首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Previous studies on various marine mollusc species have shown that both larval and juvenile growth rates are substantially heritable, but few workers have examined the extent to which larval and juvenile growth rates covary. We examined the relationship between larval and juvenile growth rates in seven laboratory experiments conducted between 1986 and 1993, using the prosobranch gastropods Crepidula plana Say and C. fornicata (L.). In most experiments larvae were reared individually, measured twice nondestructively to determine larval grwoth rate, allowed or stimulated (daily 5-h exposure to 20 mM excess K+ in seawater) to metamophose, and then measured at least twice after metamorphosis to determine juvenile growth rates. Generally, there was no significant (p >0.10) relationship between larval and juvenile growth rates, suggesting that in these two species selection can act independently on the two stages of development. A positive correlation (p=0.007) between larval and juvenile growth rates was observed for C. fornicata in one experiment, but only for offspring from females maturing the most rapidly in laboratory culture. Even for these larvae, however, variation in larval growth rate explained<2% of the variation in juvenile growth rate, so that larval and juvenile growth rates are at most only weakly associated in this species.  相似文献   

2.
Survival of individually reared larval and juvenile stage lobsters, Homarus americanus (Milne-Edwards), was significantly higher than in corresponding groups of communally reared individuals. Among communally reared lobsters, the mortality rate was highest in the second-stage larvae and then progressively decreased in the later stages. The relationship between survival and duration of molt period of each life-cycle stage indicates that asynchronous molting in the groups of communally reared lobsters is a contributing factor to the higher mortality rate. The molting and mortality curves of communally held lobsters reared from the first larval to first or second juvenile stage showed best cross correlation at 0- or 1-day time lag. The decreased mortality rate observed in the later larval and juvenile stages appears to have resulted from the establishment of new behavior patterns. Group interactions which are influenced by numerous extrinsic and intrinsic factors lead to higher mortality rate (cannibalism) among communally reared lobsters.  相似文献   

3.
The relationship between Penaeus merguiensis protozoea larvae and their phytoplankton diet was examined using seasonal plankton surveys and in situ rearing experiments. Larval abundance, phytoplankton community structure, and chlorophyll a concentration in Albatross Bay, Gulf of Carpentaria, were monitored monthly for 2 yr. Larval abundance peaked in November (spring) and March (autumn), at which times diatoms were the most abundant group in net samples of phytoplankton and in the guts of larvae. During November 1989 and March 1990, larvae were reared in nylon mesh enclosures positioned throughout the water column at three depths: 0 to 3 m, 3 to 6 m and 6 to 9 m. Overall, larval survival and gut fullness were both higher in November than in March. In both months, larval survival was lower at the surface than at other depths. This correlated with lower chlorophyll a concentrations, but lower total cell densities were not detected. During the in situ experiments, diatoms were the most abundant phytoplankton group in the water column and in the guts of larvae and, therefore, appeared to be the principal diet of larvae. Pigment analysis demonstrated that while gut contents generally reflected the composition of the phytoplankton community, the larvae were not feeding exclusively on diatoms. They also ingested green algae and possibly seagrass detritus. The in situ experiments demonstrated that the predominantly diatom flora in Albatross Bay can provide a nutritionally adequate environment for prawn larvae even at seasonally low levels. It is unlikely, therefore, that starvation is a major cause of mortality of P. merguiensis larvae during either of the biannual peaks in their abundance in Albatross Bay, Gulf of Carpentaria.  相似文献   

4.
RNA-DNA ratio: an index of larval fish growth in the sea   总被引:1,自引:0,他引:1  
Data on water temperature, RNA-DNA ratio, and growth of eight species of temperate marine fish larvae reared in the laboratory were fit to the equation: $$G_{pi} = 0.93{\text{ }}\operatorname{T} + 4.75{\text{ RNA - DNA}} - 18.18$$ where Gpi is the protein growth rate in % d-1 and T is the water temperature. Water temperature and larval RNA-DNA ratio explained 92% of the variability in growth rate of laboratory-reared larvae. The model is useful over the entire range of feeding levels (starvation to excess), temperatures (2° to 20°C) and fish species studied. Estimates of recent growth of larval cod, haddock, and sand lance caught at sea based on water temperature and RNA-DNA ratio ranged from negative to 26% d-1. These data demonstrate the importance of food availability in larval fish mortality and suggest that short-term growth under favorable conditions may be considerably higher than expected from long-term indicators. RNA-DNA ratio analysis offers new possibilities for understanding larval growth and mortality, and their relation to environmental variability.  相似文献   

