首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
ABSTRACT: The Applachicola River basin in northwest Florida covers an area of 3,100 square kilometers. Fifteen percent of the area is a dense bottomland hardwood forest which is periodically flooded. The annual leaf-litter fall from the flood-plain trees is a potential source of nutrients and detritus which eventually can flow into Apalachicola Bay. Transport of such material is dependent on the periodic inundation of the flood plain. The U.S. Geological Survey Apalachicola Rim Quality Assessment measured a total organic carbon flux of 2.1 × 105 metric tons during the one-year period from June 3, 1979, to June 2,1980. Fluxes of total nitrogen and phosphorus during the same year were 2.1 × lo4 and 1.7 × lo3 metric tons, respectively. Flood characteirstics, such as prior hydrologic conditions, extent, and timing, are important in determining the amount and forms of materials transported. The 1980 spring flood produced a fourfold discharge increase over the annual mean outflow of 800 cubic meters per second. Nutrient concentrations varied little with discharge, but the 86-day spring flood accounted for 53, 60, 48, and 56 percent of the annual flux of total organic carbon, particulate organic carbon, total nitrogen, and total phosphorus, respectively. In 1980, the flood peaks, rather than the rise or recession, accounted for maximum nutrient and detritus transport.  相似文献   

2.
ABSTRACT: There is a general belief in the public eye that extreme events such as floods are becoming more and more common. This paper explores this hypothesis by examining the historical evolution of annual expected flooding damage on the Chateauguay River Basin, located at the border between the United States and the province of Quebec, Canada. A database of basin land use was constructed for the years 1930 and 1995 to assess anthropogenic changes and their impact on the basin's hydrology. The progressive modification of the likelihood of a flooding event over the same period was then investigated using homogeneity and statistical tests on available hydrometric data. The evolution of the annual expected flooding damage was then evaluated using a coupled hydrologic/hydraulic simulator linked to a damage analysis model. The simulator and model were used to estimate flooding damage over a wide range of flooding return periods, for conditions prevailing in 1963 and 1995. Results of the analysis reveal the absence of any increasing or decreasing trend in the historical occurrence of flooding events. However, a general increase in the annual expected flooding damage was observed for all studied river sections. This increase is linked to an historical increase in damages for a given flooding event, and is the result of unbridled construction and development within the flood zone. To assess for future trends, this study also examined the potential impacts linked to the anticipated global warming. Results indicate that a significant increase in seasonal flooding events and annual expected flooding damage is possible over the next century. In fact, what is now considered a 100‐year flooding event for the summer/fall season could become a ten‐year event by the end of this century. This shows that potential future impacts linked to climate change should be considered now by engineers, land planners, and decision makers. This is especially critical if a design return period is part of the decision making process.  相似文献   

3.
Humans have severely impacted riparian ecosystems through water diversions, impoundments, and consumptive uses. Effective management of these important areas is becoming an increasingly high priority of land managers, particularly as municipal, industrial, and recreational demands for water increase. We examined radial tree growth of four riparian tree species (Pinus jeffreyi, Populus trichocarpa, Betula occidentalis, and Pinus monophylla) along Bishop Creek, California, and developed models relating basal area increment (BAI) and relative basal area increment (RBAI) to climatic and stream flow variables. Between years 1995–1999, univariate regression analysis with stream flow explained 29 to 61% of the variation in BAI and RBAI among all species except P. trichocarpa; growth by P. trichocarpa was not significantly related to stream flows over this period. Stepwise linear regression indicated that species responded differently to climatic variables, and models based on these variables explained between 33 to 86% of variation in BAI and RBAI during the decade of the 1990s. We examined branch growth of P. trichocarpa for sensitivity to differences in stream flow regimes and found that annual branch growth did not vary between a high- and low-flow site, but that annual branch growth was significantly higher in wet years with greater stream flows. Our results support the establishment of site-specific management goals by land managers that take into account all of the important tree species present in riparian ecosystems and their differential responses to altered hydrologic condition. Instream flow requirements for maintaining tree growth and vigor are only one of the species-specific responses that need to be evaluated, and these assessments should attempt to separate experimentally stream-flow (managed) controls from climatic (unmanaged) controls on growth.  相似文献   

