首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

During the spring and summer of 2000, 2001, and 2002, gaseous and particulate matter (PM) fuel-based emission factors for ~150,000 low-tailpipe, individual vehicles in the Las Vegas, NV, area were measured via on-road remote sensing. For the gaseous pollutants (carbon monoxide, hydrocarbons, and nitrogen oxide), a commercial vehicle emissions remote sensing system (VERSS) was used. The PM emissions were determined using a Lidar-based VERSS. Emission distributions and their shapes were analyzed and compared with previous studies. The large skewness of the distributions is evident for both gaseous pollutants and PM and has important implications for emission reduction policies, because the majority of emissions are attributed to a small fraction of vehicles. Results of this Las Vegas study and studies at other geographical locations were compared. The gaseous pollutants were found to be close to those measured by VERSS in other U.S. cities. The PM emission factors for spark ignition and diesel vehicles are in the range of previous tunnel and dynamometer studies.  相似文献   

2.
ABSTRACT

Linhong Jing completed a master's degree in chemistry at UNLV and is currently enrolled in the Ph.D. program at Purdue University. Her address is Department of Chemistry, Purdue University, West Lafayette, IN 47907. Dr. Spencer Steinberg is an associate professor of chemistry at UNLV. His address is UNLV Department of Chemistry, P.O. Box 454003, Las Vegas, NV 89154-4003. Dr. Brian Johnson is an associate professor of chemistry at UNLV. His address is UNLV Department of Chemistry, P.O. Box 454003, Las Vegas, NV 89154-4003.

Oxidation of benzene, toluene, ethylbenzene, and xylenes (BTEX) in air, of significance due to, for example, the potential for O3 formation, is believed to be initiated by OH attack on the ring (addition) or on the alkyl side chain (H abstraction). A series of ring-breaking reactions follows, with major products predicted to be a-dicarbonyls, simple aldehydes, and organic acids. To test this prediction, ambient air mixing ratios of aldehydes (formaldehyde, ac-etaldehyde, benzaldehyde, glyoxal, and pyruvaldehyde), along with some supporting BTEX data, were measured at an urban site in Las Vegas, NV. Samples were collected on sorbents and determined by chromatographic methods; mixing ratios were compared to ambient levels of CO, O3, and NOx. A meteorological analysis (temperature, wind speed, and wind direction) was also included. Statistically significant relationships were noted among the BTEX hydrocarbons (HCs) and among the photochemi-cally derived species (e.g., O3, NO2, and some of the aldehydes), although there was seasonal variation. The observations are consistent with a common primary source (i.e., vehicular exhaust or fuel evaporation) for the BTEX compounds and a common secondary source (e.g., OH attack) for glyoxal and pyruvaldehyde.  相似文献   

3.
Oxidation of benzene, toluene, ethylbenzene, and xylenes (BTEX) in air, of significance due to, for example, the potential for O3 formation, is believed to be initiated by OH attack on the ring (addition) or on the alkyl side chain (H abstraction). A series of ring-breaking reactions follows, with major products predicted to be alpha-dicarbonyls, simple aldehydes, and organic acids. To test this prediction, ambient air mixing ratios of aldehydes (formaldehyde, acetaldehyde, benzaldehyde, glyoxal, and pyruvaldehyde), along with some supporting BTEX data, were measured at an urban site in Las Vegas, NV. Samples were collected on sorbents and determined by chromatographic methods; mixing ratios were compared to ambient levels of CO, O3, and NOx. A meteorological analysis (temperature, wind speed, and wind direction) was also included. Statistically significant relationships were noted among the BTEX hydrocarbons (HCs) and among the photochemically derived species (e.g., O3, NO2, and some of the aldehydes), although there was seasonal variation. The observations are consistent with a common primary source (i.e., vehicular exhaust or fuel evaporation) for the BTEX compounds and a common secondary source (e.g., OH attack) for glyoxal and pyruvaldehyde.  相似文献   

