首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The Loess Plateau region in northwestern China has experienced severe water resource shortages due to the combined impacts of climate and land use changes and water resource exploitation during the past decades. This study was designed to examine the impacts of climatic variability on streamflow characteristics of a 12‐km2 watershed near Tianshui City, Gansu Province in northwestern China. Statistic analytical methods including Kendall’s trend test and stepwise regression were used to detect trends in relationship between observed streamflow and climatic variables. Sensitivity analysis based on an evapotranspiration model was used to detect quantitative hydrologic sensitivity to climatic variability. We found that precipitation (P), potential evapotranspiration (PET) and streamflow (Q) were not statistically significantly different (p > 0.05) over the study period between 1982 and 2003. Stepwise regression and sensitivity analysis all indicated that P was more influential than PET in affecting annual streamflow, but the similar relationship existed at the monthly scale. The sensitivity of streamflow response to variations of P and PET increased slightly with the increase in watershed dryness (PET/P) as well as the increase in runoff ratio (Q/P). This study concluded that future changes in climate, precipitation in particular, will significantly impact water resources in the Loess Plateau region an area that is already experiencing a decreasing trend in water yield.  相似文献   

2.
Abstract: Quantifying the hydrologic responses to land use/land cover change and climate variability is essential for integrated sustainable watershed management in water limited regions such as the Loess Plateau in Northwestern China where an adaptive watershed management approach is being implemented. Traditional empirical modeling approach to quantifying the accumulated hydrologic effects of watershed management is limited due to its complex nature of soil and water conservation practices (e.g., biological, structural, and agricultural measures) in the region. Therefore, the objective of this study was to evaluate the ability of the distributed hydrologic model, MIKE SHE to simulate basin runoff. Streamflow data measured from an overland flow‐dominant watershed (12 km2) in northwestern China were used for model evaluation. Model calibration and validation suggested that the model could capture the dominant runoff process of the small watershed. We found that the physically based model required calibration at appropriate scales and estimated model parameters were influenced by both temporal and spatial scales of input data. We concluded that the model was useful for understanding the rainfall‐runoff mechanisms. However, more measured data with higher temporal resolution are needed to further test the model for regional applications.  相似文献   

3.
Abstract:  Automated electronic soil moisture sensors, such as time domain reflectometry (TDR) and capacitance probes are being used extensively to monitor and measure soil moisture in a variety of scientific and land management applications. These sensors are often used for a wide range of soil moisture applications such as drought forage prediction or validation of large‐scale remote sensing instruments. The convergence of three different research projects facilitated the evaluation and comparison of three commercially available electronic soil moisture probes under field application conditions. The sensors are all installed in shallow soil profiles in a well instrumented small semi‐arid shrub covered subwatershed in Southeastern Arizona. The sensors use either a TDR or a capacitance technique; both of which indirectly measure the soil dielectric constant to determine the soil moisture content. Sensors are evaluated over a range of conditions during three seasons comparing responses to natural wetting and drying sequences and using water balance and infiltration simulation models. Each of the sensors responded to the majority of precipitation events; however, they varied greatly in response time and magnitude from each other. Measured profile soil moisture storage compared better to water balance estimates when soil moisture in deeper layers was accounted for in the calculations. No distinct or consistent trend was detected when comparing the responses from the sensors or the infiltration model to individual precipitation events. The results underscore the need to understand how the sensors respond under field application and recognize the limitations of soil moisture sensors and the factors that can affect their accuracy in predicting soil moisture in situ.  相似文献   

4.
Runoff was measured from seven plots with different slopes nested in Tuanshangou catchment on the Loess Plateau to study effect of slopes on runoff in relation to rainfall regimes. Based on nine years of field observation and K-mean clusters, 84 rainfall events were grouped into three rainfall regimes. Rainfall regime A is the group of events with strong rainfall intensity, high frequency, and short duration. Rainfall regime C consists of events with low intensity, long duration, and infrequent occurrence. Rainfall regime B is the aggregation of events of medium intensity and medium duration, and less frequent occurrence. The following results were found: (1) Different from traditional studies, runoff coefficient neither decreased nor increased, but presented peak value on the slope surfaces; (2) For individual plot, runoff coefficients induced by rainfall regime A were the highest, and those induced by rainfall regime C were the lowest; Downslope, the runoff coefficients induced by three rainfall regimes presented the same changing trend, although the peak value induced by regime A occurred on a shorter slope length compared to those by regime B and C; (3) Scale effect on runoff induced by rainfall regime A was the least, and that induced by rainfall regime C was the largest. These results can be explained by the interactions of crusting, soil moisture content, slope length and gradient, and erosion units, etc., in the context of different rainfall regimes.  相似文献   

