首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Analysis of results from an electrical resistivity survey, a magnetic survey, and an aquifer test performed on the Leona River floodplain in south‐central Texas indicates that ground‐water discharge from the Edwards Aquifer through the Leona River floodplain may be as great as 91.7 Mm3/year. When combined with an estimate of 8.8 Mm3/year for surface flow in the Leona River, as much as 100.5 Mm3/year could be discharged from the Edwards Aquifer through the Leona River floodplain. A value of 11,200 acre‐ft/year (13.82 Mm3/year) has been used as the calibration target in existing ground‐water models for total discharge from Leona Springs and the Leona River. Including ground water or underflow discharge would significantly increase the calibration target in future models. This refinement would improve the conceptualization of ground‐water flow in the western portion of the San Antonio segment of the Edwards Aquifer and would thereby allow for more accurate assessment and management of the ground‐water resources provided by the Edwards Aquifer.  相似文献   

2.
ABSTRACT: Snow course surveys in late winter provide stream‐flow forecasters with their best information for making water supply and flood forecasts for the subsequent spring and summer runoff period in mountainous regions of western North America. Snow survey data analyses are generally based on a 30‐year “normal” period. It is well documented that forest cover changes over time will affect snow accumulation on the ground within forests. This paper seeks to determine if forest cover changes over decades at long term snow courses decrease measured peak snow water equivalent (SWE) enough to affect runoff prediction. Annual peak SWE records were analyzed at four snow courses in two different forest types having at least 25 years of snowpack data to detect any decreases in SWE due to forest growth. No statistically significant decreases in annual peak SWE over time were found at any of these four snow courses. The wide range of annual winter precipitation and correspondingly highly variable peak snowpack accumulation, as well as many other weather and site variables, masked any minor trends in the data.  相似文献   

3.
Abstract: More than 85% of NO3? losses from watersheds in the northeastern United States are exported during winter months (October 1 to May 30). Interannual variability in NO3? loads to individual streams is closely related to interannual climatic variations, particularly during the winter. The objective of our study was to understand how climatic and hydrogeological factors influence NO3? dynamics in small watersheds during the winter. Physical parameters including snow depth, soil temperature, stream discharge, and water table elevation were monitored during the 2007‐2008 winter in two small catchments in the Adirondack Mountains, New York State. Snowpack persisted from mid‐December to mid‐April, insulating soils such that only two isolated instances of soil frost were observed during the study period. NO3? export during a mid‐winter rain‐on‐snowmelt event comprised between 8 and 16% of the total stream NO3? load for the four‐month winter study period. This can be compared with the NO3? exported during the final spring melt, which comprised between 38 and 45% of the total four‐month winter NO3? load. Our findings indicate that minor melt events were detectable with changes in soil temperature, streamflow, groundwater level, and snow depth. But, based on loading, these events were relatively minor contributors to winter NO3? loss. A warmer climate and fluctuating snowpack may result in more major mid‐winter melt events and greater NO3? export to surface waters.  相似文献   

4.
Stream temperature changes as a result of forest practices have been a concern in the Pacific Northwest for several decades. As a result of this concern, stream protection requirements for forest lands were first adopted in the early 1970s and have become progressively more stringent. While there have been multiple studies examining the effects of stream protection buffers on water temperature, there are few studies examining temperature patterns over long periods on intensively managed forests. Water temperature in the upper Deschutes River watershed, Washington has been monitored since 1975 and represents one of the longest studies of water quality on managed forests in the Pacific Northwest. This data record, collected from basins of varying sizes, has enabled us to examine the combined effects of hydro‐climatic patterns and forest management on stream temperature. Effects of harvest conducted prior to buffer regulations were clearly identifiable and most pronounced on smaller streams. We were not able to detect any response on larger channels to more recent timber harvest where riparian buffers were required. This analysis also emphasizes that it is critical to account for changing climate when examining long‐term temperature patterns. We found that in many cases the temperature improvements associated with more stringent buffer requirements implemented over the last 35 years in the Deschutes watershed have been offset by warming climatic conditions.  相似文献   

