首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: To evaluate the factors that might influence an occupant's injury severity during a left turn movement. METHODS: We used the National Automotive Sampling System Crashworthiness Data System (1995-2005) to compare crash characteristics and injury outcome between intersection and midblock left turn collisions. RESULTS: A total of 7,396 collisions were evaluated. Traffic control devices were present in 82% of intersection and 10% of mid-block collisions. After adjustment for potential confounding variables, drivers' injury severity was not significantly associated with the crash location. However, front seat passengers in mid-block collisions had 72% higher odds of experiencing an injury with injury severity score > or =9 (odds ratio: 1.72, 95% confidence interval: 1.09-2.69). Our analysis did not show that drivers or passengers in larger vehicles, e.g., sport utility vehicles and mini-vans, were at lower risk of more severe injuries in comparison to the car occupants in sedans. CONCLUSION: We found that in comparison to intersection-related left turn collisions, mid-block crashes are associated with more severe injuries for front seat passengers. Furthermore, size of the turning vehicle was not significantly associated with injury severity for drivers or front seat passengers.  相似文献   

2.
Objective: Several studies have evaluated the correlation between U.S. or Euro New Car Assessment Program (NCAP) ratings and injury risk to front seat occupants, in particular driver injuries. Conversely, little is known about whether NCAP 5-star ratings predict real-world risk of injury to restrained rear seat occupants. The NHTSA has identified rear seat occupant protection as a specific area under consideration for improvements to its NCAP. In order to inform NHTSA's efforts, we examined how NCAP's current 5-star rating system predicts risk of moderate or greater injury among restrained rear seat occupants in real-world crashes.

Methods: We identified crash-involved vehicles, model year 2004–2013, in NASS-CDS (2003–2012) with known make and model and nonmissing occupant information. We manually matched these vehicles to their NCAP star ratings using data on make, model, model year, body type, and other identifying information. The resultant linked NASS-CDS and NCAP database was analyzed to examine associations between vehicle ratings and rear seat occupant injury risk; risk to front seat occupants was also estimated for comparison. Data were limited to restrained occupants and occupant injuries were defined as any injury with a maximum Abbreviated Injury Scale (AIS) score of 2 or greater.

Results: We linked 95% of vehicles in NASS-CDS to a specific vehicle in NCAP. The 18,218 vehicles represented an estimated 6 million vehicles with over 9 million occupants. Rear seat passengers accounted for 12.4% of restrained occupants. The risk of injury in all crashes for restrained rear seat occupants was lower in vehicles with a 5-star driver rating in frontal impact tests (1.4%) than with 4 or fewer stars (2.6%, P =.015); results were similar for the frontal impact passenger rating (1.3% vs. 2.4%, P =.024). Conversely, side impact driver and passenger crash tests were not associated with rear seat occupant injury risk (driver test: 1.7% for 5-star vs. 1.8% for 1–4 stars; passenger test: 1.6% for 5 stars vs 1.8% for 1–4 stars).

Conclusions: Current frontal impact test procedures provide some degree of discrimination in real-world rear seat injury risk among vehicles with 5 compared to fewer than 5 stars. However, there is no evidence that vehicles with a 5-star side impact passenger rating, which is the only crash test procedure to include an anthropomorphic test dummy (ATD) in the rear, demonstrate lower risks of injury in the rear than vehicles with fewer than 5 stars. These results support prioritizing modifications to the NCAP program that specifically evaluate rear seat injury risk to restrained occupants of all ages.  相似文献   

3.
Abstract

Objectives: Earlier research has shown that the rear row is safer for occupants in crashes than the front row, but there is evidence that improvements in front seat occupant protection in more recent vehicle model years have reduced the safety advantage of the rear seat versus the front seat. The study objective was to identify factors that contribute to serious and fatal injuries in belted rear seat occupants in frontal crashes in newer model year vehicles.