5.
李斌  张金屯 《四川环境》2010,29(2):75-78
利用基于GIS的黄土高原植被类型分布图,结合黄土高原地区标准气象站的气象因子资料,对黄土高原植被类型变化和空间分布对气象因子变化的响应关系进行了分析。结果显示:从东南到西北,年降水量、月平均最高气温、月平均最低气温逐渐减少,年平均气温、全年日照时数、全年最大蒸散量、平均风速逐渐增加,植被类型由东南湿润半湿润森林、半干旱森林草原往西北转变成轻干旱、重半干旱的温性草原、干旱的荒漠半荒漠植被。  相似文献   

6.
Xu XZ  Li MJ  Liu B  Kuang SF  Xu SG 《Environmental management》2012,49(5):1092-1101
A large number of soil and water conservation programs have been implemented on the Loess Plateau of China since the 1950s. To comprehensively assess the merits and demerits of the conservation practices is of great importance in further supervising the conservation strategy for the Loess Plateau. This study calculates the impact factors of conservation practices on soil, water, and nutrients during the period 1954–2004 in the Nanxiaohegou Catchment, a representative catchment in the Loess Mesa Ravine Region of the Loess Plateau, China. Brief conclusions could be drawn as follows: (1) Soil erosion and nutrient loss had been greatly mitigated through various conservation practices. About half of the total transported water and 94.8 % of the total transported soil and nutrients, had been locally retained in the selected catchment. The soil retained from small watersheds do not only form large-scale fertile farmland but also safeguard the Yellow River against overflow. (2) Check dam was the most appropriate conservation practice on the Loess Plateau. In the selected catchment, more than 90 % of the retained soil and water were accomplished by the dam farmland, although the dam farmland occupied only 2.3 % of the total area of all conservation measures. Retention abilities of the characteristic conservation practices were in the following order: dam farmland > terrace farmland > forest land and grassland. (3) The conservation practices were more powerful in retaining sediment than in reducing runoff from the Loess Plateau, and the negative effects of the conservation practices on reducing water to the Yellow River were relatively slight.  相似文献   

7.
Abstract: Mapping stream channels and their geomorphic attributes is an important step in many watershed research and management projects. Often insufficient field data exist to map hydromorphologic attributes across entire drainage basins, necessitating the application of hydrologic modeling tools to digital elevation models (DEMs) via a geographic information system (GIS). In this article, we demonstrate methods for deriving synthetic stream networks via GIS across large and diverse basins using drainage‐enforced DEMs, along with techniques for estimating channel widths and gradient on the reach scale. The two‐step drainage enforcement method we used produced synthetic stream networks that displayed a high degree of positional accuracy relative to the input streams. The accuracies of our estimated channel parameters were assessed with field data, and predictions of bankfull width, wetted width and gradient were strongly correlated with measured values (r2 = 0.92, r2 = 0.95, r2 = 0.88, respectively). Classification accuracies of binned channel attributes were also high. Our methodology allows for the relatively rapid mapping of stream channels and associated morphological attributes across large geographic areas. Although initially developed to provide salmon recovery planners with important salmon habitat information, we suggest these methodologies are relevant to a variety of research and management questions.  相似文献   

8.
Abstract: The spatial variability of the data used in models includes the spatial discretization of the system into subsystems, the data resolution, and the spatial distribution of hydrologic features and parameters. In this study, we investigate the effect of the spatial distribution of land use, soil type, and precipitation on the simulated flows at the outlet of “small watersheds” (i.e., watersheds with times of concentration shorter than the model computational time step). The Soil and Water Assessment Tool model was used to estimate runoff and hydrographs. Different representations of the spatial data resulted in comparable model performances and even the use of uniform land use and soil type maps, instead of spatially distributed, was not noticeable. It was found that, although spatially distributed data help understand the characteristics of the watershed and provide valuable information to distributed hydrologic models, when the watershed is small, realistic representations of the spatial data do not necessarily improve the model performance. The results obtained from this study provide insights on the relevance of taking into account the spatial distribution of land use, soil type, and precipitation when modeling small watersheds.  相似文献   

9.
西北干旱区生态环境特征及开发利用建议   总被引:3,自引:1,他引:3  
中国西北干旱区是我国进行西部大开发的重要区域之一,占据全国1/4的面积,资源相对丰富,是我国经济发展的后劲所在。然而,西北干旱区气候干旱、生态环境脆弱,人地关系较为复杂,矛盾突出,许多生态环境问题不得不给予足够的重视。本文从生态环境赖以形成的地质历史出发,分析了西北干旱区生态环境的特点及现存的若干问题,并提出了相应的建议。  相似文献   