5.
ABSTRACT: To investigate the impacts of urbanization and climatic fluctuations on stream flow magnitude and variability in a Mediterranean climate, the HEC‐HMS rainfall/runoff model is used to simulate stream flow for a 14‐year period (October 1, 1988, to September 30, 2002) in the Atascadero Creek watershed located along the southern coast of California for 1929, 1998, and 2050 (estimated) land use conditions (8, 38 and 52 percent urban, respectively). The 14‐year period experienced a range of climatic conditions caused mainly by El Nino‐Southern Oscillation variations. A geographic information system is used to delineate the watershed and parameterize the model, which is calibrated using data from two stream flow and eight rainfall gauges. Urbanization is shown to increase peak discharges and runoff volume while decreasing stream flow variability. In all cases, the annual and 14‐year distributions of stream flow are shown to be highly skewed, with the annual maximum 24 hours of discharge accounting for 22 to 52 percent of the annual runoff and the maximum ten days of discharge from an average El Nino year producing 10 to 15 percent of the total 14‐year discharge. For the entire period of urbanization (1929 to 2050), the average increase in annual maximum discharges and runoff was 45 m3/s (300 percent) and 15 cm (350 percent), respectively. Additionally, the projected increase in urbanization from 1998 to 2050 is half the increase from 1929 to 1998; however, increases in runoff (22 m3/s and 7 cm) are similar for both scenarios because of the region's spatial development pattern.  相似文献   

6.
Headwater streams are the most numerous in terms of both number and length in the conterminous United States and play important roles as spawning and rearing grounds for numerous species of anadromous fish. Stream temperature is a controlling variable for many physical, chemical, and biological processes and plays a critical role in the overall health and integrity of a stream. We investigated the controls on stream temperature in salmon‐bearing headwater streams in two common hydrogeologic settings on the Kenai Peninsula, Alaska: (1) drainage‐ways, which are low‐gradient streams that flow through broad valleys; and (2) discharge‐slopes, which are high gradient streams that flow through narrow valleys. We hypothesize local geomorphology strongly influences surface‐water and groundwater interactions, which control streamflow at the network scale and stream temperatures at the reach scale. The results of this study showed significant differences in stream temperatures between the two hydrogeologic settings. Observed stream temperatures were higher in drainage‐way sites than in discharge‐slope sites, and showed strong correlations as a continuous function with the calculated topographic metric flow‐weighted slope. Additionally, modeling results indicated the potential for groundwater discharge to moderate stream temperature is not equal between the two hydrogeologic settings, with groundwater having a greater moderating effect on stream temperature at the drainage‐way sites.  相似文献   

7.
Abstract: The Crown of the Continent is one of the premiere ecosystems in North America containing Waterton‐Glacier International Peace Park, the Bob Marshall‐Great Bear‐Scapegoat Wilderness Complex in Montana, various Provincial Parks in British Columbia and Alberta, several national and state forest lands in the USA, and Crown Lands in Canada. The region is also the headwater source for three of the continent’s great rivers: Columbia, Missouri and Saskatchewan that flow to the Pacific, Atlantic and Arctic Oceans, respectively. Headwaters originate in high elevation alpine environs characterized by high snow accumulations in winter and rainstorms in summer. Most headwaters of the region contain high quality waters with few ions in solution and extremely low nutrient concentrations. Alpine streams have few species of aquatic organisms; however, they often possess rare species and have hydrogeomorphic features that make them vulnerable to climatic change. Subalpine and valley bottom streams of the Crown of the Continent Ecosystem (CCE) flow through well forested watersheds. Along the elevation gradient, the streams and rivers of the CCE flow through series of confining and nonconfining valleys resulting in distinct canyon and floodplain reaches. The alluvial floodplains are characterized by high species diversity and bioproduction maintained by the hydrologic linkages of habitats. The streams and rivers of the CCE have low nutrient concentrations, but may be significantly affected by wildfire, various resource extraction activities, such as logging or mining and exurban encroachment. Wildfire has been shown to increase nutrient loading in streams, both during a fire and then following the fire for as much as 5 years. Logging practices increase nutrient loading and the algal productivity of stream periphyton. Logging and associated roads are also known to increase sediment transport into Crown of the Continent streams directly affecting spawning success of native trout. The CCE is one of the fastest growing regions in the USA because of the many recreational amenities of the region. And, while the region has many remarkably pristine headwater streams and receiving rivers, there are many pending threats to water quality and quantity. One of the most urgent threats comes from the coal and gas fields in the northern part of the Crown of the Continent, where coal deposits are proposed for mountain‐top removal and open‐pit mining operations. This will have significant effects on the waters of the region, its native plants and animals and quality of life of the people.  相似文献   

