首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: In northern regions, large volumes of water are needed for activities such as winter road construction. Such withdrawals, particularly from small lakes, can reduce oxygen concentrations and water levels, potentially affecting aquatic organisms. Withdrawal limits have been developed by regulatory agencies, but are largely theoretical. Water withdrawal thresholds were tested in two small lakes by removing 10% and 20% of their respective under‐ice volumes and comparing oxygen parameters, temperature, over‐wintering habitat, and northern pike (Esox lucius) abundance to reference conditions. Because of a milder winter, oxygen parameters were elevated in reference lakes in the period following withdrawal compared to the prewithdrawal period. The 10% withdrawal resulted in a ?0.2 m shift in the oxygen concentration profile at 4 mg/l in that lake, but had no effect on total volume‐weighted oxygen, or volume of over‐wintering habitat. In contrast, the 20% withdrawal caused 0.7 m reduction in the oxygen concentration profile at 4 mg/l compared to the previous year, a 26% decline in the volume‐weighted oxygen concentration, and a 23% reduction in the volume of over‐wintering habitat compared to prewithdrawal conditions. Water temperatures were slightly (≤ 10%) colder in the upper strata in the year following the withdrawal in both withdrawal and reference lakes. Northern pike abundance was not impacted by water withdrawals in either of the lakes. The results of this study show that the effects of water withdrawal on the parameters investigated reflected the characteristics of the lakes, and would therefore be expected to vary from lake to lake. Policy development to mitigate impacts must therefore reflect the site‐specific nature of water withdrawal.  相似文献   

2.
Abstract: Water resources are limited in many areas of the North Slope, Alaska, particularly during winter. Water is used by the oil industry for ice road construction and maintenance, drilling and facility operations, and potable water supplies. The coastal plain between Teshekpuk Lake, in the National Petroleum Reserve‐Alaska (NPR‐A) and the Colville River has numerous shallow lakes, but further south in the northern foothills of the Brooks Range, and east to the Canning River, lakes are fewer. While many oil and gas lease sales have been conducted, or are proposed, access to the leases may be limited because of the lack of available water for ice road construction. Ice roads are the main means by which exploration is conducted in the Arctic, putting a stress on freshwater bodies that do not freeze to the lakebed in winter. Lakes that do not freeze to the lakebed also serve as overwintering habitat for fish. The purpose of this paper is to report on the potential distribution of water bodies that may provide overwinter water in selected areas from Teshekpuk Lake to the Canning River. The project used synthetic aperture radar (SAR) imagery to search for the presence of water in lakes in March 2006. In the Kuparuk and Canning SAR images, 52 and 61% of lakes were frozen to their beds by March 2006, accounting for 49 and 57% of the lake area in these study regions. Conversely, only 2% of the lakes in the Teshekpuk region were frozen to the bottom by March 2006. Unfrozen water was more available because of deeper and more numerous lakes in the Teshekpuk Lake region (west) than in the Canning River area (east). While only specific SAR tiles were analyzed herein, the method will be a useful tool for land managers who seek to evaluate the potential for ice road construction across the Arctic.  相似文献   

3.
Abstract: Industrial activity in Canada’s north is increasing, placing demands on the use of water from lakes to build ice roads. Winter water withdrawal from these lakes has the potential to impact overwintering fish. Removal of water from small lakes can decrease oxygen and habitat available to fish. To address this issue, a protocol has been developed by the Department of Fisheries and Oceans outlining water withdrawal thresholds. Bathymetric surveys are the traditional method to determine lake depth, but are costly given the remoteness of northern lakes. This paper investigates the use of satellite C‐band synthetic aperture radar (SAR) remote sensing technology as a potential alternative or complement to traditional survey methods. Previous research has shown that a SAR can detect the transition from grounded to floating ice on lakes, or if a lake is completely frozen. Grounded ice has a dark signature while floating ice appears very bright in contrast. Similar results were observed for the datasets acquired in the study area. This suggests that lakes that freeze completely to the bottom can be identified using SAR. Such water bodies would not be viable fish overwintering habitat and can therefore be used as water sources without thresholds necessary. However, attempts to accurately calculate the depth of the ice at the grounded‐floating ice boundary using bathymetric profiles acquired in the summer and lake ice thickness measurements from a reference lake near Inuvik proved to be unreliable.  相似文献   

4.
Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p < 0.05). Using this relation, the modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.  相似文献   