4.
ABSTRACT: To investigate the impacts of urbanization and climatic fluctuations on stream flow magnitude and variability in a Mediterranean climate, the HEC‐HMS rainfall/runoff model is used to simulate stream flow for a 14‐year period (October 1, 1988, to September 30, 2002) in the Atascadero Creek watershed located along the southern coast of California for 1929, 1998, and 2050 (estimated) land use conditions (8, 38 and 52 percent urban, respectively). The 14‐year period experienced a range of climatic conditions caused mainly by El Nino‐Southern Oscillation variations. A geographic information system is used to delineate the watershed and parameterize the model, which is calibrated using data from two stream flow and eight rainfall gauges. Urbanization is shown to increase peak discharges and runoff volume while decreasing stream flow variability. In all cases, the annual and 14‐year distributions of stream flow are shown to be highly skewed, with the annual maximum 24 hours of discharge accounting for 22 to 52 percent of the annual runoff and the maximum ten days of discharge from an average El Nino year producing 10 to 15 percent of the total 14‐year discharge. For the entire period of urbanization (1929 to 2050), the average increase in annual maximum discharges and runoff was 45 m3/s (300 percent) and 15 cm (350 percent), respectively. Additionally, the projected increase in urbanization from 1998 to 2050 is half the increase from 1929 to 1998; however, increases in runoff (22 m3/s and 7 cm) are similar for both scenarios because of the region's spatial development pattern.  相似文献   

5.
We performed two‐dimensional (2D) hydrodynamic modeling to aid recovery of the endangered razorback sucker (Xyrauchen texanus) by reconnecting the Green River with its historic bottomland floodplain wetlands at Ouray National Wildlife Refuge, Utah. Reconnection allows spring flood flows to overtop the river levee every two to three years, and passively transport razorback sucker larvae to the wetlands to grow in critical habitat. This study includes (1) river hydrologic analysis, (2) simulation of a levee breach/weir, overtopping of river flood flows, and 2D flow through the wetlands using Hydrologic Engineering Center River Analysis System 2D, and (3) modeling flow and restoration scenarios. Indicators of hydrologic alteration were used to evaluate river flow metrics, in particular flood magnitudes, frequency, and duration. Results showed a target spring flow of 16,000 cfs (453 m3/s) and a levee breach elevation of 4,663 ft (1,421 m) amsl would result in a median flow >6,000 acre‐feet (7.4 million m3) over five days into the wetlands, which is adequate for razorback sucker larvae transport and rearing. Modeling of flow/restoration scenarios showed using gated water control structures and passive low‐water crossings between wetland units can provide adequate control of flow movement into and storage in multiple units. Levee breaching can be a relatively simple, cost‐effective method to reconnect rivers and historic floodplains, and hydrodynamic modeling is an important tool for analyzing and designing wetland reconnection.  相似文献   