8.
Mayer, Timothy D. and Seth W. Naman, 2011. Streamflow Response to Climate as Influenced by Geology and Elevation. Journal of the American Water Resources Association (JAWRA) 47(4):724‐738. DOI: 10.1111/j.1752‐1688.2011.00537.x Abstract: This study examines the regional streamflow response in 25 predominately unregulated basins to warmer winter temperatures and snowpack reductions over the last half century in the Klamath Basin of California and Oregon. Geologic controls of streamflow in the region result in two general stream types: surface‐dominated and groundwater‐dominated basins. Surface‐dominated basins were further differentiated into rain basins and snowmelt basins on the basis of elevation and timing of winter runoff. Streamflow characteristics and response to climate vary with stream type, as discussed in the study. Warmer winter temperatures and snowpack reductions have caused significantly earlier runoff peaks in both snowmelt and groundwater basins in the region. In the groundwater basins, the streamflow response to changes in snowpack is smoothed and delayed and the effects are extended longer in the summer. Our results indicate that absolute decreases in July‐September base flows are significantly greater, by an order of magnitude, in groundwater basins compared to surface‐dominated basins. The declines are important because groundwater basins sustain Upper Klamath Lake inflows and mainstem river flows during the typically dry summers of the area. Upper Klamath Lake April‐September net inflows have decreased an estimated 16% or 84 thousand acre‐feet (103.6 Mm3) since 1961, with the summer months showing proportionately more decline. These changes will exacerbate water supply problems for agriculture and natural resources in the region.  相似文献   

9.
ABSTRACT: Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged streams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the relationship between average discharge and drainage area in streams draining less than 200 acres was consistent with that of larger basins in the size range (> 10 square miles) typically gaged by the U.S. Geological Survey (USGS). This study was designed to evaluate predictors of average discharge in small ungaged streams for regulatory purposes, since many stream regulations, as well as recommendations for best management practices, are based on measures of stream size, including average discharge. The average discharge/drainage area relationship determined from gages on large streams held true down to the perennial flow initiation point. For the southern Appalachians, basin size corresponding to perennial flow is approximately 19 acres, ranging from 11 to 32 acres. There was a strong linear relationship (R2= 0.85) between average discharge and drainage area for all streams draining between 16 and 200 acres, and the average discharge for these streams was consistent with that predicted by the USGS Unit Area Runoff Map for Georgia. Drainage area was deemed an accurate predictor of average discharge, even in very small streams. Channel morphological features, such as active channel width, cross‐sectional area, and bankfull flow predicted from Manning's equation, were not accurate predictors of average discharge. Monthly baseflow statistics also were poor predictors of average discharge.  相似文献   

10.
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   

11.
Sage Creek in south‐central Wyoming is listed as impaired by the U.S. Environmental Protection Agency (USEPA) due to its sediment contribution to the North Platte River. Despite the magnitude of sediment impacts on streams, little research has been conducted to characterize patterns of sediment transport or to model suspended sediment concentration in many arid western U.S. streams. This study examined the relationship between stream discharge and suspended sediment concentration near the Sage Creek and North Platte River confluence from 1998 through 2003. The objectives were to determine patterns of stream discharge and suspended sediment concentration, produce a sediment prediction model, and compare sediment concentrations for the six‐year period. Stream discharge and suspended sediment transport responded rapidly to convective storms and spring runoff events. During the study period, events exceeding 0.23 m3/s accounted for 92 percent of the sediment load, which is believed to originate from erodible headwater uplands. Further analysis of these data indicates that time series modeling is superior to simple linear regression in predicting sediment concentration. Significant increases in suspended sediment concentration occurred in all years except 2003. This analysis suggests that a six‐year monitoring record was insufficient to factor out impacts from climate, geology, and historical sediment storage.  相似文献   

12.
ABSTRACT: A grid based daily hydrologic model for a watershed with paddy fields was developed to predict the stream discharge. ASCII formatted elevation, soil, and land use data supported by the GRASS Geographic Information System are used to generate distributed results such as surface runoff and subsurface flow, soil water content, and evapotranspiration. The model uses a single flow path algorithm and simulates a water balance at each grid element. A linear reservoir assumption was used to predict subsurface runoff components. The model was applied to a 75.6 km2 watershed located in the middle of South Korea, and observed stream flow hydrographs from 1995 and 1996 were compared to model predictions. The stream flow predictions of 1995 and 1996 generally agreed with the observed flow, resulting in a Nash‐Sutcliffe efficiency R2 of 0.60 and 0.62, respectively. The hydraulic conductivity for percolating water through the saturated layer affected baseflow generation. The levee height of the paddy influenced the time and magnitude of the surface runoff, depending on irrigation management. The model will be used for making low flow management decisions by evaluating the role of each land use to stream flow, especially in case of paddy decrease by gradual urbanization of a watershed.  相似文献   