Methods: A case series review of belted rear seat occupants who were seriously injured or killed in frontal crashes was conducted. Occupants in frontal crashes were eligible for inclusion if they were 6 years old or older and belted in the rear of a 2000 or newer model year passenger vehicle within 10 model years of the crash year. Crashes were identified using the 2004–2015 National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and included all eligible occupants with at least one Abbreviated Injury Scale (AIS) 3 or greater injury. Using these same inclusion criteria but split into younger (6 to 12 years) and older (55+ years) cohorts, fatal crashes were identified in the 2014–2015 Fatality Analysis Reporting System (FARS) and then local police jurisdictions were contacted for complete crash records.

Results: Detailed case series review was completed for 117 rear seat occupants: 36 with Maximum Abbreviated Injury Scale (MAIS) 3+ injuries in NASS-CDS and 81 fatalities identified in FARS. More than half of the injured and killed rear occupants were more severely injured than front seat occupants in the same crash. Serious chest injury, primarily caused by seat belt loading, was present in 22 of the injured occupants and 17 of the 37 fatalities with documented injuries. Nine injured occupants and 18 fatalities sustained serious head injury, primarily from contact with the vehicle interior or severe intrusion. For fatal cases, 12 crashes were considered unsurvivable due to a complete loss of occupant space. For cases considered survivable, intrusion was not a large contributor to fatality.

Discussion: Rear seat occupants sustained serious and fatal injuries due to belt loading in crashes in which front seat occupants survived, suggesting a discrepancy in restraint performance between the front and rear rows. Restraint strategies that reduce loading to the chest should be considered, but there may be potential tradeoffs with increased head excursion, particularly in the absence of rear seat airbags. Any new restraint designs should consider the unique needs of the rear seat environment.  相似文献   

4.
IntroductionSeat belt use reduces the risk of injuries and fatalities among motor vehicle occupants in a crash, but belt use in rear seating positions is consistently lower than front seating positions. Knowledge is limited concerning factors associated with seat belt use among adult rear seat passengers.MethodsData from the 2012 ConsumerStyles survey were used to calculate weighted percentages of self-reported rear seat belt use by demographic characteristics and type of rear seat belt use enforcement. Multivariable regression was used to calculate prevalence ratios for rear seat belt use, adjusting for person-, household- and geographic-level demographic variables as well as for type of seat belt law in place in the state.ResultsRear seat belt use varied by age, race, geographic region, metropolitan status, and type of enforcement. Multivariable regression showed that respondents living in states with primary (Adjusted Prevalence Ratio (APR): 1.23) and secondary (APR: 1.11) rear seat belt use enforcement laws were significantly more likely to report always wearing a seat belt in the rear seat compared with those living in a state with no rear seat belt use enforcement law.Conclusions and practical applicationsSeveral factors were associated with self-reported seat belt use in rear seating positions. Evidence suggests that primary enforcement covering all seating positions is an effective intervention that can be employed to increase seat belt use and in turn prevent motor vehicle injuries to rear-seated occupants.  相似文献   

5.
6.
INTRODUCTION: Unrestrained drivers and passengers are involved in a significant amount of fatalities and injuries in motor-vehicle crashes in the United States. While the literature documents the effectiveness of seat belt usage in reducing crash outcomes, such as fatalities and the severity of injuries, there is a need to evaluate the impact of seat belt usage by drivers and passengers in their respective vehicles. These findings could help develop effective education and enforcement strategies to enhance occupant safety. METHOD: This paper summarizes a study comparing seat belt usage rates of drivers and passengers based on whether or not the driver uses a seat belt. Observational data from 50 sites in the state of Nevada over 3 years are used for analyses. The data are stratified based on the gender of the driver and passengers in the front seat of the vehicle and are based on area type (rural or urban). RESULTS: A comparison of the rates of seat belt usage across for the aggregated data and for various types of disaggregation and statistical analyses to compare the rates of seat belt use among passengers based on the use of seat belts by drivers confirms that when drivers use seat belts, their respective passengers are much more likely to use seat belts. Further, if drivers do not use seat belts, their passengers are not likely to use seat belts. This observation is comparable for male drivers and female drivers, and also for male passengers and female passengers. Further, there are no differences for combinations of the genders of the drivers and passenger (i.e., both male or female, or one male and one female). IMPACT ON INDUSTRY: These results suggest that education and enforcement strategies would benefit most by working toward increasing seat belt usage rates among drivers.  相似文献   

7.