10.
Wise, Daniel R. and Henry M. Johnson, 2011. Surface‐Water Nutrient Conditions and Sources in the United States Pacific Northwest. Journal of the American Water Resources Association (JAWRA) 47(5):1110‐1135. DOI: 10.1111/j.1752‐1688.2011.00580.x Abstract: The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface‐water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency’s recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface‐water nutrient conditions and should be useful to environmental managers in future water‐quality planning efforts.  相似文献   

11.
Abstract: Previous investigations observed significant seepage losses from the Rio Grande to the shallow aquifer between Socorro and San Antonio, New Mexico. High‐resolution telescopic modeling was used along a 10‐km reach of the Rio Grande and associated drains and canals to evaluate several management alternatives aimed at improving river conveyance efficiency. Observed data consisted of ground‐water and surface‐water elevations, seepage rates along the Rio Grande and associated canals and drains, and borehole geology. Model calibration was achieved by adjusting hydraulic conductivity and specific storage until the output matched observed data. Sensitivity analyses indicated that the system was responsive to changes in hydrogeologic properties, especially when such alterations increased vertical connectivity between layers. The calibrated model predicted that removal of the low flow conveyance channel, a major channel draining the valley, would not only decrease river seepage by 67%, but also decrease total flow through the reach by 75%. The decreased flow through the reach would result in increased water logging and an average increase in ground‐water elevations of 1.21 meter. Simulations of the system with reduced riparian evapotranspiration rates or a relocated river channel also predicted decreased river seepage, but to a much lesser degree.  相似文献   

12.
House-Peters, Lily, Bethany Pratt, and Heejun Chang, 2010. Effects of Urban Spatial Structure, Sociodemographics, and Climate on Residential Water Consumption in Hillsboro, Oregon. Journal of the American Water Resources Association (JAWRA) 46(3):461-472. DOI: 10.1111/j.1752-1688.2009.00415.x Abstract: In the Portland metropolitan area, suburban growth in cities such as Hillsboro is projected to increase as people seek affordable housing near a burgeoning metropolis. The most significant determinants for increases in water demand are population growth, climate change, and the type of urban development that occurs. This study analyzes the spatial patterns of single family residential (SFR) water consumption in Hillsboro, Oregon, at the census block scale. The following research questions are addressed: (1) What are the significant determinants of SFR water consumption in Hillsboro, Oregon? (2) Is SFR water demand sensitive to drought conditions and interannual climate variation? (3) To what magnitude do particular census blocks react to drought conditions and interannual climate variation? Using ordinary least squares multiple regression and spatial regression methods, we found that base use, representing indoor water use, is dependent on household size and that seasonal use, representing external water use is dependent on both education level and the size of the property’s outdoor space. Spatial analysis techniques determined that although the water demand of the study area as a whole is not sensitive to drought conditions, certain individual census blocks do respond with a higher magnitude of water use. The most climate-sensitive census blocks tend to contain newer and larger homes, and have higher property values and more affluent and well-educated residents.  相似文献   

13.
James Androwski, Abraham Springer, Thomas Acker, and Mark Manone, 2011. Wind‐Powered Desalination: An Estimate of Saline Groundwater in the United States. Journal of the American Water Resources Association (JAWRA) 47(1):93‐102. DOI: 10.1111/j.1752‐1688.2010.00493.x Abstract: Increasing scarcity of freshwater resources in many regions of the world is leading water resource managers to consider desalination as a potential alternative to traditional freshwater supplies. Desalination technologies are energy intensive and expensive to implement making desalination using renewable energy resources a potentially attractive option. Unfortunately, saline groundwater resources are not well characterized for many regions hindering consideration of such technologies. In this assessment, we estimate the saline groundwater resources of the principal aquifers of the United States using a geographic information system and correlate these resources to wind resources potentially sufficient to supply the energy demand of desalination equipment. We estimate that 3.1 × 1014 m3 saline groundwater, total volume, are contained in 28 of the country’s principal aquifers known to contain saline groundwater. Of this volume, 1.4 × 1014 m3 saline groundwater are co‐located with wind resources sufficient for electrical generation to desalinate groundwater.  相似文献   