6.
Armstrong, William H., Mathias J. Collins, and Noah P. Snyder, 2012. Increased Frequency of Low‐Magnitude Floods in New England. Journal of the American Water Resources Association (JAWRA) 48(2): 306‐320. DOI: 10.1111/j.1752‐1688.2011.00613.x Abstract: Recent studies document increasing precipitation and streamflow in the northeastern United States throughout the 20th and early 21st Centuries. Annual peak discharges have increased over this period on many New England rivers with dominantly natural streamflow – especially for smaller, more frequent floods. To better investigate high‐frequency floods (<5‐year recurrence interval), we analyze the partial duration flood series for 23 New England rivers selected for minimal human impact. The study rivers have continuous records through 2006 and an average period of record of 71 years. Twenty‐two of the 23 rivers show increasing trends in peaks over threshold per water year (POT/WY) – a direct measure of flood frequency – using the Mann‐Kendall trend test. Ten of these trends had p < 0.1. Seventeen rivers show positive trends in flood magnitude, six of which had p < 0.1. We also investigate a potential hydroclimatic shift in the region around 1970. Twenty‐two of the 23 rivers show increased POT/WY in the post‐1970 period when comparing pre‐ and post‐1970 records using the Wilcoxon rank‐sum test. More than half of these increases have p < 0.1, indicating a shift in flow regime toward more frequent flooding. Region wide, we found a median increase of one flood per year for the post‐1970 period. Because frequent floods are important channel‐forming flows, these results have implications for channel and floodplain morphology, aquatic habitat, and restoration.  相似文献   

7.
ABSTRACT: Streamflow changes resulting from clearcut harvest of lodgepole pine (Pinus contorta) on a 2145 hectare drainage basin are evaluated by the paired watershed technique. Thirty years of continuous daily streamflow records were used in the analysis, including 10 pre-harvest and 20 post-harvest years of data. Regression analysis was used to estimate the effects of timber harvest on annual water yield and annual peak discharge. Removal of 14 million board feet of lodgepole pine (Pinus contorta) from about 526 hectares (25 percent of the basin) produced an average of 14.7 cm additional water yield per year, or an increase of 52 percent. Mean annual daily maximum discharge also increased by 1.6 cubic meters per second or 66 percent. Increases occurred primarily during the period of May through August with little or no change in wintertime streamflows. Results suggest that clearcutting conifers in relatively large watersheds (> 2000 ha) may produce significant increases in water yield and flooding. Implications of altered streamflow regimes are important for assessing the future ecological integrity of stream ecosystems subject to large-scale timber harvest and other disturbances that remove a substantial proportion of the forest cover.  相似文献   

8.
Ahn, Jae Hyun and Hyun Il Choi, 2013. A New Flood Index for Use in Evaluation of Local Flood Severity: A Case Study of Small Ungauged Catchments in Korea. Journal of the American Water Resources Association (JAWRA) 49(1): 1‐14. DOI: 10.1111/jawr.12025 Abstract: The aim of this article is to develop a new index measuring the severity of floods in small ungauged catchments for initial local flood information by the regression analysis between the new flooding index and rainfall patterns. Although a rapid local flood caused by heavy storm in a short period of time is now one of common natural disasters worldwide, such a sudden and violent hydrologic event is difficult to forecast. As local flooding rises rapidly with little or no advance warning, the key to local flood forecasting is to quickly identify when and where local flooding above a threshold is likely to occur. The new flooding index to characterize local floods is measured by the three normalized relative severity factors for the flood magnitude ratio, the rising curve gradient, and the flooding duration time, quantifying characteristics of flood runoff hydrographs. The new flooding index implemented for the two selected small ungauged catchments in the Korean Peninsula shows a very high correlation with logarithm of the 2‐h maximum rainfall depth. This study proposes 30 mm of rainfall in a 2‐h period as a basin‐specific guidance of precaution for the incipient local flooding in the two study catchments. It is expected that the best‐fit regression equation between the new flooding index and a certain rainfall rate can provide preliminary observations, the flood threshold, and severity information, for use in a local flood alert system in small ungauged catchments. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

9.
The 2010 dam breach and consequent anomalous flood event on the Cedar River in Nebraska, USA provided an opportunity to study the following objectives: (1) evaluate the impact of an extreme flood event on streambank retreat along a 45 km stretch relative to the average annual retreat; (2) quantify the changes in streambank retreat for each km segment downstream of the breach; and (3) examine the influence of riparian vegetation and radius of curvature on meander bank erosion rate. During the hydrologic event, discharge peaked at nearly three times greater than the next highest recorded rate and equated to a return period of 2,000 years. Aerial images and ArcGIS were utilized to calculate the average annual streambank retreat for each year during the preflood (2006–2010), flood (2010), and postflood (2010–2016) periods. The 2010 flood period had a significantly higher average annual streambank retreat of 2,820 m2/km/yr than the preflood and postflood periods, which, respectively, measured 576 and 384 m2/km/yr. From 2006 to 2016, 29% of all streambank erosion was from this one extreme flood event, thus demonstrating the impact that one extreme flood event can have on streambank retreat and the geomorphology of a stream system.  相似文献   

