共查询到20条相似文献,搜索用时 62 毫秒
1.
本文用中空纤维超滤膜对青霉素酰化酶进行了分离,浓缩的研究,实验了不同种类的膜,不同的酶活浓度,不同运行时间和不同压力等因素对膜透水量,截留率和酶的回收率的影响。结果表明:采用超滤技术分离,浓缩,脱盐青霉素酰化酶工艺,具有操作简单,酶的比活高。回收经高和省能等特点,适用于工业化生产。 相似文献
2.
通过单因子和多因子摇瓶正交优化试验,确定了米曲霉液态发酵产氨基酰化酶的最佳发酵条件.优化发酵培养基组成(ρ/gL-1):葡萄糖40,蔗糖10,可溶性淀粉20,蛋白胨2.5,马铃薯液1000mL,pH自然.培养基装量50mL/250mL三角瓶,接种量4%.培养温度30℃,转速100r/min,发酵时间42h.每50mL培养物的总酶活由优化前的2627u提高到7338u,是优化前的2.79倍.研究了米曲霉氨基酰化酶的部分酶学性质.该酶催化反应的最适pH为7.0,最适温度为40℃,低浓度的Co2 (5×10-4mol/L)对酶活激活作用显著.图5表2参8 相似文献
3.
4.
7-氨基头孢烷酸是合成头孢类抗生素的重要中间体,利用头孢菌素C酰化酶直接催化头孢菌素C获得7-氨基头孢烷酸的一步酶法与其它方法相比更加经济和环保,其关键是获得高活性的头孢菌素C酰化酶.本文以来源于Pseudomonas sp.KAC-1的Ⅰ类头孢菌素C酰化酶(CPCase-kac)蛋白序列为模版,对其基因进行全局优化设计,人工合成目的基因,并克隆至表达载体p ET28b,实现了CPCase-kac的高效表达.但是重组蛋白CPCase-kac表达活性较低,且自剪切不彻底,表达蛋白中存在前体形式的CPCase-kac,而头孢菌素C酰化酶的自剪切和活性往往相关.对CPCase-kac分子中影响活性的Y150、Q220、F347氨基酸位点进行饱和突变发现,活力提高的突变体Q220W、Q220G其第二次自剪切明显降低,而活力提高的突变体Y150R、Y150N、Y150H、Y150W及F347H、F347Y,自剪切却没有显著影响.将这些突变进行组合,最终得到了比活力提高了8.3倍的突变体Y150W/Q220G/F347Y.虽然Y150W/Q220G/F347Y突变体活性显著提高,但是其也具有Q220G较差的第二次剪切的特性.同时发现,外部条件改变可以影响CPCase前体或α’亚基的继续自剪切.这些发现为进一步提高CPCase-kac活性及应用打下了基础. 相似文献
5.
一种嗜热细菌来源角质酶的分离纯化及酶学性质 总被引:1,自引:0,他引:1
通过跟踪发酵液中pNPB水解酶活性,对角质诱导的Thermobifida fusca 口发酵液进行分离纯化.采用活性炭脱色、硫铵沉淀、Phenyl HP疏水色谱、DEAE sephamse阴离子交换色谱等方法,分离纯化得到电泳纯PNPB水解酶.该酶水解角质可得到角质单体,是一种角质酶.SDS-PAGE电泳结果显示,角质酶表观分子量约为29×10~3.该酶的最适温度为60℃.在40℃和60℃下均具有良好的热稳定性.最适pH为8.0,pH稳定范围为6.0~9.0.该角质酶的生化性质适合在纺织工业中应用.图8表2参17 相似文献
6.
以一株可降氰的产碱杆菌DN25为酶来源,通过超滤、30 mg/mL硫酸鱼精蛋白沉淀、30%~70%硫酸铵盐析和Phenyl-Toyopearl 650M疏水层析等步骤,获得比活力为44 U/mg的纯化酶制剂.在确定酶浓度、反应时间等氰降解活力测定条件后开展酶学性质研究,试图为将来氰降解代谢机理的深入研究和菌株的基因工程改造提供理论基础.研究结果表明,此纯化酶催化氰化物水解的最适pH值为8.0,最适温度为30℃.该酶在pH 7.0~8.0区域稳定,而在pH>9时会很快失活;在30℃保存10 h,酶活力保持稳定,高于60℃,酶快速失活.加入甘氨酸稳定剂,在60℃下保存20 min酶活仍可保留19.6%.酶促反应动力学符合米氏双曲线方程,测得米氏常数Km为3.11 mmol/L,最大反应速率Vmax为0.23 mmolL-1min-1. 相似文献
7.
8.
对分离得到的一株产耐热木聚糖酶的真菌CAU521进行鉴定,并对其产纤维质降解酶系进行研究.通过菌落形态、显微镜产孢结构以及18S rDNA序列同源性比对等分析,鉴定该菌为樟绒枝霉(Malbranchea cinnamomea),其最适生长温度为45℃,为一株嗜热真菌.该菌能以农业废弃物玉米芯为碳源液体发酵产耐热木聚糖酶,50℃下培养7 d,木聚糖酶的最高酶活力达到173 U/mL.SDS-PAGE和酶谱分析表明该菌株能同时分泌多种纤维质降解酶:4种木聚糖酶、2种纤维素酶、3种葡聚糖酶和1种甘露聚糖酶.结果表明樟绒枝霉CAU521在降解和利用纤维质材料方面具有潜在的应用价值. 相似文献
9.