Introduction

Longitudinal barriers, such as guardrails, are designed to prevent a vehicle that leaves the roadway from impacting a more dangerous object while minimizing the risk of injury to the vehicle occupants. Current full-scale test procedures for these devices do not consider the effect of occupant restraints such as seatbelts and airbags. The purpose of this study was to determine the extent to which restraints are used or deployed in longitudinal barrier collisions and their subsequent effect on occupant injury.

Methods

Binary logistic regression models were generated to predict occupant injury risk using data from the National Automotive Sampling System / Crashworthiness Data System from 1997 through 2007.

Results

In tow-away longitudinal barrier crashes, airbag deployment rates were 70% for airbag-equipped vehicles. Compared with unbelted occupants without an airbag available, seat belt restrained occupants with an airbag available had a dramatically decreased risk of receiving a serious (MAIS 3+) injury (odds-ratio (OR) = 0.03; 95% CI: 0.004-0.24). A similar decrease was observed among those restrained by seat belts, but without an airbag available (OR = 0.03; 95% CI: 0.001- 0.79). No significant differences in risk of serious injuries were observed between unbelted occupants with an airbag available compared with unbelted occupants without an airbag available (OR = 0.53; 95% CI = 0.10-2.68).

Impact on Industry

This study refutes the perception in the roadside safety community that airbags rarely deploy in frontal barrier crashes, and suggests that current longitudinal barrier occupant risk criteria may over-estimate injury potential for restrained occupants involved in a longitudinal barrier crash.  相似文献   

8.
Objective: Injury risk curves estimate motor vehicle crash (MVC) occupant injury risk from vehicle, crash, and/or occupant factors. Many vehicles are equipped with event data recorders (EDRs) that collect data including the crash speed and restraint status during a MVC. This study's goal was to use regulation-required data elements for EDRs to compute occupant injury risk for (1) specific injuries and (2) specific body regions in frontal MVCs from weighted NASS-CDS data.

Methods: Logistic regression analysis of NASS-CDS single-impact frontal MVCs involving front seat occupants with frontal airbag deployment was used to produce 23 risk curves for specific injuries and 17 risk curves for Abbreviated Injury Scale (AIS) 2+ to 5+ body region injuries. Risk curves were produced for the following body regions: head and thorax (AIS 2+, 3+, 4+, 5+), face (AIS 2+), abdomen, spine, upper extremity, and lower extremity (AIS 2+, 3+). Injury risk with 95% confidence intervals was estimated for 15–105 km/h longitudinal delta-Vs and belt status was adjusted for as a covariate.

Results: Overall, belted occupants had lower estimated risks compared to unbelted occupants and the risk of injury increased as longitudinal delta-V increased. Belt status was a significant predictor for 13 specific injuries and all body region injuries with the exception of AIS 2+ and 3+ spine injuries. Specific injuries and body region injuries that occurred more frequently in NASS-CDS also tended to carry higher risks when evaluated at a 56 km/h longitudinal delta-V. In the belted population, injury risks that ranked in the top 33% included 4 upper extremity fractures (ulna, radius, clavicle, carpus/metacarpus), 2 lower extremity fractures (fibula, metatarsal/tarsal), and a knee sprain (2.4–4.6% risk). Unbelted injury risks ranked in the top 33% included 4 lower extremity fractures (femur, fibula, metatarsal/tarsal, patella), 2 head injuries with less than one hour or unspecified prior unconsciousness, and a lung contusion (4.6–9.9% risk). The 6 body region curves with the highest risks were for AIS 2+ lower extremity, upper extremity, thorax, and head injury and AIS 3+ lower extremity and thorax injury (15.9–43.8% risk).