4.
5.
6.
利用隧道实验法对澳洲Vulturestreet公交专用隧道的细微颗粒物和气体污染物进行连续4d实测,分析了自然通风和纵向通风下隧道内NOX、细微颗粒物数目浓度以及细微颗粒物粒度分布特征。结果表明,隧道内细微颗粒物粒径谱呈双峰分布,峰值区段细微颗粒物粒径分别在19~25、70~105nm,判定为低硫柴油公交车和CNG公交车共同作用结果。隧道内NO2/NOX比值与NOX具有很强的相关性(R2=0.8320),当NOX大于1.000×10-6时,NO2/NOX渐进于(0.088±0.001),同时,NOX与细微颗粒物数目浓度、细微颗粒物总体积(VFP)呈明显的线性相关关系。柴油公交车和CNG公交车的混合条件下,细微颗粒物数目浓度、NOX平均排放因子分别为(2.48±1.53)×1014个/km、(12.8±5.1)g/km,柴油车和CNG公交车细微颗粒物数目浓度排放因子和NO排放因子没有明显差异。  相似文献   

7.
A three-part study was conducted to quantify the impact of landscaped vegetation on air quality in a rapidly expanding urban area in the arid southeastern United States. The study combines in situ, plant-level measurements, a spatial emissions inventory, and a photochemical box model. Maximum plant-level basal emission rates were moderate: 18.1 μgC gdw?1 h?1 (Washingtonia spp., palms) for isoprene and 9.56 μgC gdw?1 h?1 (Fraxinus velutina, Arizona ash) for monoterpenes. Sesquiterpene emission rates were low for plant species selected in this study, with no measurement exceeding 0.1 μgC gdw?1 h?1. The high ambient temperatures combined with moderate plant-level emission factors resulted in landscape emission factors that were low (250–640 μgC m?2 h?1) compared to more mesic environments (e.g., the southeastern United States). The Regional Atmospheric Chemistry Mechanism (RACM) was modified to include a new reaction pathway for ocimene. Using measured concentrations of anthropogenic hydrocarbons and other reactive air pollutants (NOx, ozone), the box model employing the RACM mechanism revealed that these modest emissions could have a significant impact on air quality. For a suburban location that was downwind of the urban core (high NOx; low anthropogenic hydrocarbons), biogenic terpenes increased time-dependent ozone production rates by a factor of 50. Our study demonstrates that low-biomass density landscapes emit sufficient biogenic terpenes to have a significant impact on regional air quality.  相似文献   

8.
Water, soil, vegetation, and rodents were collected from three areas along the Las Vegas Wash, a watershed heavily contaminated with perchlorate. Perchlorate was detected at elevated concentrations in water, soil, and vegetation, but was not frequently detected in rodent liver or kidney tissues. Broadleaf weeds contained the highest concentrations of perchlorate among all plant types examined. Perchlorate in rodent tissues and vegetation was correlated with perchlorate concentrations in soil as expected, however rodent residues were not highly correlated with plant perchlorate concentrations. This indicates that soil may be a greater source, or a more constant source of perchlorate exposure in rodents than vegetation.  相似文献   

9.
Near-roadway ambient black carbon (BC) and carbon monoxide (CO) concentrations were measured at two schools adjacent to a freeway and at an urban background school 2 km from the freeway to determine the change in concentrations attributable to vehicle emissions after the three-lane expansion of U.S. Highway 95 (US 95) in Las Vegas, Nevada. Between summer 2007 and summer 2008, average weekday small-vehicle volume increased by 40% ± 2% (standard error). Average weekday large-vehicle volume decreased by 17% ± 5%, due to a downturn in the economy and an associated decline in goods movement. Average vehicle speed increased from 58 to 69 mph, a 16% ± 1% increase. The authors compared BC and CO concentrations in summer 2007 with those in summer 2008 to understand what effect the expansion of the freeway may have had on ambient concentrations: BC and CO were measured 17 m north of the freeway sound wall, CO was measured 20 m south of the sound wall, and BC was measured at an urban background site 2 km south of the freeway. Between summer 2007 and summer 2008, median BC decreased at the near-road site by 40% ± 2% and also decreased at the urban background site by 24% ± 4%, suggesting that much of the change was due to decreases in emissions throughout Las Vegas, rather than only on US 95. CO concentrations decreased by 14% ± 2% and 10% ± 3% at the two near-road sites. The decrease in BC concentrations after the expansion is likely due to the decrease in medium- and heavy-duty-vehicle traffic resulting from the economic recession. The decrease in CO concentrations may be a result of improved traffic flow, despite the increase in light-duty-vehicle traffic.
ImplicationsMonitoring of BC and CO at near-road locations in Las Vegas demonstrated the impacts of changes in traffic volume and vehicle speed on near-road concentrations. However, urban-scale declines in concentrations were larger than near-road changes due to the impacts of the economic recession that occurred contemporaneously with the freeway expansion.  相似文献   

