首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: To combat its growing ecological problems, China has implemented a large‐scale Natural Forest Protection Program (NFPP). Under the umbrella of this program, the Sloping Land Conversion Program (SLCP) was established in 1999 to return cultivated land with slopes of 25° or more to perennial vegetation. However, the regional impacts on water resource management that are incurred by afforestation have not been carefully evaluated, especially in the subalpine region of southwestern China. The purpose of the present study was to provide reference values for the SLCP by evaluating the potential impact of afforestation on water yield under different climatic regimes. Accordingly, evapotranspiration (ET) in cropland (CL), shrubland, and general forest was calculated using a modification of Thornthwaite’s method, and in coniferous forest, broad‐leaved forest (BF), and mixed coniferous and broad‐leaved forest (MF) using the Surface Energy Balance Algorithm for Land (SEBAL) model. The results of both approaches showed that afforestation reduces water yield by 9.6‐24.3% depending on the types of conversion and climatic conditions. Water‐yield reduction is greatest (>143.4 mm, or 24.3%) when CL is converted to BF in dry climate conditions. Compared with the other forest types studied, coniferous plantations prevented water‐yield reduction by as much as 9.6% because of their relatively low levels of ET. It is expected that implementation of the SLCP, together with continuing climate change, will further pressure regional water resources. Thus, the effectiveness of afforestation must be evaluated in a broader context while taking into account its positive ecological aspects, such as soil‐erosion control, the preservation of biodiversity, and the significant carbon sequestration provided by forests.  相似文献   

2.
ABSTRACT: Recent results from the Institute of Hydrology's hydrometeorological and hydrological studies on water use by forest and grassland confirm earlier predictions of a reduction in water yields following afforestation. This reduction is due primarily to the increased interception losses from forests. This paper shows how the water yield from uplands is related to the relative proportions of land under forest and hill farming, and estimates how water yields will change if a greater proportion of hill land is afforested.  相似文献   

3.
We describe a model of forest flammability, based on daily satellite observations, for national to regional applications. The model defines forest flammability as the percent moisture content of fuel, in the form of litter of varying sizes on the forest floor. The model uses formulas from the US Forest Service that describe moisture exchange between fuel and the surrounding air and precipitation. The model is driven by estimates of temperature, humidity, and precipitation from the moderate resolution imaging spectrometer and tropical rainfall measuring mission multi-satellite precipitation analysis. We provide model results for the southern Amazon and northern Chaco regions. We evaluate the model in a tropical forest-to-woodland gradient in lowland Bolivia. Results from the model are significantly correlated with those from the same model driven by field climate measurements. This model can be run in a near real-time mode, can be applied to other regions, and can be a cost-effective input to national fire management programs.  相似文献   

4.
Chang R  Fu B  Liu G  Liu S 《Environmental management》2011,48(6):1158-1172
Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau, and it is recommended to expand grassland and shrub areas in the northern Loess Plateau and forest in the middle and southern Loess Plateau to enhance the SOC sequestration in this area.  相似文献   

5.
Restored annual streamflow (Qr) and measured daily streamflow of the Chaohe watershed located in northern China and associated long‐term climate and land use/cover data were used to explore the effects of land use/cover change and climate variability on the streamflow during 1961‐2009. There were no significant changes in annual precipitation (P) and potential evapotranspiration, whereas Qr decreased significantly by 0.81 mm/yr (< 0.001) over the study period with a change point in 1999. We used 1961‐1998 as the baseline period (BP) and 1999‐2009 the change period (CP). The mean Qr during the CP decreased by 39.4 mm compared with that in the BP. From 1979 to 2009, the grassland area declined by 69.6%, and the forest and shrublands increased by 105.4 and 73.1%, respectively. The land use/cover change and climate variability contributed for 58.4 and 41.6% reduction in mean annual Qr, respectively. Compared with the BP, median and high flows in the CP decreased by 38.8 and up to 75.5%, respectively. The study concludes that large‐scale ecological restoration and watershed management in northern China has greatly decreased water yield and reduced high flows due to the improved land cover by afforestation leading to higher water loss through evapotranspiration. At a large watershed scale, land use/cover change could play as much of an important role as climate variability on water resources.  相似文献   