13.
Abstract: The volume and sustainability of streamflow from headwaters to downstream reaches commonly depend on contributions from ground water. Streams that begin in extensive aquifers generally have a stable point of origin and substantial discharge in their headwaters. In contrast, streams that begin as discharge from rocks or sediments having low permeability have a point of origin that moves up and down the channel seasonally, have small incipient discharge, and commonly go dry. Nearly all streams need to have some contribution from ground water in order to provide reliable habitat for aquatic organisms. Natural processes and human activities can have a substantial effect on the flow of streams between their headwaters and downstream reaches. Streams lose water to ground water when and where their head is higher than the contiguous water table. Although very common in arid regions, loss of stream water to ground water also is relatively common in humid regions. Evaporation, as well as transpiration from riparian vegetation, causing ground‐water levels to decline also can cause loss of stream water. Human withdrawal of ground water commonly causes streamflow to decline, and in some regions has caused streams to cease flowing.  相似文献   

14.
The Pacific Northwest is expected to witness changes in temperature and precipitation due to climate change. In this study, we enhance the Snake River Planning Model (SRPM) by modeling the feedback loop between incidental recharge and surface water supply resulting from surface water and groundwater extraction for irrigation and provide a case study involving climate change impacts and management scenarios. The new System Dynamics‐Snake River Planning Model (SD‐SRPM) is calibrated to flow at Box Canyon Springs located along a major outlet of the East Snake Plain Aquifer. A calibration of the model to flow at Box Canyon Springs, based on historic diversions (1950‐1995) resulted in an r2 value of 0.74 and a validation (1996‐2005) r2 value of 0.60. After adding irrigation entities to the model an r2 value of 0.91, 0.88, and 0.87 were maintained for modeled vs. observed (1991‐2005) end‐of‐month reservoir content in Jackson Lake, Palisades, and American Falls, the three largest irrigation reservoirs in the system. The scenarios that compared the impacts of climate change were based on ensemble mean precipitation change scenarios and estimated changes to crop evapotranspiration (ET). Increased ET, despite increased precipitation, generally increased surface water shortages and discharge of springs. This study highlights the need to develop and implement models that integrate the human‐natural system to understand the impacts of climate change.  相似文献   

15.
ABSTRACT: The objective of this study was to examine the chemistry of Coalbed Methane (CBM) discharge water reacting with semi‐arid ephemeral stream channels in the Powder River Basin, Wyoming. The study area consisted of two ephemeral streams: Burger Draw and Sue Draw. These streams are tributaries to the perennial Powder River. Samples were collected bimonthly from three CBM discharge points and seven channel locations in Burger Draw and Sue Draw. Samples were also collected bimonthly from the Powder River above and below the confluence of Burger Draw. Before sample collection, the pH and electrical conductivity (EC) were measured in the field. Samples were transported to the laboratory and analyzed for alkalinity, major cations, and anions. From the measurement of sodium (Na), calcium (Ca), and magnesium (Mg), practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated. Results suggest pH and EC of CBM discharge water was 7.1 and 4.3 dS/m, respectively. The CBM discharge water consisted of higher concentrations of sodium and alkalinity compared to other components. The pH of CBM discharge water increased significantly (p = 0.000) in the downstream channel of Burger Draw from 7.1 to 8.84 before it joined with the Powder River. Dissolved calcium concentration of CBM discharge water decreased significantly (p = 0.000) in the downstream channel water. Subsequently, SARp increased approximately from 24 to 29. The SARt also increased significantly (p = 0.001) in the downstream channel water. For instance, SARt of CBM discharge water increased from 32.93 to 45.5 downstream channels after the confluence of Sue Draw with the Burger Draw. The only significant difference in water chemistry above and below the confluence of Burger Draw with the Powder River was pH, which increased from 8.36 to 8.52. The significant increase in SAR values of CBM discharge water in Burger Draw and Sue Draw tributaries suggest a careful monitoring of salinity and sodicity is needed if CBM discharge water is used for irrigation in semi‐arid environments. Results discussed in this study will be useful to downstream water users who depend on water for irrigation.  相似文献   