10.
Motor vehicles are one of the largest sources of air pollutants worldwide. Despite their importance, motor vehicle emissions are inadequately understood and quantified, esp. in developing countries. In this study, the real-world emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) were measured using an on-road remote sensing system at five sites in Hangzhou, China in 2004 and 2005. Average emission factors of CO, HC and NOx for petrol vehicles of different model year, technology class and vehicle type were calculated in grams of pollutant per unit of fuel use (g l−1) from approximately 32,260 petrol vehicles. Because the availability of data used in traditional on-road mobile source estimation methodologies is limited in China, fuel-based approach was implemented to estimate motor vehicle emissions using fuel sales as a measure of vehicle activity, and exhaust emissions factors from remote sensing measurements. The fuel-based exhaust emission inventories were also compared with the results from the recent international vehicle emission (IVE) model. Results show that petrol vehicle fleet in Hangzhou has significantly high CO emissions, relatively high HC and low NOx, with the average emission factors of 193.07±15.63, 9.51±2.40 and 5.53±0.48 g l−1, respectively. For year 2005 petrol vehicles exhaust emissions contributed with 182,013±16,936, 9107±2255 and 5050±480 metric ton yr−1 of CO, HC and NOx, respectively. The inventories are 45.5% higher, 6.6% higher and 53.7% lower for CO, HC and NOx, respectively, than the estimates using IVE travel-based model. In addition, a number of insights about the emission distributions and formation mechanisms have been obtained from an in-depth analysis of these results.  相似文献   

11.
Emission rates of ammonia, acid gases, inorganic aerosols, methane, and size fractionated particulate matter were measured from a commercial broiler facility. This paper discusses the statistically influential parameters on numerous pollutants’ emission from a broiler chicken facility and generates emission correlations to fill data gaps and develop averaged emission factors.Live mass of the birds was commonly a significant variable to each pollutant’s emission. Some variables significantly impacted the pollutants’ emissions, such as litter moisture content, but were measured discretely and cannot be used for filling in data gaps.House parameter correlations were, therefore, developed using parameters measured at the facility, such as indoor temperature, relative humidity, and the live mass of the birds, and relied on the mutual behaviour of discretely measured explanatory parameters and continuously monitored confounding variables. The live mass and the difference in the indoor temperature and the house set-point temperature were the most significant variables in each pollutant’s correlation.The correlations predicted each pollutants emission to within 20% (total mass basis) over most broiler production cycles. Their validation on independent datasets also successfully estimated the flocks’ emissions to within 3%.Emission factors (EFs) were developed for methane, ammonia, and size fractionated particulate matter using measured data and correlated emissions to fill in data gaps. PM10 (particulate matter ≤10 microns) EFs were estimated to be 4.6 and 5.9 g d?1 [Animal Unit, AU]?1 for five and six week production cycles, respectively. PM2.5 (PM ≤ 2.5 microns) EFs were 0.8 and 1.4 g d?1 AU?1 for five and six week cycles, respectively. Ammonia and methane emission factors were estimated at 120.8 and 197.0 g d?1 AU?1, respectively for a five week production cycle.  相似文献   