10.
Devils Lake is a terminal lake located in northeast North Dakota. Because of its glacial origin and accumulated salts from evaporation, the lake has a high concentration of sulfate compared to the surrounding water bodies. From 1993 to 2011, Devils Lake water levels rose by ~10 m, which flooded surrounding communities and increased the chance of an overspill to the Sheyenne River. To control the flooding, the State of North Dakota constructed two outlets to pump the lake water to the river. However, the pumped water has raised concerns about of water quality degradation and potential flooding risk of the Sheyenne River. To investigate these perceived impacts, a Soil and Water Assessment Tool (SWAT) model was developed for the Sheyenne River and it was linked to a coupled SWAT and CE‐QUAL‐W2 model that was developed for Devils Lake in a previous study. While the current outlet schedule has attempted to maintain the total river discharge within the confines of a two‐year flood (36 m3/s), our simulation from 2012 to 2018 revealed that the diversion increased the Sheyenne River sulfate concentration from an average of 125 to >750 mg/L. Furthermore, a conceptual optimization model was developed with a goal of better preserving the water quality of the Sheyenne River while effectively mitigating the flooding of Devils Lake. The optimal solution provides a “win–win” outlet management that maintains the efficiency of the outlets while reducing the Sheyenne River sulfate concentration to ≤600 mg/L.  相似文献   

11.
Andrews, Danielle M., Christopher D. Barton, Randall K. Kolka, Charles C. Rhoades, and Adam J. Dattilo, 2011. Soil and Water Characteristics in Restored Canebrake and Forest Riparian Zones. Journal of the American Water Resources Association (JAWRA) 47(4):772‐784. DOI: 10.1111/j.1752‐1688.2011.00555.x Abstract: The degradation of streams has been widespread in the United States. In Kentucky, for instance, almost all of its large streams have been impounded or channelized. A restoration project was initiated in a channelized section of Wilson Creek (Nelson Co., Kentucky) to return its predisturbance meandering configuration. A goal of the project was to restore the native riparian corridor with giant cane and bottomland forest species. The objective of this study was to evaluate the use of giant cane in riparian restoration and to compare water quality and soil attributes between restored cane and forested communities. Comparison of data to replicated sites of similar size in undisturbed upstream areas (control) was also examined to evaluate restoration success. Vegetation establishment was initially hindered by frequent flooding in 2004, but mean survival was good after two growing seasons with rates of 80 and 61% for forest and cane plots, respectively. Results showed an improvement in stream water quality due to restoration activities. Significant differences between the cane and forested plots in shallow groundwater dissolved oxygen, NO3?‐N, NH4+‐N, and Mn concentrations suggest that soil redox conditions were not similar between the two vegetation types. Retention and transformation of carbon (C) and nitrogen (N) within the restored riparian system also differed by vegetation treatment; however, both communities appeared to be advancing toward conditions exhibited in the control section of Wilson Creek.  相似文献   

