of forest loss than PA characteristics, such as age, type, and management effectiveness. Within PA characteristics, variables reflecting collaborative and equitable management and PA size were the strongest predictors of forest loss, albeit with less explanatory power than socioeconomic and biophysical variables. In contrast to previously used methods, which typically have been based on the assumption of linear relationships, we found that the associations between most predictors and forest loss are nonlinear. Our results can inform decisions on the allocation of PA resources by strengthening management in PAs with the highest risk of deforestation and help preemptively protect key biodiversity areas that may be vulnerable to deforestation in the future.  相似文献   

14.
Ecotourism is developing rapidly in biodiversity hotspots worldwide, but there is limited and mixed empirical evidence that ecotourism achieves positive biodiversity outcomes. We assessed whether ecotourism influenced forest loss rates and trajectories from 2000 to 2017 in Himalayan temperate forests. We compared forest loss in 15 ecotourism hubs with nonecotourism areas in 4 Himalayan countries. We used matching statistics to control for local-level determinants of forest loss, for example, population density, market access, and topography. None of the ecotourism hubs was free of forest loss, and we found limited evidence that forest-loss trajectories in ecotourism hubs were different from those in nonecotourism areas. In Nepal and Bhutan, differences in forest loss rates between ecotourism hubs and matched nonecotourism areas did not differ significantly, and the magnitude of the estimated effect was small. In India, where overall forest loss rates were the lowest of any country in our analysis, forest loss rates were higher in ecotourism hubs than in matched nonecotourism areas. In contrast, in China, where overall forest loss rates were highest, forest loss rates were lower in ecotourism hubs than where there was no ecotourism. Our results suggest that the success of ecotourism as a forest conservation strategy, as it is currently practiced in the Himalaya, is context dependent. In a region with high deforestation pressures, ecotourism may be a relatively environmentally friendly form of economic development relative to other development strategies. However, ecotourism may stimulate forest loss in regions where deforestation rates are low.  相似文献   

15.
The Tibetan sacred mountains (TSMs) cover a large area and may represent a landscape‐scale conservation opportunity. We compared the conservation value of forests in these mountains with the conservation value of government‐established nature reserves and unmanaged open‐access areas in Danba County, southwestern China. We used Landsat satellite images to map forest cover and to estimate forest loss in 1974–1989, 1989–1999, and 1999–2013. The TSMs (n = 41) and nature reserves (n = 4) accounted for 21.6% and 29.7% of the county's land area, respectively. Remaining land was open‐access areas (i.e., areas without any restrictions on resource use) (56.2%) and farmlands (2.2%). Within the elevation range suitable for forests, forest cover did not differ significantly between nature reserves (58.8%) and open‐access areas (58.4%), but was significantly higher in TSMs (65.5%) after controlling for environmental factors such as aspect, slope, and elevation. The TSMs of great cultural importance had higher forest cover, but patrols by monastery staff were not necessarily associated with increased forest cover. The annual deforestation rate in nonsacred areas almost tripled in 1989–1999 (111.4 ha/year) relative to 1974–1989 (40.4 ha/year), whereas the rate in TSMs decreased in the later period (19.7 ha/year vs. 17.2 ha/year). The reduced forest loss in TSMs in 1989–1999 was possibly due to the renaissance of TSM worship and strengthened management by the local Buddhist community since late 1980s. The annual deforestation rate in Danba decreased dramatically to 4.4 ha/year in 1999–2013, which coincided with the implementation of a national ban on logging in 1998. As the only form of protected area across the Tibetan region during much of its history, TSMs have positively contributed to conserving forest at a landscape scale. Conservation of TSM forests largely relied on the strength of local religious institutions. Integrating community‐based conservation of TSMs within the government conservation network would benefit the conservation of the Tibetan region.  相似文献   

16.
Abstract:  The historical area of bottomland hardwood forest in the Mississippi Alluvial Valley has been reduced by >75%. Agricultural production was the primary motivator for deforestation; hence, clearing deliberately targeted higher and drier sites. Remaining forests are highly fragmented and hydrologically altered, with larger forest fragments subject to greater inundation, which has negatively affected many forest bird populations. We developed a spatially explicit decision support model, based on a Partners in Flight plan for forest bird conservation, that prioritizes forest restoration to reduce forest fragmentation and increase the area of forest core (interior forest >1 km from "hostile" edge). Our primary objective was to increase the number of forest patches that harbor >2000 ha of forest core, but we also sought to increase the number and area of forest cores >5000 ha. Concurrently, we targeted restoration within local (320 km2) landscapes to achieve ≥60% forest cover. Finally, we emphasized restoration of higher-elevation bottomland hardwood forests in areas where restoration would not increase forest fragmentation. Reforestation of 10% of restorable land in the Mississippi Alluvial Valley (approximately 880,000 ha) targeted at priorities established by this decision support model resulted in approximately 824,000 ha of new forest core. This is more than 32 times the amount of core forest added through reforestation of randomly located fields (approximately 25,000 ha). The total area of forest core (1.6 million ha) that resulted from targeted restoration exceeded habitat objectives identified in the Partners in Flight Bird Conservation Plan and approached the area of forest core present in the 1950s.  相似文献   