12.
Concentrations and distributions of three major water-soluble ion species (sulfate, nitrate, and ammonium) contained in ambient particles were measured at three sampling sites in the Kao-ping ambient air quality basin, Taiwan. Ambient particulate matter (PM) samples were collected in a Micro-orifice Uniform Deposit Impactor from February to July 2003 and were analyzed for water-soluble ion species with an ion chromatograph. The PM1/ PM2.5 and PM1/PM10 concentration ratios at the emission source site were 0.73 and 0.53 and were higher than those (0.68 and 0.48) at the background site because there are more combustion sources (i.e., industrial boilers and traffic) around the emission source site. Mass-size distributions of PM NO3- were found in both the fine and coarse modes. SO4(2-)and NH4+ were found in the fine particle mode (PM2.5), with significant fractions of submicron particles (PM1). The source site had higher PM1/PM10(79, 42, and 90%) and PM1/PM2.5 concentration ratios (90, 58, and 93%) for the three major inorganic secondary aerosol components (SO4(2-), NO3-, and NH4+) than the receptor site (65, 27, and 65% for PM1/PM10, 69, 51, and 70% for PM1/PM2.5. Results obtained in this study indicate that the PM1 (submicron aerosol particles) fraction plays an important role in the ambient atmosphere at both emission source and receptor sites. Further studies regarding the origin and formation of ambient secondary aerosols are planned.  相似文献   

13.
The distribution of particulate matter (PM) concentrations has an impact on human health effects and the setting of PM regulations. Since PM is commonly sampled on less than daily schedules, the magnitude of sampling errors needs to be determined. Daily PM data from Spokane, Washington were resampled to simulate common sampling schedules and the sampling error was computed for regulatory and distribution statistics. Probability density functions (pdf's) were fit to the annual daily data to determine the shape of the PM2.5 and PM8 concentration distributions and they were also fit to the less than daily sampling to determine if pdf's could be used to predict the daily high-concentration percentiles. There is an error when using a less than daily sampling schedule for all statistics. The error expressed as a percentage difference from the everyday sampling for the PM2.5 mean was as large as 1.7, 3.4 and 7.7% and the 98th percentile error was as great as 8.8, 18 and 67% for 1-in-2 day, 1-in-3 day and 1-in-6 day sampling, respectively. For PM8 the error in the mean was 2.5, 4.7 and 8.6% for and the error in the 99th percentile was 27, 18 and 46% for 1-in-2 day, 1-in-3 day, and 1-in-6 day sampling, respectively. The PM2.5 and PM8 concentration data were best fit by a three-parameter lognormal distribution and a generalized extreme value distribution, respectively. For PM2.5 and PM8, as the annual mean increased the mode concentration increased, but for PM8 the shape of the distribution also flattened. Predicting the daily high percentiles from pdf's that were fit to the less than daily sampled data produced mixed results. For PM8, the pdf's predicted high concentrations were closer to the daily percentiles than the actual less-than-daily sampling percentile while for PM2.5 they were not.  相似文献   

14.
利用本地化修正的MOVES模型模拟确定了关中地区不同类型车辆的颗粒物排放因子,结合实地调研的保有量和行驶里程数据测算了该地区的机动车颗粒物年排放总量,并从季节、城市、车型和燃油等多个角度详细分析了颗粒物的排放分担率。结果表明:关中地区2012年的机动车颗粒物排放总量分别为PM2.5 4.06×103 t,PM10 5.52×103 t;关中五市一区中西安市的颗粒物排放量最高,PM2.5和PM10排放分别占到该地区的46.53%和48.39%;不同类型车辆中,重型货车的排放分担率最高,其次为中型货车,二者之和占到颗粒物总排放的50%以上;不同燃油车辆中,柴油车的排放分担率远远高于汽油车,是颗粒物的主要贡献者;因此中型和重型柴油货车是关中地区控制颗粒物排放污染的重点车型。  相似文献   