5.
ABSTRACT: We review published analyses of the effects of climate change on goods and services provided by freshwater ecosystems in the United States. Climate-induced changes must be assessed in the context of massive anthropogenic changes in water quantity and quality resulting from altered patterns of land use, water withdrawal, and species invasions; these may dwarf or exacerbate climate-induced changes. Water to meet instream needs is competing with other uses of water, and that competition is likely to be increased by climate change. We review recent predictions of the impacts of climate change on aquatic ecosystems in eight regions of North America. Impacts include warmer temperatures that alter lake mixing regimes and availability of fish habitat; changed magnitude and seasonality of runoff regimes that alter nutrient loading and limit habitat availability at low flow; and loss of prairie pothole wetlands that reduces waterfowl populations. Many of the predicted changes in aquatic ecosystems are a consequence of climatic effects on terrestrial ecosystems; shifts in riparian vegetation and hydrology are particularly critical. We review models that could be used to explore potential effects of climate change on freshwater ecosystems; these include models of instream flow, bioenergetics models, nutrient spiraling models, and models relating riverine food webs to hydrologic regime. We discuss potential ecological risks, benefits, and costs of climate change and identify information needs and model improvements that are required to improve our ability to predict and identify climate change impacts and to evaluate management options.  相似文献   

6.
Abstract: Lakes are important water resources on the North Slope of Alaska. Freshwater is required for oilfield production as well as exploration, which occurs largely on ice roads and pads. Since most North Slope lakes are shallow, the quantity and quality of the water under ice at the end of winter are important environmental management issues. Currently, water‐use permits are a function of the presence of overwintering fish populations, and their sensitivity to low oxygen concentrations. Sampling of five North Slope lakes during the winter of 2004‐2005 shed some light on the winter chemistry of four lakes that were used as water supplies and one undisturbed lake. Field analysis was conducted for oxygen, conductivity, pH, and temperature throughout the lake depth, as well as ice thickness and water depth. Water samples were retrieved from the lakes and analyzed for Na, Ca, K, Mg, Fe, dissolved‐organic carbon, and alkalinity in the laboratory. Lake properties, rather than pumping, were the best predictors of oxygen depletion, with the highest dissolved‐oxygen levels maintained in the lake with the lowest concentration of constituents. Volume weighted mean dissolved‐oxygen concentrations ranged from 4 to 94% of saturation in March. Dissolved oxygen and specific conductance data suggested that the lakes began to refresh in May.  相似文献   

7.
Abstract: Many arctic lakes freeze completely in winter. The few that retain unfrozen water for the entire winter period serve as overwintering fish habitat. In addition to serving as fish habitat, water in arctic lakes is needed for industrial and domestic use. Permits for water extraction seek to maximize water use without impacting dissolved oxygen (DO) levels and endangering fish habitat. The relationship between lake volume, winter DO budget, and extraction of water through pumping has historically not been well understood. A management model that could estimate end‐of‐winter DO would improve our understanding of the potential impacts of different management strategies. Using under‐ice DO measurements (November to April) taken from two natural lakes and one flooded gravel mine on the North Slope of Alaska, a physically based model was developed to predict end‐of‐winter DO concentration, water‐column DO profiles, and winter oxygen depletion rate in arctic lakes during periods of ice cover. Comparisons between the measured and model‐predicted oxygen profiles in the three study lakes suggest that the depth‐based DO modeling tool presented herein can be used to adequately predict the amount of DO available in arctic lakes throughout winter.  相似文献   

8.
ABSTRACT: Alaska possesses a diversity and magnitude of water resources unmatched in any other state. With over 15% of the area of the whole United States, and 40% of the nation's total fresh water supply, but an extreme lack of basic hydrologic and climatologic data, cooperation among agencies and individuals concerned with evaluating, planning, and carrying out water resources programs is essential. Toward this end, the Inter-Agency Technical Committee for Alaska (IATCA) was established under charter from the Water Resources Council. Representation in IATCA includes virtually all Federal, State, and academic entities in Alaska having an interest in the water resources of the State. Existence of IATCA has permitted or facilitated numerous Alaskan water resources programs. Several are described briefly in this paper: A flood warning network in the Chena River basin; establishment of the Caribou-Poker Creeks Research Watershed in Central Alaska; preparation and periodic updating of the “Ten-Year Plan for Water Resources Data Acquisition”; current planning for an integrated “real-time reporting network” for hydrometeorological data within the State; and a framework for implementation of the Alaskan phase of the National Water Resources Assessment, currently in the initial phases. Accomplishments to date testify that it is indeed possible to “get it all together” in the broad field of “Water Resources” in the largest of our 50 states.  相似文献   