6.
The North American east coast (NAEC) region experienced significant climate and land‐use changes in the past century. To explore how these changes have affected land water cycling, the Dynamic Land Ecosystem Model (DLEM 2.0) was used to investigate the spatial and temporal variability of runoff and river discharge during 1901‐2010 in the study area. Annual runoff over the NAEC was 420 ± 61 mm/yr (average ± standard deviation). Runoff increased in parts of the northern NAEC but decreased in some areas of the southern NAEC. Annual freshwater discharge from the study area was 378 ± 61 km3/yr (average ± standard deviation). Factorial simulation experiments suggested that climate change and variability explained 97.5% of the interannual variability of runoff and also resulted in the opposite changes in runoff in northern and southern regions of the NAEC. Land‐use change reduced runoff by 5‐22 mm/yr from 1931 to 2010, but the impacts were divergent over the Piedmont region and Coastal Plain areas of the southern NAEC. Land‐use change impacts were more significant at local and watershed spatial scales rather than at regional scales. Different responses of runoff to changing climate and land‐use should be noted in future water resource management. Hydrological impacts of afforestation and deforestation as well as urbanization should also be noted by land‐use policy makers.  相似文献   

7.
ABSTRACT: Large deviations in average annual air temperatures and total annual precipitation were observed across the southern United States during the last 50 years, and these fluctuations could become even larger during the next century. We used PnET-IIS, a monthly time-step forest process model that uses soil, vegetation, and climate inputs to assess the influence of changing climate on southern U.S. pine forest water use. After model predictions of historic drainage were validated, the potential influences of climate change on loblolly pine forest water use was assessed across the region using historic (1951 to 1984) monthly precipitation and air temperature which were modified by two general circulation models (GCMs). The GCMs predicted a 3.2°C to 7.2°C increase in average monthly air temperature, a -24 percent to + 31 percent change in monthly precipitation and a -1 percent to + 3 percent change in annual precipitation. As a comparison to the GCMs, a minimum climate change scenario using a constant 2°C increase in monthly air temperature and a 20 percent increase in monthly precipitation was run in conjunction with historic climate data. Predicted changes in forest water drainage were highly dependent on the GCM used. PnET-IIS predicted that along the northern range of loblolly pine, water yield would decrease with increasing leaf area, total evapotranspiration and soil water stress. However, across most of the southern U.S., PnET-IIS predicted decreased leaf area, total evapotranspiration, and soil water stress with an associated increase in water yield. Depending on the GCM and geographic location, predicted leaf area decreased to a point which would no longer sustain loblolly pine forests, and thus indicated a decrease in the southern most range of the species within the region. These results should be evaluated in relation to other changing environmental factors (i.e., CO2 and O3) which are not present in the current model.  相似文献   

8.
Abstract: The increase of coverage of forest/vegetation is imperative to improve the environment in dry‐land areas of China, especially for protecting soil against serious erosion and sandstorms. However, inherent severe water shortages, drought stresses, and increasing water use competition greatly restrict the reforestation. Notably, the water‐yield reduction after afforestation generates intense debate about the correct approach to afforestation and forest management in dry‐land areas. However, most studies on water‐yield reduction of forests have been at catchment scales, and there are few studies of the response of total evapotranspiration (ET) and its partitioning to vegetation structure change. This motivates us to learn the linkage between hydrological processes and vegetation structure in slope ecosystems. Therefore, an ecohydrological study was carried out by measuring the individual items of water balance on sloping plots covered by different vegetation types in the semiarid Liupan Mountains of northwest China. The ratio of precipitation consumed as ET was about 60% for grassland, 93% for shrubs, and >95% for forestland. Thus, the water yield was very low, site‐specific, and sensitive to vegetation change. Conversion of grassland to forest decreased the annual water yield from slope by 50‐100 mm. In certain periods, the plantations at lower slopes even consumed the runon from upper slopes. Reducing the density of forests and shrubs by thinning was not an efficient approach to minimize water use. Leaf area index was a better indicator than plant density to relate ET to vegetation structure and to evaluate the soil water carrying capacity for vegetation (i.e., the maximum amount of vegetation that can be supported by the available soil water for an extended time). Selecting proper vegetation types and plant species, based on site soil water condition, may be more effective than the forest density regulation to minimize water‐yield reduction by vegetation coverage increase and notably by reforestation. Finally, the focuses in future research to improve the forest‐water relations in dry‐land areas are recommended as follows: vegetation growth dynamics driven by environment especially water conditions, coupling of ecological and hydrological processes, further development of distributed ecohydrological models, quantitative relation of eco‐water quota of ecosystems with vegetation structures, multi‐scaled evaluation of soil water carrying capacity for vegetation, and the development of widely applicable decision support tools.  相似文献   