Conclusions: These injury risk curves can be implemented into advanced automatic crash notification (AACN) algorithms that utilize vehicle EDR measurements to predict occupant injury immediately following a MVC. Through integration with AACN, these injury risk curves can provide emergency medical services (EMS) and other patient care providers with information on suspected occupant injuries to improve injury detection and patient triage.  相似文献   

9.
OBJECTIVE: The lower extremity is among the most frequently injured body regions for children restrained by forward facing child restraint systems (FFCRS), accounting for 28% of their clinically significant injuries, defined as AIS 2 and greater injuries excluding concussions. Despite the prevalence of these injuries, the current U.S. Motor Vehicle Safety Standard governing FFCRS (FMVSS 213) does not provide a direct assessment of the biomechanical risk of lower extremity fracture nor do the current pediatric test devices provide adequate instrumentation to detect the risk of such injuries. Before improvements can be made to the anthropometric test devices (ATDs) or test procedures to address these limitations, understanding of the sources and mechanisms of these injuries is necessary. Therefore, the objective of this study was to document location, source, and crash circumstances of lower extremity injuries in children seated in FFCRS. METHODS: Utilizing two sources of data, PCPS and CIREN, 20 in-depth investigations of crashes involving children seated in FFCRS with lower extremity injuries were reviewed to determine the nature of the injuries and the circumstances under which they occurred. RESULTS: Injuries below the knee were the most common, particularly to the tibia/fibula, and they most often occurred due to interaction with the vehicle seatback in front of the child's seating position. These injuries were sustained most commonly in frontal impacts although interaction with the seatback also occurred in other crash types. This interaction with the seatback was exacerbated by possible contributing factors such as intrusion of the front seatback into the child's occupant space or FFCRS misuse resulting in increased excursion of the child during impact. CONCLUSIONS: This review of cases of children in FFCRS with AIS 2 and greater lower extremity injury points to the role of the seatback in the occurrence of these injuries, suggesting the need to consider this interaction in the seatback design process and to adequately represent this interaction in regulatory procedures assessing the performance of child restraints.  相似文献   

10.
OBJECTIVE: The purpose of this article was to examine the use of seat belt by motor vehicle users in the various provinces in South Africa. METHODS: Data were abstracted from published reports of the national Department of Transport. Percentage distribution and correlation of road safety variables and seat belt wearing rates for motor vehicle users were calculated for the different provinces. RESULTS: High seat belt wearing rates by the drivers (between 75.1% and 88.1%, national rate was 81%). The seat belt wearing rates for the front and back seat passengers were much lower than for the drivers. The seat belt wearing rates for front seat passengers (44.5% to 60.5%, national - 50.1%) and back seat passengers (1% to 16%, national - 7.6%) were much lower than for the drivers. The national seat belt wearing rate for all vehicles between 1982 and 1995 was between 46.9% and 69.2%, but this has generally declined. CONCLUSION: There is a need for the implementation of strategies to increase the use of seat belts to reduce injuries and fatalities.  相似文献   

11.
Objective: This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant.

Method: National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used.

Result: The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70° angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome.

Conclusion: Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.  相似文献   

12.
Posted speed limit and police-reported injury codes are commonly used by researchers to approximate vehicle impact and occupant injury severity. In-depth crash investigations, however, produce more precise measures of crash and injury severity: change in velocity (delta-V) for crash severity and Abbreviated Injury Scale (AIS) scores for injury severity. A comparison of data from police crash reports with that gathered by National Automotive Sampling System (NASS) investigators highlighted the inadequacy of speed limit and police injury codes as proxies for delta-V and AIS injury severity. In general, delta-V increased with speed limit and higher values of AIS were associated with higher police-coded injury severity, but there were a number of anomalies. In particular, 49% of the drivers coded by police as having incapacitating injuries actually had sustained no more than minor injuries. This overstatement of injury severity was less frequent among male (44%) and elderly (37%) drivers than among female (53%) and nonelderly (50%) drivers. Also, 79% of the investigated vehicles that crashed on roads posted at 60 mph (96 km/h) or higher experienced a delta-V less than 25 mph (40 km/h). Safety studies depending on data from only police reports to establish injury or crash severity therefore could produce erroneous results.  相似文献   

13.
Objective: To determine whether varying the seat belt load limiter (SBL) according to crash and occupant characteristics could have real-world injury reduction benefits in frontal impacts and, if so, to quantify those benefits.