16.
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined.  相似文献   

17.
ABSTRACT: Single‐barrel culverts are a common means of roadway crossings for smaller streams. While this culvert design provides an economical solution for a crossing, the adverse effects of conveying the stream through a single opening can be far reaching. The single‐barrel culvert is typically sized for a design storm much greater than the channel forming discharge. This oversizing causes an interruption of the normal flow patterns and sediment transport for the system. Shallow depths at low flow in the pipe and perching at the outlet can impede fish passage. Multicell culverts (where the main culvert at the channel invert is sized for bankfull discharge, and additional pipes are placed at the floodplain elevation to convey overbank flow up to the design discharge) have been recommended as a best management practice to minimize erosion and improve fish passage. This flume study scaled a prototype single‐barrel culvert to both a single‐cell model, and a multicell design to compare outlet scour and flow depths within the culvert. The results provide designers and planners with evidence of the benefits of multicell culverts to justify the higher cost of installation compared to single‐barrel culverts.  相似文献   

18.
Wigington, Parker J., Jr., Scott G. Leibowitz, Randy L. Comeleo, and Joseph L. Ebersole, 2012. Oregon Hydrologic Landscapes: A Classification Framework. Journal of the American Water Resources Association (JAWRA) 1‐20. DOI: 10.1111/jawr.12009 Abstract: There is a growing need for hydrologic classification systems that can provide a basis for broad‐scale assessments of the hydrologic functions of landscapes and watersheds and their responses to stressors such as climate change. We developed a hydrologic landscape (HL) classification approach that describes factors of climate‐watershed systems that control the hydrologic characteristics of watersheds. Our assessment units are incremental watersheds (i.e., headwater watersheds or areas draining directly into stream reaches). Major components of the classification include indices of annual climate, climate seasonality, aquifer permeability, terrain, and soil permeability. To evaluate the usefulness of our approach, we identified 30 rivers with long‐term streamflow‐gauging records and without major diversions and impoundments. We used statistical clustering to group the streams based on the shapes of their annual hydrographs. Comparison of the streamflow clusters and HL distributions within river basin clusters shows that the Oregon HL approach has the ability to provide insights about the expected hydrologic behavior of HLs and larger river basins. The Oregon HL approach has potential to be a useful framework for comparing hydrologic attributes of streams and rivers in the Pacific Northwest.  相似文献   

19.
Abstract: We present a method to integrate a process‐based (PB) snowmelt model that requires only daily temperature and elevation information into the Soil and Water Assessment Tool (SWAT) model. The model predicts the spatiotemporal snowpack distribution without adding additional complexity, and in fact reduces the number of calibrated parameters. To demonstrate the utility of the PB model, we calibrate the PB and temperature‐index (TI) SWAT models to optimize agreement with stream discharge on a 46‐km2 watershed in northwestern Idaho, United States, for 10 individual years and use the calibrated parameters for the year with the best agreement to run the model for 15 remaining years. Stream discharge predictions by the PB and TI model were similar, although the PB model simulated snowmelt more accurately than the TI model for the remaining 15‐year period. Spatial snow distributions predicted by the PB model better matched observations from LandSat imagery and a SNOTEL station. Results for this watershed show that including PB snowmelt in watershed models is feasible, and calibration of TI‐based watershed models against discharge can incorrectly predict snow cover.  相似文献   

20.
ABSTRACT: Timber harvest best management practices (BMPs) in Washington State were evaluated to determine their effectiveness at achieving water quality standards pertaining to sediment related effects. A weight‐of‐evidence approach was used to determine BMP effectiveness based on assessment of erosion with sediment delivery to streams, physical disturbance of stream channels, and aquatic habitat conditions during the first two years following harvest. Stream buffers were effective at preventing chronic sediment delivery to streams and physical disturbance of stream channels. Practices for ground‐based harvest and cable yarding in the vicinity of small streams without buffers were ineffective or only partially effective at preventing water quality impacts. The primary operational factors influencing BMP effectiveness were: the proximity of ground disturbing activities to streams; presence or absence of designated stream buffers; the use of special timber falling and yarding practices intended to minimize physical disturbance of stream channels; and timing of harvest to occur during snow cover or frozen ground conditions. Important site factors included the density of small streams at harvest sites and the steepness of inner stream valley slopes. Recommendations are given for practices that provide a high confidence of achieving water quality standards by preventing chronic sediment delivery and avoiding direct stream channel disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号