9.
Huang, Biao, Christian Langpap, and Richard M. Adams, 2011. Using Instream Water Temperature Forecasts for Fisheries Management: An Application in the Pacific Northwest. Journal of the American Water Resources Association (JAWRA) 47(4):861‐876. DOI: 10.1111/j.1752‐1688.2011.00562.x Abstract: Water temperature is an important factor affecting aquatic life within the stream environment. Cold water species, such as salmonids, are particularly susceptible to elevated water temperatures. This paper examines the potential usefulness of short‐term (7 to 10 days) water temperature forecasts for salmonid management. Forecasts may be valuable if they allow the water resource manager to make better water allocation decisions. This study considers two applications: water releases from Lewiston Dam for management of adult Chinook salmon (Oncorhynchus tshawytscha) in the Klamath River and leasing water from agriculture for management of steelhead trout (Oncorhynchus mykiss) in the John Day River. We incorporate biophysical models and water temperature distribution data into a Bayesian framework to simulate changes in fish populations and the corresponding opportunity cost of water under different levels of temperature forecast reliability. Simulation results indicate that use of the forecasts results in increased fish production and that marginal costs decline as forecast reliability increases, suggesting that provision and use of such stream temperature forecasts would have potential value to society.  相似文献   

10.
ABSTRACT Coal ash effluent effects including particulates, acidic pH excursions, elemental concentrations and bioconcentration in selected organisms have been studied as changes in water quality and densities of benthic macroinvertebrate and mosquitofish (Gambusia affinis) populations in a swamp drainage system over an eight-year period. Three changes in the ash basin settling system were made between mid- 1973 and January 1982. Initial density of the aquatic biota was altered severely by heavy ash siltation, followed by acidic pH excursions and perhaps overall by elemental concentrations and bioaccumulation. Heavy ash siltation, followed by acidic Ph excursions (mean of 5.5, extreme of 3.5) after the addition of fly ash to the original settling basin system, had the most profound effect on biota. Dipterans (chironomids) and some odonates (Plathemis lydia and Libellula spp.) were resistant to heavy ash siltation, while mosquitofish, which showed no discernible responses to ash siltation, were absent at acidic pH, along with the few previously surviving invertebrate populations. Elemental concentrations of arsenic, cadmium, chromium, copper, selenium, and zinc did not appear to limit aquatic flora and fauna on a short-term, acute basis. Long, chronic elemental exposures may have been instrumental in retarding the recovery of all forms of aquatic life in the receiving system. Elemental concentrations (except for arsenic and selenium) in the receiving system were generally one to two orders of magnitude higher than the Water Quality Criteria set by the U.S. Environmental Protection Agency (1980) for protection of aquatic life for the minimum and 24-hour mean values. From collective elemental exposures in the receiving system, bioconcentration factors in macrophytes, invertebrates and fish were generally lower than those reported in the literature for laboratory, single elemental concentrations. By 1978, when the new settling basin systems were operating effectively, invertebrate populations were largely recovered, and mosquitofish populations recovered within one year afterward.  相似文献   

11.
States and tribes are encouraged to use multiple biological assemblages in assessment of water bodies. An assessment index for each assemblage provides information on aspects of the aquatic resource that may be unique in terms of stressor sensitivity, stressor type, or ecological scale. However, assessment results relative to impairment thresholds can disagree among indices for an individual water body, leading to uncertain overall water‐body assessments. We explored options for combining stream indices for macroinvertebrates, fish, and habitat in ways that would yield the most consistent and sensitive results relative to established disturbance categories. Methods varied in the scoring or rating scales used to standardize each index value, the thresholds used to define impairment of aquatic life uses, and the ways of synthesizing multiple indices. The index compositing method that scores each index on a continuous scale and averages the scores after standardizing had superior accuracy, sensitivity, and precision. In addition, using the 25th quantile of reference sites instead of the 10th quantile resulted in a more balanced error rate among reference and degraded site categories.  相似文献   

12.
ABSTRACT: This paper examines the potential to manage Mississippi River water levels for ecological benefits. The study focuses on the Weaver Bottoms, a 4,000 acre backwater marsh in southeastern Minnesota (Pool 5) highly valued for fish and wildlife habitat. The Weaver Bottoms has suffered increasing loss of aquatic vegetation and associated habitat degradation since the 1960s, largely due to persistent high water, sedimentation, wave re-suspension of sediments, and poor light penetration. In other reaches of the Mississippi River, water level reductions exposing backwater sediments have produced strong vegetative responses due to subaerial exposure of seeds and sediment compaction. Water level management scenarios for Pool 5 were developed using the HEC-2 water surface profile model. Results indicate that in many years it would be possible to reduce water levels sufficiently to expose much of the Weaver Bottoms, generating a substantial vegetative response. Additional benefits could be expected since both sediment compaction and increased vegetation would reduce re-suspension of sediments. Shifting management priorities to improve habitat would temporarily impact many river users, including both commercial and recreational boaters. Water level reductions must be coordinated with their needs.  相似文献   