5.
L. V. Basch 《Marine Biology》1996,126(4):693-701
Effects of larval and algal culture density and diet composition on development and survival of temperate asteroid larvae were studied in the laboratory at Santa Cruz, California, USA, during summer and fall of 1990. Larvae of Asterina miniata were reared at two densities, 0.5 or 1.0 ml-1, and fed one or two species of cultured phytoflagellates — Dunaliella tertiolecta alone or mixed with Rhodomonas sp. — at three concentrations of 5x102, 5x103, and 5x104 total cells ml-1. Algal concentration strongly influenced larval development; however, larval density also had a marked effect. Development progressed further with increasing algal concentration. Larval growth and differentiation were sometimes uncoupled; i.e., growth measures were directly related to food level, while differentiation indicators were less so. At the lowest food level, growth was negative and differentiation was arrested at early precompetent stages; these larvae never formed juvenile rudiments or brachiolar attachment structures. Development times of larvae given more food ranged from 26 to 50 d and depended directly on food availability. Development time to metamorphosis at the highest food concentration was similar for siblings fed D. tertiolecta alone or mixed with Rhodomonas sp. In contrast, when food level was an order of magnitude lower, larvae fed the algal mixture metamorphosed significantly earlier than larvae fed the unialgal diet. This suggests interactive effects of food quantity and food quality. Survival was little affected by larval or food density, except at the lowest ration. Feeding experiments in well-controlled laboratory conditions are useful to predict and compare the physiological or developmental scope of response of larvae to defined environmental factors; however, results from such studies should not be extrapolated to predict rates and processes of larval development in nature.  相似文献   

6.
O. Fukuhara 《Marine Biology》1988,99(2):271-281
Morphological and behavioural aspects in larval development need to be studied in detail to understand the early life history better, and to gain a comprehensive knowledge on early life stages for fish species important in aquaculture and fisheries. In the present study, larvae of Limanda yokohamae (Günther) were reared to observe their behavioural development, and to obtain specimens for studying the morphological features and the intestinal development at Ohno, Hiroshima, Japan, in 1987. Swimming activity was monitored at several larval stages, and swimming speed was recorded until settlement and after-feeding behaviour was initiated. A slight increment of swimming speed was observed with larval growth. Larvae changed their swimming behaviour from surface waters to the bottom of the rearing tank when their eyes began to move. Morphological development of pigmentation patterns, fin development, squamation and the development of the digestive tract were described and illustrated in detail to characterize development stages, especially those relating to metamorphosis. During metamorphosis, growth ceased and rapid changes in allometric growth were accompanied by differentiation of the digestive tract. After metamorphosis there was steady growth, allometric growth achieved a constant value, and both the scales and digestive organs were fully formed. Metamorphosis was therefore a crucial developmental milestone, including a critical phase during which survival potential was lowered.  相似文献   

7.
为研究Ni、Zn对三疣梭子蟹幼体的毒性,进行了浓度为1/4至8倍渔业水质标准的Ni、Zn(Ni为0.05~0.4mg·L-1;Zn为0.1~0.8mg·L-1)对蟹幼体生长发育的毒性影响试验.1)Ni对蟹幼体生长发育的毒性影响:Ni浓度为1~8倍渔业水质标准时,蟹幼体混合存活率极显著低于对照组(p<0.01).Ni浓度为4倍渔业水质标准时,蟹幼体发育至Z4就全部死亡,8倍仅发育至Z2就全部死亡;4倍以上时,各期幼体存活率和阶段存活率均显著低于对照组(p<0.05或p<0.01).4倍以上时,蟹幼体发育的最短和最长时间及平均时间均显著高于对照组(p<0.05或p<0.01).这说明,进行三疣梭子蟹幼体培育,4倍以上Ni浓度为不适浓度,1~2倍为可行浓度,1/2倍以下为适宜浓度.2)Zn对蟹幼体生长发育的毒性影响结果发现,Zn浓度为8倍渔业水质标准时,蟹幼体混合存活率显著低于对照组(p<0.01),4倍以下时没有显著差异(p>0.05).4倍时蟹幼体仅发育至C1就全部死亡,8倍仅发育至Z2就全部死亡;4~8倍时各期幼体存活率和阶段存活率均极显著低于对照组(p<0.01).2倍以上时,蟹幼体发育的最短时间显著高于对照组(p<0.05);4倍以上时,蟹幼体发育的平均时间显著高于对照组(p<0.05).这说明,进行三疣梭子蟹幼体培育,4倍以上Zn浓度为不适浓度,2倍Zn浓度为可行浓度,1倍以下为适宜浓度.  相似文献   