Methods: Real-world UK accident data were used to identify the target population of vehicle occupants and frontal crash scenarios where improved chest protection could be most beneficial. Generic baseline driver and front passenger numerical models using a 50th percentile dummy were developed with MADYMO software. Simulations were performed where the load limiter threshold was varied in selected frontal impact scenarios. For each SBL setting, restraint performance, dummy kinematics, and injury outcome were studied in 5 different frontal impact types. Thoracic injury predictions were converted into injury probability values using Abbreviated Injury Scale (AIS) 2+ age-dependent thoracic risk curves developed and validated based on a methodology proposed by Laituri et al. (2005). Real-world benefit was quantified using the predicted AIS 2+ risk and assuming that an appropriate adaptive system was fitted to all the cars in a real-world sample of recent frontal crashes involving European passenger cars.

Results: From the accident data sample the chest was the most frequently injured body region at an AIS 2+ level in frontal impacts (7% of front seat occupants). The proportion of older vehicle front seat occupants (>64 years) with AIS 2+ injury was also greater than the proportion of younger occupants. Additionally, older occupants were more likely to sustain seat belt–induced serious chest injury in low- and moderate-speed frontal crashes. In both front seating positions, the low SBL provided the best chest injury protection, without increasing the risk to other body regions. In severe impacts, the low SBL allowed the driver to move dangerously close to the steering wheel. Compared to the driver side, greater ride-down space on the passenger side gave a higher potential for using the low SBLs. When applying the AIS 2+ risk reduction findings to the weighted accident data sample, the risk of sustaining an AIS 2+ seat belt injury changed to 0.9, 4.9, and 8.1% for young, mid, and older occupants, respectively, from their actual injury risk of 1.3, 7.6, and 13.1%.

Conclusions: These results suggest the potential for improving the safety of older occupants with the development of smarter restraint systems. This is an important finding because the number of older users is expected to increase rapidly over the next 20 years. The greatest benefits were seen at lower crash severities. This is also important because most real-world crashes occur at lower speeds.  相似文献   

14.
Objectives: This study sought to identify attitudes toward belt use in the rear seat and to gain insight into the experiences of rear-seat passengers. Method: A telephone survey conducted between June and August 2016 targeted adult passengers who had recently ridden in the rear and who did not always wear their seat belt when doing so. Respondents were questioned regarding their reasons for not buckling up and possible conditions under which they would be more likely to buckle up during rear-seat travel. Results: Of 1163 recent rear-seat passengers, 72% reported always using their seat belt in the rear. Full-time belt use was lower among passengers who primarily travel in the rear of hired vehicles compared with personal vehicles. The most common explanation for not buckling up was that the back seat is safer than the front. Four out of five agreed they do not buckle up because of type of trip; two-thirds forget or do not see the need; and two-thirds agreed with reasons related to design, comfort, or usability issues. Nearly 40% agreed that they sometimes do not buckle up in the rear because there is no law requiring it. Conclusion: Many reasons for not using belts in the rear are similar to reasons in the front, such as forgetfulness, inconvenience, or discomfort. One difference is that many rear-seat passengers perceive using the belt is unnecessary because the back seat is safer than the front. More than half of part-time belt users and nonusers reported interventions such as rear seat belt reminders, stronger belt-use laws, and more comfortable belts would make them more likely to use their seat belt in the rear seat. Practical applications: This study identifies barriers to rear seat belt use that point to the need for a multi-faceted approach to increase belt use.  相似文献   