12.
Taxodium distichum (L.) Rich.]. The study site, a swamp in St. Martin Parish, Louisiana, has received municipal wastewater for the last 40 years. Growth chronologies from 1920 to 1992 were developed from cross-dated tree core samples taken from treated and control sites with similar size and age classes. Mean diameter increment (DINC) and mean basal area increment (BAI) chronologies were constructed separately for each stand. These chronologies were then summarized by tree and stand into seven nine-year intervals resulting in three pretreatment intervals from 1926 to 1952 and four treatment intervals from 1953 to 1988. Significant differences in growth response between sites showed a consistent pattern of growth enhancement in the treated site coincident with the onset of effluent discharge. The ratio of treated to control baldcypress growth rates (computed from DINC) averaged 0.74 during the pretreatment period and 1.53 during the treatment period. Over the period of study, control DINC decreased from 77 mm to 29 mm/nine-year interval, while treatment DINC increased slightly from 40 mm to 47 mm/nine-year interval. Control BAI did not increase significantly and averaged 192 cm2/nine-year interval. There was a significant increase in treatment BAI from 129 to 333 cm2/nine-year interval over the period of record. These results clearly demonstrate sustained long-term baldcypress growth enhancement throughout 40 years of municipal effluent discharge.  相似文献   

13.
Escalating concerns about water supplies in the Great Basin have prompted numerous water budget studies focused on groundwater recharge and discharge. For many hydrographic areas (HAs) in the Great Basin, most of the recharge is discharged by bare soil evaporation and evapotranspiration (ET) from phreatophyte vegetation. Estimating recharge from precipitation in a given HA is difficult and often has significant uncertainty, therefore it is often quantified by estimating the natural discharge. As such, remote sensing applications for spatially distributing flux tower estimates of ET and groundwater ET (ETg) across phreatophyte areas are becoming more common. We build on previous studies and develop a transferable empirical relationship with uncertainty bounds between flux tower estimates of ET and a remotely sensed vegetation index, Enhanced Vegetation Index (EVI). Energy balance‐corrected ET measured from 40 flux tower site‐year combinations in the Great Basin was statistically correlated with EVI derived from Landsat imagery (r2 = 0.97). Application of the relationship to estimate mean‐annual ETg from four HAs in western and eastern Nevada is highlighted and results are compared with previous estimates. Uncertainty bounds about the estimated mean ETg allow investigators to evaluate if independent groundwater discharge estimates are “believable” and will ultimately assist local, state, and federal agencies to evaluate expert witness reports of ETg, along with providing new first‐order estimates of ETg.  相似文献   

14.
Abstract:  Knowledge of bankfull discharge (Qbf) is essential for planners, engineers, geomorphologists, environmentalists, agricultural interests, developments situated on flood prone lands, surface mining and reclamation activities, and others interested in floods and flooding. In conjunction with estimating Qbf, regionalized bankfull hydraulic geometry relationships, which relate Qbf and associated channel dimensions (i.e., width, depth, and cross‐section area) to drainage basin area (Ada), are often used. This study seeks to improve upon the common practice of predicting Qbf using Ada exclusively. Specifically, we hypothesize that predictions of Qbf can be improved by including estimates of the 2‐year recurrence‐period discharge (Q2) in regression models for predicting Qbf. For testing this hypothesis, we used Qbf estimates from 30 reports containing data for streams that span 34 hydrologic regions in 16 states. Corresponding values of Q2 and Ada were compiled from flood‐frequency reports and other sources. By comparing statistical measures (i.e., root mean squared error, coefficient of determination, and Akaike’s information criterion), we determined that predicting Qbf from Q2 rather than Ada yields consistently better estimates of Qbf. Other principal findings are (1) data are needed for at least 12 sites in a region for reliable hydraulic geometry model selection and (2) an approximate range of values for Qbf/Q2 is 0.10‐3.0.  相似文献   