15.
This paper characterizes the emission rates of size fractionated particulate matter, inorganic aerosols, acid gases, ammonia and methane measured over four flocks at a commercial broiler chicken facility. Mean emission rates of each pollutant, along with sampling notes, were reported in this paper, the first in a series of two. Sampling notes were needed because inherent gaps in data may bias the mean emission rates.The mean emission rates of PM10 and PM2.5 were 5.0 and 0.78 g day?1 [Animal Unit, AU]?1, respectively, while inorganic aerosols mean emission rates ranged from 0.15 to 0.46 g day?1 AU?1 depending on the season. The average total acid gas emission rate was 0.43 g day?1 AU?1 with the greatest contribution from nitrous and nitric acids and little contribution from sulfuric acid (as SO2).Ammonia emissions were seasonally dependent, with a mean emission rate of 66.0 g day?1 AU?1 in the cooler seasons and 94.5 g day?1 AU?1 during the warmer seasons. Methane emissions were relatively consistent with a mean emission rate of 208 g day?1 AU?1.The diurnal pattern in each pollutant’s emission rate was relatively consistent after normalizing the hourly emissions according to each daily mean emission rate. Over the duration of a production cycle, all the measured pollutants’ emissions increased proportionally to the total live mass of birds in the house, with the exception of ammonia.Interrelationships between pollutants provide evidence of mutually dependent release mechanisms, which suggests that it may be possible to fill data gaps with minimal data requirements. In the second paper (Roumeliotis, T.S., Dixon, B.J., Van Heyst, B.J. Characterization of gaseous pollutants and particulate matter emission rates from a commercial broiler operation part II: correlated emission rates. Atmospheric Environment, 2010.), regression correlations are developed to estimate daily mean emission rates for data gaps and, using the normalized hourly diurnal patterns from this paper, emission factors were generated for each pollutant.  相似文献   

16.
A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper titled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Real-Time Motor Vehicle Emissions". The emission rates discussed are in mass per unit distance with the model providing estimates of fine particulate matter (PM2.5) and coarse particulate matter. This paper complements the companion paper by presenting a sensitivity analysis of the model to input variables and evaluation model outputs using data from limited field studies. The sensitivity analysis has shown that MicroFacPM emission estimates are very sensitive to vehicle fleet composition, speed, and the percentage of high-emitting vehicles. The vehicle fleet composition can affect fleet emission rates from 8 mg/mi to 1215 mg/mi; an increase of 5% in the smoking (high-emitting) current average U.S. light-duty vehicle fleet (compared with 0%) increased PM2.5 emission rates by -272% for 2000; and for the current U.S. fleet, PM2.5 emission rates are reduced by a factor of -0.64 for speeds >50 miles per hour (mph) relative to a speed of 10 mph. MicroFacPM can also be applied to examine the contribution of emission rates per vehicle class, model year, and sources of PM. The model evaluation is presented for the Tuscarora Mountain Tunnel, Pennsylvania Turnpike, PA, and some limited evaluations at two locations: Sepulveda Tunnel, Los Angeles, CA, and Van Nuys Tunnel, Van Nuys, CA. In general, the performance of MicroFacPM has shown very encouraging results.  相似文献   

17.
Environmental Science and Pollution Research - Phthalate esters (PAEs) are endocrine disrupters and can disrupt the functioning of different hormones, causing adverse effects on human health. Due...  相似文献   

18.
Hourly concentrations of benzene, toluene, ethylbenzene, m,p-xylenes, and o-xylene (BTEX) plus CO, NOx, SO2 were monitored at roadsides simultaneously with the traffic volume during the dry season of 2004, in Hanoi, Vietnam. The selected three streets included Truong Chinh (TC) with high traffic volume, Dien Bien Phu (DBP) with low traffic volume, and Nguyen Trai (NT) with high traffic volume running through an industrial estate. BTEX were sampled by SKC charcoal tubes and analyzed by GC–FID. Geometric means of hourly benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene are, respectively, 65, 62, 15, 43, and 22 μg m−3 in TC street; 30, 38, 9, 26, and 13 μg m−3 in DBP street; and 123, 87, 24, 56, and 30 μg m−3 in NT street. Levels of other gaseous pollutants including CO, NOx, and SO2, measured by automatic instruments, were low and not exceeding the Vietnam national ambient air quality standards. BTEX levels were comparatively analyzed for different downwind distances (3–50 m) from the street, between peak hours and off-peak hours, as well as between weekdays and weekend. Results of principal component analysis suggest that the gaseous pollutants are associated with different vehicle types.  相似文献   