13.
Water availability risk is a local issue best understood with watershed‐scale quantification of both withdrawal and consumptive demands in the context of available supply. Collectively, all water use sectors must identify, understand, and respond to this risk. A highly visual and computationally robust decision support tool, Water Prism, quantitatively explores mitigation responses to water risk on both a facility‐level and basin‐aggregated basis. Water Prism examines a basin water balance for a 40‐ to 60‐year planning horizon, distinguishes among water use sectors, and accounts for ecosystem water needs. The 2012 Texas State Water Plan was used to apply Water Prism to the Big Cypress‐Sulphur Basin (Texas). The case study showed Water Prism to be an accurate and convenient tool to provide fine‐scale understanding of water use in the context of available supply, evaluate multi‐sector combinations of conservation strategies, and quantify the effects of future demands and water availability. Analyses demonstrated water availability risks for rivers and reservoirs can vary within a basin and must be calculated independently, simulation of water balance conditions can help illuminate potential impacts of increasing demands, and scenario simulations can be used to evaluate relative conservation efficacy of different water resource management strategies for each sector. Based on case study findings, Water Prism can serve as a useful assessment tool for regional water planners.  相似文献   

14.
Abstract: Regulation of river flows can result in decreased stage fluctuations and alteration of inundation patterns of floodplain wetlands. However, floodplain inundation has historically not been addressed in most minimum flow determinations. Florida law requires the water management districts of the state to establish minimum flows and levels to protect water bodies from significant harm associated with water withdrawals. The Southwest Florida Water Management District utilizes a 15% reduction in habitat criterion as a threshold for defining significant harm to freshwater segments of rivers. Utilizing a multi‐parameter approach and different habitat measures for seasonal flow periods, the District has recommended minimum flow compliance standards for the Alafia, Myakka and middle Peace rivers. For the high‐flow period, the District utilized a 15% reduction in the number of days of floodplain inundation (a temporal loss) as a significant harm threshold. This approach yielded allowable flow reductions of 8% for the Alafia and Peace rivers during the high‐flow season and a 7% allowable reduction of natural flows on the Myakka River. Comparison of changes in flows associated with temporal and spatial loss thresholds indicated that flow reductions required to effect a 15% spatial loss of habitat on the Alafia, Myakka and middle Peace rivers are higher than those that would yield a 15% temporal loss. This indicates that with respect to natural flow protection, the District’s consideration of temporal reductions in habitat for establishing minimum river flows for seasonal high‐flow periods is more conservative than the use of a spatial loss criterion.  相似文献   

15.
The purpose of this paper is to consider the vision for public participation in water resources management embedded in Kenya's 2002 Water Act, as it relates to pastoralists. The Act envisions that responsibility for management of water resources at the local level will be devolved to community-level bodies. Our approach was qualitative and included interviews with government officials and Gabra pastoralists, observation of and participation in traditional Gabra korra meetings and focus group discussions. We conclude that the ‘institutional model’ of participation being pursued through the creation of Water Resource User Associations is particularly problematic for mobile pastoralists such as the Gabra, and we suggest an alternative strategy that would focus on the fostering of deliberation processes.  相似文献   

16.
ABSTRACT: Aquifers with pressure head seriously reduced by overdrafting are referred to as depleted. In coastal areas they may be invaded by saltwater. An obvious remedy is to reduce the rate of withdrawal to the permanently available dependable yield. This is being done now in two areas for New Jersey, under the authority of the State's Water Supply Management Act; but it has not previously been accomplished on a regional scale. The dependable yield was estimated by means of detailed hydrogeological modeling. “Water Supply Critical Areas” were delimited on the basis of piezometric pressure, drawn down 30 feet below sea level. Within the depleted area, water withdrawals must be reduced by a fixed ratio (35 to 50 percent) below the amount withdrawn during 1983. This reduction is effective as soon as al alternative source of water can be made available, usually from a surface source. Special arrangements are made whereby ground water users unconnected to the alternative source of supply can pay to withdrawn their full needs from the depleted aquifers, the money being used to purchase additional water from the new surface water source, in return for which some other user will reduce his ground water withdrawal below his reduced allocation.  相似文献   