15.
Abstract:  Water‐resource managers need to forecast streamflow in the Lower Colorado River Basin to plan for water‐resource projects and to operate reservoirs for water supply. Statistical forecasts of streamflow based on historical records of streamflow can be useful, but statistical assumptions, such as stationarity of flows, need to be evaluated. This study evaluated the relation between climatic fluctuations and stationarity and developed regression equations to forecast streamflow by using climatic fluctuations as explanatory variables. Climatic fluctuations were represented by the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Historical streamflow within the 25‐ to 30‐year positive or negative phases of AMO or PDO was generally stationary. Monotonic trends in annual mean flows were tested at the 21 sites evaluated in this study; 76% of the sites had no significant trends within phases of AMO and 86% of the sites had no significant trends within phases of PDO. As climatic phases shifted in signs, however, many sites had nonstationary flows; 67% of the sites had significant changes in annual mean flow as AMO shifted in signs. The regression equations developed in this study to forecast streamflow incorporate these shifts in climate and streamflow, thus that source of nonstationarity is accounted for. The R2 value of regression equations that forecast individual years of annual flow for the central part of the study area ranged from 0.28 to 0.49 and averaged 0.39. AMO was the most significant variable, and a combination of indices from both the Atlantic and Pacific Oceans explained much more variation in flows than only the Pacific Ocean indices. The average R2 value for equations with PDO and SOI was 0.15.  相似文献   

16.
Hunsaker, Carolyn T., Thomas W. Whitaker, and Roger C. Bales, 2012. Snowmelt Runoff and Water Yield Along Elevation and Temperature Gradients in California’s Southern Sierra Nevada. Journal of the American Water Resources Association (JAWRA) 48(4): 667‐678. DOI: 10.1111/j.1752‐1688.2012.00641.x Abstract: Differences in hydrologic response across the rain‐snow transition in the southern Sierra Nevada were studied in eight headwater catchments – the Kings River Experimental Watersheds – using continuous precipitation, snowpack, and streamflow measurements. The annual runoff ratio (discharge divided by precipitation) increased about 0.1 per 300 m of mean catchment elevation over the range 1,800‐2,400 m. Higher‐elevation catchments have lower vegetation density, shallow soils with rapid permeability, and a shorter growing season when compared with those at lower elevations. Average annual temperatures ranged from 6.8°C at 2,400 m to 8.6 at 1,950 m elevation, with annual precipitation being 75‐95% snow at the highest elevations vs. 20‐50% at the lowest. Peak discharge lagged peak snow accumulation on the order of 60 days at the higher elevations and 20 to 30 days at the lower elevations. Snowmelt dominated the daily streamflow cycle over a period of about 30 days in higher elevation catchments, followed by a 15‐day transition to evapotranspiration dominating the daily streamflow cycle. Discharge from lower elevation catchments was rainfall dominated in spring, with the transition to evapotranspiration dominance being less distinct. Climate warming that results in a longer growing season and a shift from snow to rain would result in earlier runoff and a lower runoff ratio.  相似文献   

17.
Jang, Cheng‐Shin, Chen‐Wuing Liu, Shih‐Kai Chen, and Wen‐Sheng Lin, 2011. Using a Mass Balance Model to Evaluate Groundwater Budget of Seawater‐Intruded Island Aquifers. Journal of the American Water Resources Association (JAWRA) 48(1): 61‐73. DOI: 10.1111/j.1752‐1688.2011.00593.x Abstract: The study developed a mass balance model to evaluate the groundwater budget of seawater‐intruded island aquifers using limited available data. The Penghu islands were selected as a study area. As sparse observed data were available in the islands, methods of combining water and chloride balances were used to determine the amounts of groundwater pumping, seawater intrusion, aquifer storages, and safe yields in the shallow and deep aquifers. The groundwater budget shows that seawater intrusion to freshwater aquifers was 1.38 × 106 and 0.29 × 106 m3/year in the shallow and deep aquifers, respectively, indicating that the seawater intrusion is severe in the both aquifers. The safe yield of the shallow aquifer was 14.56 × 106 m3/year in 2005 which was four times higher than that of the deep aquifer (3.70 × 106 m3/year). However, the annual pumping amounts in the shallow and deep aquifers were 4.77 × 106 and 3.63 × 106 m3/year, respectively. Although the safe yield of the shallow aquifer is enough for all water resources demands, only 55% of exploitation amount was extracted from the shallow aquifer due to its poor water quality. Groundwater exploitation in the deep aquifer should be significantly reduced and regulated by a dynamic management of pumping scheme because the annual pumping amounts are close to the safe yield and seawater intrusion occurs continually. Additionally, to alleviate further aquifer salination, at least half of the current annual groundwater abstraction should be reduced.  相似文献   