8.
The great barracuda (Sphyraena barracuda) is a widespread, ecologically and socioeconomically important coastal fish, yet very little is known about its larvae. We examined spawning and larval ecology of Western Atlantic sphyraenids using monthly ichthyoplankton samples collected over 2 years along a transect spanning the east–west axis of the Straits of Florida (SOF). Samples were dominated by the great barracuda (92.8%) and sennets (Sphyraena borealis and Sphyraena picudilla; 6.6%). While larval sennets and S. barracuda displayed similar vertical distributions (majority in upper 25 m), horizontal and temporal patterns of abundance suggested a spatial and temporal species replacement between larval S. barracuda and sennets that tracks adult ecology. The diet of both taxa consisted largely of copepods, with inclusion of fish larvae at 8 mm SL, and in S. barracuda alone, a switch in the wet season to exclusive piscivory by 12 mm SL (18 days post-hatch). A lack of piscivory in S. barracuda larvae captured in the dry season corresponded to slower larval growth than in the wet season. Larval growth was also related to size-at-hatch and larval age such that larvae that were larger at hatch or larger (older) at capture grew faster at earlier ages, suggesting faster larval growth, and indirectly larger hatch size, conveys a survival advantage. Unlike larval growth, instantaneous mortality rate did not differ with season, and no lunar cyclic patterns in spawning output were identified. Our results provide insight into the pelagic phase of sphyraenids and highlight the importance of both diet and hatch size to the growth and survival of fish larvae in low latitude oceanic environments.  相似文献   

9.
Transgenerational isotope labelling (TRAIL) using enriched stable isotopes provides a novel means of mass-marking marine fish larvae and estimating larval dispersal. The technique, therefore, provides a new way of addressing questions about demographic population connectivity and larval export from no-take marine protected areas. However, successful field applications must be preceded by larval rearing studies that validate the geochemical marking technique, determine appropriate concentrations and demonstrate that larvae are not adversely affected. Here, we test whether injection of enriched stable barium isotopes (135Ba and 137Ba) at two dose rates produces unequivocal marks on the otoliths of the coral reef grouper Epinephelus fuscoguttatus. We also assess potential negative effects on reproductive performance, egg size, condition and larval growth due to injection of adult female fish. The injection of barium isotopes at both 0.5 and 2.0 mg Ba/kg body weight into the body cavities of gravid female fish was 100% successful in the geochemical tagging of the otoliths of larvae from the first spawning after injection. The low-dose rate produced no negative effects on eggs or larvae. However, the higher dose rate of 2 mg Ba/kg produced small reductions in yolk sac area, oil globule area, standard length and head depth of pre-feeding larvae. Given the success of the 0.5 mg Ba/kg dose rate, it is clearly possible to produce a reliable mark and keep the concentration below any level that could affect larval growth or survival. Hence, enriched Ba isotope injections will provide an effective means of mass-marking grouper larvae.  相似文献   

10.
Larvae of Meganyctiphanes norvegica (M. Sars), caught with a plankton net, were reared in the laboratory from the calyptopis phase onwards, under different temperature and trophic conditions. Eyestalk ablation was performed on the first furciliae. Data are presented on growth, moulting rate and ontogenesis of the larvae as a function of the varying experimental conditions, and on larval morphology, pigmentation and diet. Recent modifications of larval nomenclature in euphausiids are discussed.
Observations sur le développement larvaire de Meganyctiphanes norvegica (Crustacea: Euphausiacea) au laboratoire
  相似文献   

11.
Ecology of kin and nonkin larval interactions in Tribolium beetles   总被引:1,自引:0,他引:1  
Summary The larvae of flour beetles Tribolium castaneum and T. confusum were reared in two kinds of groups: full siblings and unrelated individuats. These kin and nonkin groups were reared in open cultures, in which emigration was permitted (both species) and in closed cultures, in which emigration was prohibited (only T. confusum). We measured larval development time and survivorship, weight of pupae, and time of larval emigration from open cultures. The effects of age structure were investigated by establishing open cultures of larvae of uniform age (larvae hatched from eggs laid within 72 h) and cultures of larvae of variable age (eggs laid within 240 h). In closed cultures of siblings, T. confusum larvae pupated on an average 2.2 days earlier than larvae reared in nonsibling groups. In T. castaneum, more small and medium size and fewer large size larvae emigrated from groups of siblings compared to groups of nonsiblings. Males that emigrated and pupated remained with their sibs for a shorter time than did similar males raised with unrelated larvae. In T. castaneum, age structure variation reduced the sibs tendency to migrate, but did not influence interactions among unrelated larvae. The genetical effects of kinship and the ecological effects of age structure were shown to affect the interactions of Tribolium larvae reared in groups. Reducing the similarity between individuals, either genetically or demographically (using mixed broods or mixed age cohorts), changed the pattern of larval interactions. Upon occasion, the effects of kin interactions may well be the mechanical consequences of the coexistence of similar individuals rather than the effects of altruistic behavior.  相似文献   