19.
Three 2-wk seasonal field campaigns were performed in 2003 and 2004 at a sampling site on the southern Tyrrhenian coast of Italy with the aim to investigate the dynamics and characteristics of particle-bound pollutants in the Mediterranean area. Fine (PM(2.5)) and coarse particulate matter (PM(10-2.5)) size fractions were collected by a manual dichotomous sampler on 37-mm Teflon filters over a 24-hr sampling period. On average, 70% of the total PM(10) (PM(2.5) + PM(10-2.5)) mass was associated with the coarse fraction and 30% with the fine fraction during the three campaigns. The ambient concentrations of Pb, Ni, Cr, Zn, Mn, V, Cd, Fe, Cu, Ca, and Mg associated with both size fractions were determined by atomic absorption spectrometry. Ambient concentrations showed differences in their absolute value, ranging from few ng x m(-3) to microg x m(-3), as well as in their variability within the PM(2.5) and PM(10-2.5) size fractions. PM(10) levels were well below the European Union (EU) limit value during the study period with the exception of three events during the first campaign (fall) and five events during the third campaign (spring). Two main sources were identified as the major contributors including mineral dust, transported from North Africa, and sea spray from the Tyrrhenian Sea. Comparing the results with backward trajectories, calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) and Total Ozone Mapping Spectrometer-National Aeronautics and Space Administration (TOMS-NASA) maps, it was observed that in central and eastern Europe, the Tyrrhenian Sea and North Africa were the major emission source regions that affected the temporal variations and daily averages of PM(2.5) and PM(10-2.5) concentrations.  相似文献   

20.
Methylcyclopentadienyl manganese tricarbonyl (MMT), a manganese-based gasoline additive, has been used in Canadian gasoline for about 20 yr. Because MMT potentially increases manganese levels in particulate matter resulting from automotive exhausts, a population-based study conducted in Toronto, Canada assessed the levels of personal manganese exposures. Integrated 3-day particulate matter (PM2.5) exposure measurements, obtained for 922 participant periods over the course of a year (September 1995–August 1996), were analyzed for several constituent elements, including Mn. The 922 measurements included 542 participants who provided a single 3-day observation plus 190 participants who provided two observations (in two different months). In addition to characterizing the distributions of 3-day average exposures, which can be estimated directly from the data, including the second observation for some participants enabled us to use a model-based approach to estimate the long-term (i.e. annual) exposure distributions for PM2.5 mass and Mn. The model assumes that individuals’ 3-day average exposure measurements within a given month are lognormally distributed and that the correlation between 3-day log-scale measurements k months apart (after seasonal adjustment) depends only on the lag time, k, and not on the time of year. The approach produces a set of simulated annual exposures from which an annual distribution can be inferred using estimated correlations and monthly means and variances (log scale) as model inputs. The model appeared to perform reasonably well for the overall population distribution of PM2.5 exposures (mean=28 μg m-3). For example, the model predicted the 95th percentile of the annual distribution to be 62.9 μg m-3 while the corresponding percentile estimated for the 3-day data was 86.6 μg m-3. The assumptions of the model did not appear to hold for the overall population of Mn exposures (mean=13.1 ng m-3). Since the population included persons who were potentially occupationally exposed to Mn (in non-vehicle-related jobs), we used responses to questionnaire items to form a subgroup consisting of non-occupationally exposed participants (671 participant periods), for which the model assumptions did appear to hold. For that subpopulation (mean=9.2 ng m-3), the model-predicted 95th percentile of the annual Mn distribution was 16.3-ng m-3, compared with 21.1 ng m-3 estimated for the 3-day data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号