9.
Abstract: Water supply uncertainty continues to threaten the reliability of regional water resources in the western United States. Climate variability and water dispute potentials induce water managers to develop proactive adaptive management strategies to mitigate future hydroclimate impacts. The Eastern Snake Plain Aquifer in the state of Idaho is also facing these challenges in the sense that population growth and economic development strongly depend on reliable water resources from underground storage. Drought and subsequent water conflict often drive scientific research and political agendas because water resources availability and aquifer management for a sustainable rural economy are of great interest. In this study, a system dynamics approach is applied to address dynamically complex problems with management of the aquifer and associated surface‐water and groundwater interactions. Recharge and discharge dynamics within the aquifer system are coded in an environmental modeling framework to identify long‐term behavior of aquifer responses to uncertain future hydrological variability. The research shows that the system dynamics approach is a promising modeling tool to develop sustainable water resources planning and management in a collaborative decision‐making framework and also to provide useful insights and alternative opportunities for operational management, policy support, and participatory strategic planning to mitigate future hydroclimate impacts in human dimensions.  相似文献   

10.
Monthly temperature and precipitation data for 923 United States Geological Survey 8-digit hydrologic units are used as inputs to a monthly water balance model to compute monthly actual evapotranspiration, soil moisture storage, and runoff across the western United States (U.S.) for the period 1900 through 2020. Time series of these water balance variables are examined to characterize and explain the dry conditions across the western U.S. since the year 2000. Results indicate that although precipitation deficits account for most of the changes in actual evapotranspiration and runoff, increases in temperature primarily explain decreases in soil moisture storage. Specifically, temperature has been particularly impactful on the magnitude of negative departures of soil moisture storage during the spring (April through June) and summer (July through September) seasons. These effects on soil moisture may be particularly detrimental to agriculture in regions already stressed by drought such as the western U.S.  相似文献   

11.
ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall‐runoff model. RegCM output from a five‐year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present‐day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50‐km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall‐runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall‐runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis.  相似文献   

12.
ABSTRACT: An evaluation was conducted on three forested upland watersheds in the northeastern U.S. to test the suitability of TOPMODEL for predicting water yield over a wide range of climatic scenarios. The analysis provides insight of the usefulness of TOPMODEL as a predictive tool for future assessments of potential long-term changes in water yield as a result of changes in global climate. The evaluation was conducted by developing a calibration procedure to simulate a range of climatic extremes using historical temperature, precipitation, and streamfiow records for years having wet, average, and dry precipitation amounts from the Leading Ridge (Pennsylvania), Fernow (West Virginia), and Hubbard Brook (New Hampshire) Experimental Watersheds. This strategy was chosen to determine whether the model could be successfully calibrated over a broad range of soil moisture conditions with the assumption that this would be representative of the sensitivity necessary to predict changes in streamfiow under a variety of climate change scenarios. The model calibration was limited to a daily time step, yet performed reasonably well for each watershed. Model efficiency, a least squares measure of how well a model performs, averaged between 0.64 and 0.78. A simple test of the model whereby daily temperatures were increased by 1.7°C, resulted in annual water yield decreases of 4 to 15 percent on the three watersheds. Although these results makes the assumption that the model components adequately describe the system, this version of TOPMODEL is capable to predict water yield impacts given subtle changes in the temperature regime. This suggests that adequate representations of the effects of climate change on water yield for regional assessment purposes can be expected using the TOPMODEL concept.  相似文献   

13.
利用2004—2015年列车实际运营数据,构建广义加权旅行时间模型,探究我国东北地区城市群可达性的空间分布特征。结果表明:①高铁开通后,东北地区城市群的可达性水平有较大程度的提高,地级市较为明显;空间上,提高较为明显的区域集中在铁路沿线以及辽中南城市群的部分城市。②高铁对东北地区第三产业集聚现象并不明显。③城市可达性水平的提高可以促进东北地区城市群经济增长,高铁的开通对于地区经济增长具有溢出效应。  相似文献   

14.
This paper assesses the potential of an intensive afforestation program as a measure of reducing the atmospheric concentration of carbon in Nigeria. The results presented are based on the recently completed Nigerian Country Studies Program on Climate Change Mitigation. A comprehensive mitigation analysis process (COMAP) model was employed to carry out detailed cost/benefit evaluation of the mitigation option. The end-use based scenario adopted was considered the most appropriate strategy to sustainably implement the mitigation option in Nigeria.The analyses showed that the country could significantly reduce net carbon emission while at the same time meet all her essential domestic wood needs, if approximately 7.5×106 ha of wasteland could be committed to an afforestation program over the 40 year period of projection. The initial cost of establishing such forest plantations, taking cognisance of the opportunity cost of land averaged at about US$500/ha, or in carbon terms, a unit cost of about $13 per tonne of carbon. In terms of carbon flow, if all the end-product based plantations considered (i.e. fuelwood, poles, pulpwood, sawlogs and veneer) were fully established and maintained, it was estimated that by the year 2030, the total carbon stored in the afforested land would be about 638.0×106 t of carbon with an annual incremental rate of 16.0×106 t of carbon. Other economic indicators (i.e. net present value of benefits, present value of costs and benefit for reduced atmospheric carbon) when evaluated showed that the afforestation option could be economically viable even when the investment capital was discounted at rates ranging from 9 to 33 percent for different wood products. It should be noted, however that implementation of such a program would require huge sums of money and a high degree of commitment on the part of Federal, State and Local governments if the associated financial, social and environmental benefits were to be derived.  相似文献   