17.
Remote national parks of the western U.S. and Alaska are not immune to contaminants of emerging concern. Semivolatile organic compounds (SOCs) such as pesticides and PCBs can selectively deposit from the atmosphere at higher rates in cold, high‐elevation and high‐latitude sites, potentially increasing risk to these ecosystems. In the environment, SOCs magnify up food chains and are known to increase health risks such as cancer and reproductive impairment. One hundred twenty‐eight fish in 8 national parks in Alaska and the western U.S. were analyzed for contaminant concentrations, assessed by region, and compared to human and wildlife health thresholds. SOC concentrations from an additional 133 fish from a previous study were also included, for a total of 31 water bodies sampled. PCBs, endosulfan sulfate, and p,p′‐DDE were among the most frequently detected contaminants. Concentrations of historic‐use pesticides dieldrin, p,p′‐DDE, and/or chlordanes in fish exceeded USEPA guidelines for human subsistence fish consumers and wildlife (kingfisher) health thresholds at 13 of 14 parks. Average concentrations in fish ranged from 0.6‐280 ng/g lipid (0.02‐7.3 μg/g ww). Contaminant loading was highest in fish from Alaskan and Sierra Nevada parks. Historic compounds were highest in Alaskan parks, while current‐use pesticides were higher in the Rockies and Sierra Nevada. This study provides a rigorous analysis of CECs in fish from national parks and identifies regions at potential risk.  相似文献   

18.
ABSTRACT: The uptake of ten chemical elements was measured in water, sediment, fly ash, and the major biotic components of an ash basin drainage system. The biota tested represent several trophic levels observed in the settling basin and receiving swamp of the system. Concentrations were measured by neutron activation (NAA) in the major biotic groups including aquatic bacteria, algae, macrophytes, midges, dragonflies, crayfish, tadpoles, and fish. Only three elements (Cu, Zn, Cd) were more highly concentrated in water from a nearby unpolluted stream than in the fly ash effluent. Sediment concentrations of all elements were highest in the ash drainage system with Al and Fe being consistently highest. Among the biota, Hydrodictyon sp. and Lemna perpusilla had the highest concentrations of Al and Fe while other macrophytes were the major accumulators of Mn and Ba. Invertebrates generally concentrated high amounts of Cu and Zn although Cd and Hg were accumulated most by crayfish. Selenium was selectively concentrated by bacteria, crayfish (Procambarus sp.) and mosquitofish (Gambusia afflnis). Consequences of elemental concentrations in sediment and in specific trophic level groups are discussed.  相似文献   

19.
ABSTRACT: Artificial aeration is used to prevent winter fish kills due to oxygen depletion in ice-covered lakes. Conventional aeration by air bubble plumes and other techniques usually mixes the water column and produces hazardous open water in the ice cover. A non-mixing winter lake aeration system which creates a fish refuge was designed and field tested to oxygenate the water and maintain water temperature stratification in a lake such that no open water is created. The system uses a cascade aerator and has a design discharge and dissolved oxygen input rate of 85 1/s and 70 kg/d, respectively. Aerated water is discharged near mid-depth with minimum disturbance of the ambient water through a specially designed diffuser. The system was tested in a shallow 3 m deep lake of 17 ha surface area during two winters and was found to perform as expected. Significant photosynthetic production of dissolved oxygen under the ice-cover was also observed during snow-free periods.  相似文献   

20.
Alessa, Lilian, Mark Altaweel, Andrew Kliskey, Christopher Bone, William Schnabel, and Kalb Stevenson, 2011. Alaska’s Freshwater Resources: Issues Affecting Local and International Interests. Journal of the American Water Resources Association (JAWRA) 47(1):143‐157. DOI: 10.1111/j.1752‐1688.2010.00498.x Abstract: The State of Alaska faces a broad range of freshwater challenges including limited resource access in rural communities, increasing freshwater use, and a pressing need to better understand and prepare for climate‐driven change. Despite these significant issues, Alaska is relatively water‐rich and far more equipped to address its water resource concerns compared with other regions of the world. Globally, simultaneous and rapid water stresses have influenced and complicated conflicts and are motivating nations to develop markets and trade as one of the primary means to manage their needs for this resource. This paper presents these interacting issues in the context of Alaska’s relationship with a world undergoing significant social and ecological changes that affect freshwater supplies. We present the challenges faced by Alaska in the context of a larger global perspective, and briefly explore the relative effects these issues have on local, regional, and global scales. We present the argument that Alaska needs to develop more robust institutions and policies that can alleviate both household concerns and ensure that Alaska plays a significant role in the international freshwater arena for its long‐term resilience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号