转化血型用蕃茄α-D-半乳糖苷酶的分离、纯化及理化性质 总被引:1,自引:0,他引:1
成熟蕃茄匀浆后,经硫酸铵盐析,DEAE-SephadexA-50离子交换层析,SepadexG-100凝胶过滤和Melibiose-Agarose亲和层析,获得了α-D-半乳糖苷酶(C.E.3.2.1.11)。酶制剂经PAGE检测为一条带;SDS-G-PAGE测得酶Mr为34000;比活力52.9U/mg·;提纯倍数为52901产率为45%.酶专-催化以α-D-半乳糖为末端a-(1,3)连接的糖苷键,以PNPG(对硝基苯-α-D-半乳糖昔)为废物,酶催化反应的Km=0.11mmol/L,Vmax为67μmol·mg1-·min-1.t稳定范是0~35℃;PH稳定范围是4.0~7.0.最适pH为5.1.半乳糖是酶的竞争性抑制剂;Cu2+、Zn2+、Mn2+、Fe3+、Ag+和EDTA对酶活性无影响.纯酶制剂可作为B型血向O型血转化的工具酶液. 相似文献
10.
采用硫酸铵盐析、Sephadex G-25柱脱盐、DEAE-Sepharose Fast Flow离子交换层析、Sephacryl S-200分子筛层析和高效液相色谱等方法,从黑曲霉菌株Aspergillus niger SL2-111的发酵曲中提取了一种酸性蛋白酶,经SDS-PAGE验证,该酶纯化水平已达到电泳纯.该酶的表观分子量(Mr)约为47×103,最适pH值为3.0,pH稳定性范围为2.5~6.0,最适温度为50℃,温度稳定性范围为30~60℃;Gu2+、Mn2+对其有激活作用,Hg2+、Ag+对其则有轻度的抑制作用;该酶的氨基酸组成为:中极性酸性氨基酸占17.29%,极性碱性氨基酸占4.50%,极性中性氨基酸占38.50%,其它为非极性氨基酸;N端氨基酸序列为SKGSAVTTPQ,经序列同源性比对,表明该酶与其它曲霉酸性蛋白酶具有极高的同源性.图4表5参15 相似文献
11.
12.
13.
超滤膜污染和清洗方法的研究 总被引:11,自引:0,他引:11
本文以牛血清蛋白为料液,用酸、碱和表面活性剂作为清洗剂,对聚砜、聚丙烯腈等四种不同材质的超滤膜进行了污染和清洗实验,同时还研究了不同PH值对膜清洗效果的影响,结果表明,对于季铵化聚砚膜,用NaOH清洗效果较好,丙烯腈膜以HCl清洗效果为好;P天等电点附近,容易引起吸附 相似文献
14.
聚丙烯中空纤维膜结构与氨水分离性能的研究 总被引:6,自引:2,他引:6
本文研究了聚丙烯中空纤维膜成型的工艺条件与结构性能的关系,并利用聚丙烯中空纤维膜组件进行了氨/水分离和影响分离效果的各种因素的研究。结果表明:在制膜工艺中,聚丙烯分子链在应力场下的结晶过程对后续的轴向拉伸形成微孔结构是非常重要的;伸长率为160%时的聚丙烯中空纤维膜,具有最大的孔隙率、平均孔径和透气率;其组件在氨/水分离中具有较好的分离效果,脱氨率可达99%以上。进一步对氨/水分离的研究表明:分离 相似文献
15.
溶剂气浮分离法的基础研究 总被引:2,自引:0,他引:2
本文研究了待分离物呈表面活性物系(甲基橙-十六烷基氯化吡啶、十六烷基氯化吡啶)和呈疏水性物系(铜-二乙基二硫代氨基甲酸钠、镍-丁二酮肟)的溶液气浮变化规律。红外光谱分析表明,分离效率的高低与有机相和气浮分离物相互作用的强弱不相关。通过高速摄影及计算证明,水相和有机相两相界面间的稳定的气泡层存在,它一方面使待分离物质在水相中的停留时间在大增加,另一方面又保护了已捕集的待分离物质,从而增加了气泡吸附总 相似文献
16.
电感耦合等离子体-质谱法研究大气颗粒物中元素浓度 总被引:1,自引:0,他引:1
1 IntroductionAirborneparticulatematterisoneoftheimportantmarkersofairqualityandisanimportanthealthconcerninurbanareas,especiallywithrespecttoanumberofchronicrespiratorydiseases.Medicaldatasuggeststhatitisthisfractionofparticulatematterthatbecomesdeeplyi… 相似文献
17.
18.
金属浓度,半透膜孔径,水温及配位体对半透膜囊吸收铜的影响 总被引:2,自引:1,他引:2
在实验室条件下,研究了影响树脂-半透膜囊吸收铜的主要因素,重点探讨了水相铜含量,半透膜孔径,温度以及天然河水中的有机配位体对吸收的影响。结果表明,半透膜囊吸收量与水相游离铜浓度,水温及半透膜孔径的非整数次幂成正比,其中包括EDTA,河水富里酸,以及河水中的各种天然有机物在内的配位体均与铜生成不能被半透膜囊吸收的络合物,研究结果进一步证实了半透膜囊对水环境中游离态微量金属进行长期监测的可行性。 相似文献
19.