18.
Abstract: The potential of remotely sensed time series of biophysical states of landscape to characterize soil moisture condition antecedent to radar estimates of precipitation is assessed in a statistical prediction model of streamflow in a 1,420 km2 watershed in south‐central Texas, Moderate Resolution Imaging Spectroradiometer (MODIS) time series biophysical products offer significant opportunities to characterize and quantify hydrologic state variables such as land surface temperature (LST) and vegetation state and status. Together with Next Generation Weather Radar (NEXRAD) precipitation estimates for the period 2002 through 2005, 16 raw and deseasoned time series of LST (day and night), vegetation indices, infrared reflectances, and water stress indices were linearly regressed against observed watershed streamflow on an eight‐day aggregated time period. Time offsets of 0 (synchronous with streamflow event), 8, and 16 days (leading streamflow event) were assessed for each of the 16 parameters to evaluate antecedent effects. The model results indicated a reasonable correlation (r2 = 0.67) when precipitation, daytime LST advanced 16 days, and a deseasoned moisture stress index were regressed against log‐transformed streamflow. The estimation model was applied to a validation period from January 2006 through March 2007, a period of 12 months of regional drought and base‐flow conditions followed by three months of above normal rainfall and a flood event. The model resulted in a Nash‐Sutcliffe estimation efficiency (E) of 0.45 for flow series (in log‐space) for the full 15‐month period, ?0.03 for the 2006 drought condition period, and 0.87 for the 2007 wet condition period. The overall model had a relative volume error of ?32%. The contribution of parameter uncertainties to model discrepancy was evaluated.  相似文献   

19.
Abstract: This study investigates the regional analysis of annual maximum flood series of 48 stream gauging stations in the basins of the West Mediterranean Region in Turkey. The region is divided into three homogeneous subregions according to both Student‐t test and Dalrymple homogeneity test. The regional relationships of mean annual flood per unit area‐drainage area and coefficient of skew‐coefficient of variation are obtained. Two statistically meaningful relationships of the mean flood per unit area‐drainage area and a unique relationship between skewness and variation coefficients exist. Results show that the index‐flood method may be applicable to each homogenous subregion to estimate flood quantiles in the study area.  相似文献   

20.
This study describes the application of the NASA version of the Carnegie‐Ames‐Stanford Approach (CASA) ecosystem model coupled with a surface hydrologic routing scheme previously called the Hydrological Routing Algorithm (HYDRA) to model monthly discharge rates from 2000 to 2007 on the Merced River drainage in Yosemite National Park, California. To assess CASA‐HYDRA's capability to estimate actual water flows in extreme precipitation years, the focus of this study is the 2007 water year, which was very dry, and the 2005 water year, which was a moderately wet year in the historical record. Prior to comparisons to gauge records, CASA‐HYDRA snowmelt algorithms were modified with equations from the U.S. Department of Agriculture Snowmelt‐Runoff Model (SRM), which has been designed to predict daily streamflow in mountain basins where snowmelt is a major runoff factor. Results show that model predictions closely matched monthly flow rates at the Pohono Bridge gauge station (USGS#11266500), with R2 = 0.67 and Nash‐Sutcliffe (E) = 0.65. By subdividing the upper Merced River basin into subbasins with high spatial resolution in the gridded modeling approach, we were able to determine which biophysical characteristics in the Sierra differed to the largest degree in extreme low‐flow and high‐flow years. Average elevation and snowpack accumulation were found to be the most important explanatory variables to understand subbasin contributions to monthly discharge rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号