15.
INTRODUCTION: The goal of this study was to gather information on the preferred front seat position of vehicle occupants and to determine the impact of variation in seat position on safety during crashes. METHOD: The study evaluated the relationship between seat position and occupant size using the chi-square test and compared the risk of severe injury for small females and large males with regard to forward and rearward seat position using logistic regression. RESULTS: While smaller drivers sat closer to the steering wheel than larger drivers, front passengers of all sizes used similar seat positions. Additionally, the risk of injury was higher for small, unbelted females in rearward seat positions and large males (belted and unbelted) in forward seat positions. CONCLUSIONS: Occupants who adjust their seats to positions that are not consistent with required federal tests are at a greater risk for severe injury in a crash.  相似文献   

16.
INTRODUCTION: This study investigated the survival rates of occupants of passenger cars involved in a fatal crash between 2000 and 2003. METHODS: The information from every fatal crash in the United States between 2000 and 2003 was analyzed. Variables such as seat position, point of impact, rollover, restraint use, vehicle type, vehicle weight, occupant age, and injury severity were extracted from the Fatality Analysis Reporting System (FARS). Univariate and a full logistic multivariate model analyses were performed. RESULTS: The data show that the rear middle seat is safer than any other occupant position when involved in a fatal crash. Overall, the rear (2(nd) row) seating positions have a 29.1% (Univariate Analysis, p<.0001, OR 1.29, 95% CI 1.22 - 1.37) increased odds of survival over the first row seating positions and the rear middle seat has a 25% (Univariate Analysis, p<.0001, OR 1.25, 95% CI 1.17 - 1.34) increased odds of survival over the other rear seat positions. After correcting for potential confounders, occupants of the rear middle seat have a 13% (Logistic Regression, p<.001, 95% CI 1.02 - 1.26) increased chance of survival when involved in a crash with a fatality than occupants in other rear seats. CONCLUSION: This study has shown that the safest position for any occupant involved in a motor-vehicle crash is the rear middle seat. IMPACT ON INDUSTRY: The results of this research may impact how automobile manufacturers look at future rear middle seat designs. If the rear seat was to be designed exactly like its outboard counterparts (headrest, armrests, lap and shoulder belt, etc.) people may choose to sit on it more often rather than waiting to use it out of necessity due to multiple rear seat occupants.  相似文献   

17.
Problem: To assess how drivers view dangers on the highway, what motivates them to drive safely, how they say they reduce their crash and injury risk, and how they rate their own driving skills. Results: Most drivers rated their skills as better than average. The biggest motivating factor for safe driving was concern for safety of others in their vehicle, followed by negative outcomes such as being in a crash, increased insurance costs, and fines. The greatest threats to their safety were thought to be other drivers' actions that increase crash risk such as alcohol impairment or running red lights. In terms of reducing crashes and injuries, drivers tended to focus on actions they could take such as driving defensively or using seat belts. There was less recognition of the role of vehicles and vehicle features in crash or injury prevention. Impact on research, practice, and policy: Knowing how drivers view themselves and others, their concerns, and their motivations and techniques for staying out of trouble on the roads provides insight into the difficulty of changing driving practices.  相似文献   

18.
Objective: This study aligns to the body of research dedicated to estimating the underreporting of road crash injuries and adds the perspective of understanding individual and crash factors contributing to the decision to report a crash to the police, the hospital, or both.

Method: This study focuses on road crash injuries that occurred in the province of Funen, Denmark, between 2003 and 2007 and were registered in the police, the hospital, or both authorities. Underreporting rates are computed with the capture–recapture method, and the probability for road crash injuries in police records to appear in hospital records (and vice versa) is estimated with joint binary logit models.

Results: The capture–recapture analysis shows high underreporting rates of road crash injuries in Denmark and the growth of underreporting not only with the decrease in injury severity but also with the involvement of cyclists (reporting rates of about 14% for serious injuries and 7% for slight injuries) and motorcyclists (reporting rates of about 35% for serious injuries and 10% for slight injuries). Model estimates show that the likelihood of appearing in both data sets is positively related to helmet and seat belt use, number of motor vehicles involved, alcohol involvement, higher speed limit, and females being injured.