12.
The effects of food limitation on growth rates and survival of marine invertebrate larvae have been studied for many years. Far less is known about how food limitation during the larval stage influences length of larval life or postmetamorphic performance. This paper documents the effects of food limitation during larval development (1) on how long the larvae ofCrepidula fornicata (L.) can delay metamorphosis in the laboratory after they have become competent to metamorphose and (2) on postmetamorphic growth rate. To assess the magnitude of nutritional stress imposed by different food concentrations, we measured growth rates (as changes in shell length and ash-free dry weight) for larvae reared in either 0.45-m filtered seawater or at phytoplankton concentrations (Isoehrysis galbana, clone T-ISO) of 1 × l03, 1 × 104, or 1.8 × 105 cells ml–1. Larvae increased both shell length and biomass at 1 × 104 cells ml–1, although significantly more slowly than at the highest food concentration. Larvae did not significantly increase (p > 0.10) mean shell length in filtered seawater or at a phytoplankton concentration of only 1 × 103 cells ml–1, and in fact lost weight under these conditions. To assess the influence of food limitation on the ability of competent individuals to postpone metamorphosis, larvae were first reared to metamorphic competence on a high food concentration ofI. galbana (1.8 × 105 cells ml–1). When at least 80% of subsampled larvae were competent to metamorphose, as assessed by the numbers of indlviduals metamorphosing in response to elevated K+ concentration in seawater, remaining larvae were transferred either to 0.45-m filtered seawater or to suspensions of reduced phytoplankton concentration (1 × 103, 1 × 104, or 5 × 104 cells ml–1), or were maintained at 1.8 × 105 cells ml–1. All larvae were monitored daily for metamorphosis. Individuals that metamorphosed in each food treatment were transferred to high ration conditions (1.8 × 105 tells ml–1) for four additional days to monitor postmetamorphic growth. Competent larvae responded to all food-limiting conditions by metamorphosing precociously, typically 1 wk or more before larvae metamorphosed when maintained at the highest food ration. Surprisingly, juveniles reared at full ration grew more slowly if they had spent 2 or 3 d under food-limiting conditions as competent larvae. The data show that a rapid decline in phytoplankton concentration during the larval development ofC. fornicata stimulates metamorphosis, foreshortening the larval dispersal period, and may also reduce the ability of postmetamorphic individuals to grow rapidly even when food concentrations increase.  相似文献   

13.
Following yolk resorption, laboratory-reared larval Baltic herring (Clupea harengus L.) were exposed to two sequences of food restriction for 5 d and re-alimentation for 10 d. Comparisons regarding larval growth (standard length and content of water-soluble protein), mortality and content of the sum of trypsin and trypsinogen were made with larvae at a continuous high ration. Larvae exposed to varying prey abundance grew less in length than the control, and during the second high-ration period (Day 22 to 32) growth in length ceased. From the first low-ration period onwards, the content of water-soluble protein in these larvae was lower than that of the control larvae, and the survival rate of the low-high ration group was 59% compared to 77% in the larvae at a continuous high ration. In contrast, the effects of varying food availability were minor on larval content of trypsin and trypsinogen. Results are compared with previous findings in larval Clyde herring, and the effects of larval stock and timing and duration of food restriction on larval growth performance are discussed.  相似文献   

14.
Cancer irroratus Say larvae (Zoeal Stages I–V and megalopae) were cultured and studied in 0.0, 0.1, and 1.0 ppm concentrations of water-accommodated fractions of No. 2 fuel oil under static conditions. Behavioral changes were monitored in terms of water column responses to various conditions of light, pressure and gravity. Results showed significant (F=206.12, P<0.01) effects of this oil fraction on larval behavior, with the specific response to oil depending upon the concentration, larval stage and the combination of light, pressure and gravity tested. Responses at 0.1 ppm differed from those at 1.0 ppm (F=5.01, P<0.05). Geonegative upward movements in the water column were typically depressed in early-stage larvae and enhanced in late-stage larvae after subjection to oils, showing gravity responses to be greatly affected. Phototactic behaviors were significantly changed by the oil and pressure responses were slightly affected.  相似文献   