17.
ABSTRACT

The Santa Cruz lowlands, east Bolivia, are one of South America’s most dynamic agricultural frontiers. In the Chiquitania, bordering Brazil, San Ignacio de Velasco was in 2017 ranked first nationally in terms of deforestation. There, two deforestation fronts meet with mechanized agriculture expanding from the West and South and cattle ranching from the East. Chiquitano communities are demographically dominant locally but often face land scarcity. Because of their comparatively low impact on forest vegetation, they are not well represented in broad-scale quantitative Land Use/Land Cover (LULC) studies. Based on an empirical, human geographical approach, this paper investigates the transformation of the local indigenous productive matrix, the associated land-use patterns and potential socio-ecological implications. The overall aim is to bear witness to the rapid and profound reconfiguration of traditional livelihoods with their integration in the market economy and to highlight the significance of micro-scale LULC-processes at global scale.  相似文献   

18.
Abstract:  With endangered status and more than 8,000 endemic species, the Atlantic Forest is one of the world's 25 biodiversity hotspots. Less than 100,000 km2 (about 7%) of the forest remains. In some areas of endemism, all that is left are immense archipelagos of tiny and widely separated forest fragments. In addition to habitat loss, other threats contributing to forest degradation include the harvesting of firewood, illegal logging, hunting, plant collecting, and invasion by alien species—all despite the legislation that exists for the forest's protection. More than 530 plants and animals occurring in the forest are now officially threatened, some at the biome level, some throughout Brazil, and some globally. Many species have not been recorded in any protected areas, indicating the need to rationalize and expand the parks system. Although conservation initiatives have increased in number and scale during the last two decades, they are still insufficient to guarantee the conservation of Atlantic Forest biodiversity. To avoid further deforestation and massive species loss in the Brazilian Atlantic Forest, the challenge is to integrate the diverse regulations, public policies, new opportunities, and incentive mechanisms for forest protection and restoration and the various independent projects and programs carried out by governments and nongovernmental organizations into a single and comprehensive strategy for establishing networks of sustainable landscapes throughout the region.  相似文献   

19.
Abstract:  As primary forest is cleared, pastures and secondary forest occupy an increasing space in the Amazonian landscape. We evaluated the effect of forest clearing on a soil macrofauna (invertebrate) community in a smallholder farming system of southeastern Amazonia. We sampled the soil macrofauna in 22 plots of forest, upland rice fields, pastures, and fallows of different ages. In total, we collected 10,728 invertebrates. In cleared plots the species richness per plot of the soil macrofauna fell from 76 to 30 species per plot immediately after forest clearance, and the composition of the new community was different. Ants, termites, and spiders were most affected by the disturbance. In plots deforested several years before, the effect of forest clearance was highly dependent on the type of land use (pasture or fallow). In fallows, the community was similar to the initial state. The species richness per plot in old fallows rose to 66, and the composition was closer to the primary forests than to the other types of land use. On the contrary, in the pastures the species richness per plot remained low at 47. In fallows, all the groups showed a richness close to that in primary forest, whereas in the forest only the richness of earthworms and Coleoptera recovered. Our results show that forest clearing constitutes a major disturbance for the soil macrofauna and that the recovery potential of the soil macrofauna after 6 or 7 years is much higher in fallows than in pastures. Thus, fallows may play a crucial role in the conservation of soil macrofauna.  相似文献   

20.
ABSTRACT

Forest cover dynamics (1993-2018) was assessed in two regions on the Yucatan Peninsula: Zona Maya (ZM), 67% indigenous with shifting cultivation and community forestry; and Bacalar–Rio Hondo (BRH), mainly commercial agriculture and pastureland. Degradation (12,915 ha y?1) exceeded deforestation (5882 ha y?1) and was worse in BRH. In BRH there was a net forest loss (?1.6% y?1) associated with pastureland and commercial agriculture. In ZM, mature forest recovery (1.4% y?1) and dynamic forest cover (continuous loss and gain) were associated with shifting cultivation. Changes were more intense during 2011–2018 and gains of mature forest in ZM and deforested areas in BRH targeted secondary vegetation. Fragments of mature and secondary vegetation decreased, and connectivity improved in ZM, but opposite trends occurred in BRH. Reporting and monitoring deforestation using Global Forest Watch data is inadequate since 62% of forest cover loss represent degrading or recovering forest cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号