Conclusions: This study adds significantly to the literature about underreporting by recognizing that understanding the heterogeneity in the reporting rate of road crashes may lead to devising policy measures aimed at increasing the reporting rate by targeting specific road user groups (e.g., males, young road users) or specific situational factors (e.g., slight injuries, arm injuries, leg injuries, weekend).  相似文献   


19.
Introduction: Motorcyclists are exposed to more fatalities and severe injuries per mile of travel as compared to other vehicle drivers. Moreover, crashes that take place at intersections are more likely to result in serious or fatal injuries as compared to those that occur at non-intersections. Therefore, the purpose of this study is to evaluate the contributing factors to motorcycle crash severity at intersections. Method: A data set of 7,714 motorcycle crashes at intersections in the State of Victoria, Australia was analyzed over the period of 2006–2018. The multinomial logit model was used for evaluating the motorcycle crashes. The severity of motorcycle crashes was divided into three categories: minor injury, serious injury and fatal injury. The risk factors consisted of four major categories: motorcyclist characteristics, environmental characteristics, intersection characteristics and crash characteristics. Results: The results of the model demonstrated that certain factors increased the probability of fatal injuries. These factors were: motorcyclists aged over 59 years, weekend crashes, midnight/early morning crashes, morning rush hours crashes, multiple vehicles involved in the crash, t-intersections, crashes in towns, crashes in rural areas, stop or give-way intersections, roundabouts, and uncontrolled intersections. By contrast, factors such as female motorcyclists, snowy or stormy or foggy weather, rainy weather, evening rush hours crashes, and unpaved roads reduced the probability of fatal injuries. Practical Applications: The results from our study demonstrated that certain treatment measures for t-intersections may reduce the probability of fatal injuries. An effective way for improving the safety of stop or give-way intersections and uncontrolled intersections could be to convert them to all-way stop controls. Further, it is recommended to educate the older riders that with ageing, there are physiological changes that occur within the body which can increase both crash likelihood and injury severity.  相似文献   

20.
Abstract

Objectives: Automatic emergency braking (AEB) is a proven effective countermeasure for preventing front-to-rear crashes, but it has not yet fully lived up to its estimated potential. This study identified the types of rear-end crashes in which striking vehicles with AEB are overrepresented to determine whether the system is more effective in some situations than in others, so that additional opportunities for increasing AEB effectiveness might be explored.

Methods: Rear-end crash involvements were extracted from 23?U.S. states during 2009–2016 for striking passenger vehicles with and without AEB among models where the system was optional. Logistic regression was used to examine the odds that rear-end crashes with various characteristics involved a striking vehicle with AEB, controlling for driver and vehicle features.

Results: Striking vehicles were significantly more likely to have AEB in crashes where the striking vehicle was turning relative to when it was moving straight (odds ratio [OR]?=?2.35; 95% confidence interval [CI], 1.76, 3.13); when the struck vehicle was turning (OR = 1.66; 95% CI, 1.25, 2.21) or changing lanes (OR = 2.05; 95% CI, 1.13, 3.72) relative to when it was slowing or stopped; when the struck vehicle was not a passenger vehicle or was a special use vehicle relative to a car (OR = 1.61; 95% CI, 1.01, 2.55); on snowy or icy roads relative to dry roads (OR = 1.83; 95% CI, 1.16, 2.86); or on roads with speed limits of 70+ mph relative to those with 40 to 45?mph speed limits (OR = 1.49; 95% CI, 1.10, 2.03). Overall, 25.3% of crashes where the striking vehicle had AEB had at least one of these overrepresented characteristics, compared with 15.9% of strikes by vehicles without AEB.

Conclusions: The typical rear-end crash occurs when 2 passenger vehicles are proceeding in line, on a dry road, and at lower speeds. Because atypical crash circumstances are overrepresented among rear-end crashes by striking vehicles with AEB, it appears that the system is doing a better job of preventing the more typical crash scenario. Consumer information testing programs of AEB use a test configuration that models the typical rear-end crash type. Testing programs promoting good AEB performance in crash circumstances where vehicles with AEB are overrepresented could guide future development of AEB systems that perform well in these additional rear-end collision scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号