14.
Anderson, SallyRose, Glenn Tootle, and Henri Grissino‐Mayer, 2012. Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree‐Ring Chronologies. Journal of the American Water Resources Association (JAWRA) 48(4): 849‐858. DOI: 10.1111/j.1752‐1688.2012.00651.x Abstract: Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. We used tree‐ring chronologies to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k‐nearest neighbor techniques. We correlated moisture sensitive tree‐ring chronologies in and adjacent to the UCRB with regional soil moisture and tested the relationships for temporal stability. Chronologies that were positively correlated and stable for the calibration period were retained. We used stepwise linear regression to identify the best predictor combinations for each soil moisture region. The regressions explained 42‐78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained more variance in the datasets. Reconstructed soil moisture data was standardized and compared with standardized reconstructed streamflow and snow water equivalent data from the same region. Soil moisture and other hydrologic variables were highly correlated, indicating reconstructions of soil moisture in the UCRB using tree‐ring chronologies successfully represent hydrologic trends.  相似文献   

15.
Chang, Jian‐xia, Yi‐min Wang, and Qiang Huang, 2011. Water Dispatch Model for Middle Route of a South‐to‐North Water Transfer Project in China. Journal of the American Water Resources Association (JAWRA) 47(1):70‐80. DOI: 10.1111/j.1752‐1688.2010.00478.x Abstract: The objective of this paper is to present a simulation model to address the water dispatch problem of the south‐to‐north water transfer project for the Middle Route system in China. Reasonable rules and a system network structure are established. This model consists of five modules: (1) a data‐processing module, (2) an initial control module, (3) a multisource simulation dispatch module, (4) a system identification module, and (5) a revision module. Water allocated to each province and city along the route is obtained by simulation, and the long‐term operation results show that water supply reliabilities are significantly improved if the transferred water is jointly dispatched with the local water resources.  相似文献   

16.
Abstract: An ensemble of rule‐based models was constructed to assess possible future braided river planform configurations for the Toklat River in Denali National Park and Preserve, Alaska. This approach combined an analysis of large‐scale influences on stability with several reduced‐complexity models to produce the predictions at a practical level for managers concerned about the persistence of bank erosion while acknowledging the great uncertainty in any landscape prediction. First, a model of confluence angles reproduced observed angles of a major confluence, but showed limited susceptibility to a major rearrangement of the channel planform downstream. Second, a probabilistic map of channel locations was created with a two‐parameter channel avulsion model. The predicted channel belt location was concentrated in the same area as the current channel belt. Finally, a suite of valley‐scale channel and braid plain characteristics were extracted from a light detection and ranging (LiDAR)‐derived surface. The characteristics demonstrated large‐scale stabilizing topographic influences on channel planform. The combination of independent analyses increased confidence in the conclusion that the Toklat River braided planform is a dynamically stable system due to large and persistent valley‐scale influences, and that a range of avulsive perturbations are likely to result in a relatively unchanged planform configuration in the short term.  相似文献   

17.
Salt-affected soils are a major threat to agriculture especially in the semiarid regions of the world. The effective management of these soils requires adequate understanding of not only how water and, hence, solutes are transported within the soil, but also how soil salinity and sodicity spatially interact to determine soil structural breakdown. For sustainable agricultural production, information on quantitative soil quality, such as salinity, is required for effective land management and environmental planning. In this study, quantitative methods for mapping indicators of soil structural stability, namely salinity and sodicity, were developed to assess the effect of these primary indicators on soil structural breakdown. The current levels of soil salinity, as measured by electrical conductivity (EC) of the soil/water suspension, soil sodicity, represented by exchangeable sodium percentage (ESP), and aggregate stability, were assessed. Remote sensing, geographical information system (GIS), and geostatistical techniques-primarily regression-kriging and indicator-kriging-were used to spatially predict the soil sodicity and salinity. The patterns of salinity (EC) and sodicity (ESP > 5%) were identified. The effect of land use on these soil quality indicators was found to be minimal. Co-spatial patterns were elucidated between sodic soils (defined by ESP > 5%) and highly probable mechanically dispersive soils predicted from indicator-kriging of ASWAT scores. It was established that the incorporation of EC with ESP into an objective index, called electrolyte stability index (ESI = ESP/EC), gave a good indication of soil dispersion, although the threshold ESI value below which effective structural breakdown might occur is 0.025, which is twice as small as the expected 0.05. The discrepancies between ESI and ASWAT scores suggest that other soil factors than salinity and sodicity are affecting soil structural breakdown. This calls for further investigation. The study provides valuable information in the form of risk zones of soil structural breakdown for land management. These zones, with a probability of mechanical soil dispersion of >0.70, require immediate management attention with greater monitoring and amelioration techniques, particularly gypsum or lime application and/or altered cultivation techniques.  相似文献   