15.
M. Omori 《Marine Biology》1971,9(3):228-234
Sergestes lucens Hansen, a mesopelagic shrimp fished commercially in Suruga Bay, Japan, was successfully reared from egg to post-larval stage V under laboratory conditions. Chaetoceros ceratosporum and Artemia nauplii were found to be satisfactory food in the laboratory during rearing. Growth, mortality, food preference, and feeding and swimming activities during the various developmental stages were investigated. Temperature changes greatly affected the speed of development and the mortality of the larvae. The optimum temperature range for larval development was 18° to 25°C. The growth rate (length) of larval stages was as rapid as 0.16mm/ day at 20 °C and 0.21 mm/day at 23 °C. The larvae first started feeding on phytoplankton at elaphocaris stage I, and then gradually became predators in the post-larval stages. It is suggested that the critical period for the species occurs in the elaphocaris stages. Environmental data, vertical distribution of the species, and data obtained from laboratory experiments suggest that the fluctuation in the abundance of S. lucens is greatly influenced by the water temperature at around 50 m from June to August. Feeding mechanisms observed in the post-larval stages are described.  相似文献   

16.
The performance of an artificial practical diet, kappacarrageenan microbound diet (C-MBD) was assessed on Penaeus monodon larvae at the SEAFDEC Broodstock and Maturation Experimental Laboratory in March 1986. Shrimps were reared from zoea1 to post-larvae1 using five dietary treatments: (a) natural food — Chaetoceros calicitrans and Artemia salina (b) C-MBD; (c) combination of natural food and C-MBD; (d) commercial diet (microencapsulated, MED); (e) combination of natural food and commercial diet. Results showed slow development with larvae fed the commercial diet. Feeding with C-MBD in combination with natural food resulted in the highest % survival among treatments (69.6), but this was not significantly different (P>0.05) from those obtained with larvae fed natural food alone, C-MBD alone or their combination. While mean values for survival of larvae fed the commercial diet, either alone or in combination, was significantly lower (p<0.05) than all other treatments, their mean growth indices were comparable with larvae fed C-MBD alone or in combination. The low levels of protein, lipid and essentially fatty acids (which are considered important nutrients during larval development) contained in the commercial diet may well justify the results on metamorphosis, survival and growth of the larvae fed this diet. The good performance of C-MBD in this experiment suggests that this kind of diet can be used as partial or total replacement to the traditional algal food.  相似文献   

17.
We examined larval response to a range of sharp haloclines and determined the effect of dietary conditioning on that response in the sea urchins Echinometra lucunter and Arbacia punctulata. We reared larvae in the laboratory under a high or low concentration of either single (Isochrysis galbana) or mixed (Isochrysis galbana, Dunaliella tertiolecta, Thalassiosira weissflogii) microalgal species. For both species of sea urchins, rate of larval development was faster and age-specific larval length and width were greater in high-ration than low-ration diets. We examined the distribution of two- and four-arm larvae of E. lucunter from each diet treatment and of four-arm larvae of A. punctulata from the high-ration diets in cylinders with experimentally constructed haloclines. In three of the halocline treatments, the salinity of the bottom layer was 33‰ and that of the top layer was 21, 24 or 27‰ (21/33, 24/33 and 27/33) and in a fourth one, the salinities of the bottom and top layer were 30 and 21‰, respectively (21/30). The position of larvae in the cylinders varied with the steepness of the halocline and with dietary conditioning for both sea urchin species and all developmental stages tested. Significantly more larvae crossed the haloclines into water of 24 and 27‰ salinity than into water of 21‰ salinity. We observed an effect of diet on the position of larvae in the cylinders, and that effect varied among halocline treatments for both species. The proportion of larvae of E.lucunter that crossed the halocline was greater in low- than high-ration diets in the 24/33 and 27/33 treatments. Position of four-arm larvae in the cylinders also varied with food quality in high-ration diets: for E.lucunter in the 24/33 treatments, and for A. punctulata in the 21/30 treatments, more larvae from the single- than from the mixed-species diets were present above the halocline. Salinity in the adult habitat during most of the active reproductive period ranged from 15 to 40‰. We showed that larvae can respond to gradients in salinity, and therefore can remain within a water mass of higher salinity overlying the adult habitat. However, survival of poorly fed larvae may be increased if they are introduced into a new water mass and carried away from a nutritionally poor environment. Received: 9 July 1997 / Accepted: 12 January 1998  相似文献   