18.
Plant–soil interactions are known to influence a wide range of ecosystem-level functions. Moreover, the recovery of these functions is of importance for the successful restoration of soils that have been degraded through intensive and/or inappropriate land use. Here, we assessed the effect of planting treatments commonly used to accelerate rates of grassland restoration, namely introduction of different legume species Medicago sativa, Astragalus adsurgens, Melilotus suaveolens, on the recovery of soil microbial communities and carbon and nitrogen contents in abandoned fields of the Loess Plateau, China. The results showed effects were species-specific, and either positive, neutral or negative depending on the measure and time-scale. All legumes increased basal respiration and metabolic quotient and had a positive effect on activity and functional diversity of the soil microbial community, measured using Biolog EcoPlate. However, soil under Astragalus adsurgens had the highest activity and functional diversity relative to the other treatments. Soil carbon and nitrogen content and microbial biomass were effectively restored in 3–5?years by introducing Medicago sativa and Astragalus adsurgens into early abandoned fields. Soil carbon and nitrogen content were retarded in 3–5?years and microbial biomass was retarded in the fifth year by introducing Melilotus suaveolens. Overall, the restoration practices of planting legumes can significantly affect soil carbon and nitrogen contents, and the biomass, activity, and functional diversity of soil microbial community. Therefore, we propose certain legume species could be used to accelerate ecological restoration of degraded soils, hence assist in the protection and preservation of the environment.  相似文献   

19.
To assess the recovery trajectory and self-maintenance of restored ecosystems, a successional gradient (1, 3, 5, 15, and 30 years after abandonment) was established in a sub-alpine meadow of the eastern Tibetan Plateau in China. Plant communities and soil carbon and nitrogen properties were investigated and analyzed. Regression analyses were used to assess the models (linear or quadratic) relating measures of species richness, soil carbon and nitrogen properties to fallow time. We found that species richness (S) increased over the first 20 years but decreased thereafter, and aboveground biomass showed a linear increase along the fallow time gradient. The richness of different functional groups (forb, grass and legume) changed little along the fallow time gradient, but their corresponding above ground biomass showed the U-shaped, humped or linear pattern. Soil microbial carbon (MBC) and nitrogen (MBN) in the upper 20 cm showed a U-shaped pattern along the fallow time gradient. However, soil organic carbon (Corg) and total nitrogen (TN) in the soil at depth greater than 20 cm showed significant patterns of linear decline along the fallow time gradient. The threshold models of species richness reflected best the recovery over the 15 year fallow period. These results indicated that fallow time had a greater influence on development of the plant community than soil processes in abandoned fields in sub-alpine meadow ecosystem. These results also suggested that although the succession process did not significantly increase soil C, an increase in microbial biomass at the latter stage of succession could promote the decomposability of plant litter. Therefore, abandoned fields in sub-alpine meadow ecosystem may have a high resilience and strong rehabilitating capability under natural recovery condition.  相似文献   

20.
Kibler, Kelly, Desiree Tullos, and Mathias Kondolf, 2011. Evolving Expectations of Dam Removal Outcomes: Downstream Geomorphic Effects Following Removal of a Small, Gravel‐Filled Dam. Journal of the American Water Resources Association (JAWRA) 1‐16. DOI: 10.1111/j.1752‐1688.2011.00523.x Abstract: Dam removal is a promising river restoration technique, particularly for the vast number of rivers impounded by small dams that no longer fulfill their intended function. As the decommissioning of small dams becomes increasingly commonplace in the future, it is essential that decisions regarding how and when to remove these structures are informed by appropriate conceptual ideas outlining potential outcomes. To refine predictions, it is necessary to utilize information from ongoing dam removal monitoring to evolve predictive tools, including conceptual models. Following removal of the Brownsville Dam from the Calapooia River, Oregon, aquatic habitats directly below the dam became more heterogeneous over the short term, whereas changes further downstream were virtually undetectable. One year after dam removal, substrates of bars and riffles within 400 m downstream of the dam coarsened and a dominance of gravel and cobble sediments replaced previously hardpan substrate. New bars formed and existing bars grew such that bar area and volume increased substantially, and a pool‐riffle structure formed where plane‐bed glide formations had previously dominated. As the Brownsville Dam stored coarse rather than fine sediments, outcomes following removal differ from results of many prior dam removal studies. Therefore, we propose a refined conceptual model describing downstream geomorphic processes following small dam removal when upstream fill is dominated by coarse sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号