18.
Larvae of the mud crab Eurypanopeus depressus (Smith) were reared in various concentrations of the water-soluble fraction of Kuwait crude oil. The 48-h TLm (median tolerance limit) for Zoea Stage I was approximately 10 ppm total dissolved hydrocarbons and that for Zoea Stage II approximately 17 ppm. Chronic toxicity of more dilute solutions (4.3 and 8.7 ppm) was assessed independently for each larval stage and for subsequent developmental stages through Crab Stage 5. In the group continuously exposed to oil from hatching, there was differential mortality relative to controls in every larval stage and increased duration of intermolt periods was observed at every stage through Crab Stage 5. Mortality in groups not exposed until larvae had reached Zoea Stages III or IV was not greater than controls, suggesting that toxicity to advanced larval stages may be related to accumulation of toxic compounds by the larvae. Neither concentration (4.3 or 8.7 ppm) of crude oil caused increased mortality among juvenile crab stages regardless of the time of initial exposure. Increased occurrence of an extra and morphologically abnormal megalopa stage was associated with exposure to the crude oil. This has not been reported before.Communicated by I. Morris, West Boothbay Harbor  相似文献   

19.
Northern shrimp Pandalus borealis (Krøyer) larvae hatch in the northern Gulf of St. Lawrence from early May to the end of June, and larval development occurs over a range of relatively cold water temperatures. Because of the long duration of the pelagic phase and the difficulty of sampling all successive larval stages at sea, we used laboratory experiments to assess the effects of water temperature on larval development and growth. In spring 2000, P. borealis larvae were reared from hatching to the first juvenile stages (i.e., stage VI and VII) at three temperatures (3, 5, and 8°C) representing conditions similar to those in spring in the northern Gulf of St. Lawrence. Larval development and growth were dependent on temperature, with longer duration and smaller size (cephalothorax length, CL, and dry mass, DM) at 3°C relative to the 5 and 8°C treatments. There were no significant differences in the morphological characters of the different stages among treatments, indicating that regular moults occurred at each temperature. The results suggest a negative impact of cold temperatures (lower intra-moult growth rates and smaller size) and, possibly, higher cumulative mortality due to longer development time that could affect the success of cohorts at sea. However, CL and DM for stage III and later larvae were smaller than those of larvae identified at the same developmental stage in field locations. It is possible that the diet offered to larvae in this experiment (Artemia nauplii, either newly hatched nauplii or live adults, depending on the developmental stage) was not optimal for growth, even though it is known to support successful P. borealis larval development. In the field, there is the possibility that phytoplankton contributes to the larval diet during the first stages and stimulates development of the digestive glands. Furthermore, the nutritional quality of the natural plankton diet (e.g., high protein content, fatty acid composition) might be superior and favourable to higher growth rates even at lower temperatures.Communicated by R.J. Thompson, St. Johns  相似文献   

20.
Most animals will reduce foraging activity in the presence of a predatory threat. However, little is known about the onset of this decision-making ability during the early life stages of fishes, and how the trade-off between foraging and predator-avoidance may be affected by changes in metabolic demand during ontogeny. To examine these issues, the foraging behaviour of larval shorthorn sculpin Myoxocephalus scorpius was monitored during visual exposure to a predatory threat (juvenile Atlantic cod, Gadus morhua) throughout development at 3°C (March–April, 2004). Larvae did not respond to predatory exposure during the first week post-hatch, but thereafter showed drastic reductions in foraging activity when exposed to predators. During early development, the mass-specific routine metabolism of shorthorn sculpin larvae displayed a triphasic ontogeny and peaked during metamorphosis. This high mass-specific metabolic demand could make reduced foraging under predation threat very costly during this stage of development. To further investigate this possibility, additional experiments were performed (March–April, 2005) where larvae were reared with visual exposure to predators for 6 h day−1 during the feeding period. At 7-week post-hatch, larvae exposed to predators were smaller (wet mass and SL), showed decreased levels of whole-body lipids and certain fatty acids, and experienced higher rates of mortality as compared to control larvae. In environments where abundant predators cause larval fish to reduce their foraging rate, growth and survival of larvae may be negatively affected. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号