15.
ABSTRACT: Changes in global climate may alter hydrologic conditions and have a variety of effects on human settlements and ecological systems. The effects include changes in water supply and quality for domestic, irrigation, recreational, commercial, and industrial uses; in instream flows that support aquatic ecosystems, recreation uses, hydropower, navigation, and wastewater assimilation; in wetland extent and productivity that support fish, wildlife, and wastewater assimilation; and in the frequency and severity of floods. Watersheds where water resources are stressed under current climate are most likely to be vulnerable to changes in mean climate and extreme events. This study identified key aspects of water supply and use that could be adversely affected by climate change, developed measures and criteria useful for assessing the vulnerability of regional water resources and water dependent resources to climate change, developed a regional database of water sensitive variables consistent with the vulnerability measures, and applied the criteria in a regional study of the vulnerability of U.S. water resources. Key findings highlight the vulnerability of consumptive uses in the western and, in particular, the southwestern United States. However, southern United States watersheds are relatively more vulnerable to changes in water quality, flooding, and other instream uses.  相似文献   

16.
ABSTRACT: About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However, direct measurement of forest evapotranspiration on a large basin or a regional scale is not possible. The objectives of this study were to develop an empirical model to estimate long‐term annual actual evapotranspiration (ART) for forested watersheds and to quantify spatial AET patterns across the southeast. A geographic information system (GIS) database including land cover, daily streamflow, and climate was developed using long term experimental and monitoring data from 39 forested watersheds across the region. Using the stepwise selection method implemented in a statistical modeling package, a long term annual AET model was constructed. The final multivariate linear model includes four independent variables—annual precipitation, watershed latitude, watershed elevation, and percentage of forest coverage. The model has an adjusted R2 of 0.794 and is sufficient to predict long term annual ART for forested watersheds across the southeastern United States. The model developed by this study may be used to examine the spatial variability of water availability, estimate annual water loss from mesoscale watersheds, and project potential water yield change due to forest cover change.  相似文献   

17.
Accurate projections of streamflow, which have implications for flooding, water resources, hydropower, and ecosystems, are critical to climate change adaptation and require an understanding of streamflow sensitivity to climate drivers. The northeastern United States has experienced a dramatic increase in extreme precipitation over the past 25 years; however, the effects of these changes, as well as changes in other drivers of streamflow, remain unclear. Here, we use a random forest model forced with a regional climate model to examine historical and future streamflow dynamics of four watersheds across the Northeast. We find that streamflow in the cold season (November–May) is primarily driven by 3-day rainfall and antecedent wetness (Antecedent Precipitation Index) in three rainfall-dominant watersheds, and 30-day rainfall, antecedent wetness, and 30-day snowmelt in the fourth, more snowmelt-dominated watershed. In the warm season (June–October), streamflow is driven by antecedent wetness and rainfall in all watersheds. By the end of the century (2070–2099), cold season streamflow depends on the importance placed on snow in the machine learning model, with changes ranging from −7% (with snow) to +40% (without snow) in a single watershed. Simulated future warm season streamflow increases in two watersheds (56% and 193%) due to increased precipitation and antecedent soil wetness, but decreases in the other two watersheds (−6% and −27%) due to reduced precipitation.  相似文献   

18.
We modeled the effects of afforestation and deforestation on carbon cycling in forest floor and soil from 1900 to 2050 throughout 13 states in the southern United States. The model uses historical data on gross (two-way) transitions between forest, pasture, plowed agriculture, and urban lands along with equations describing changes in carbon over many decades for each type of land use change. Use of gross rather than net land use transition data is important because afforestation causes a gradual gain in carbon stocks for many decades, while deforestation causes a much more rapid loss in carbon stocks. In the South-Central region (Texas to Kentucky) land use changes caused a net emission of carbon before the 1980s, followed by a net sequestration of carbon subsequently. In the Southeast region (Florida to Virginia), there was net emission of carbon until the 1940s, again followed by net sequestration of carbon. These results could improve greenhouse gas inventories produced to meet reporting requirements under the United Nations Framework Convention on Climate Change. Specifically, from 1990 to 2004 for the entire 13-state study area, afforestation caused sequestration of 88 Tg C, and deforestation caused emission of 49 Tg C. However, the net effect of land use change on carbon stocks in soil and forest floor from 1990 to 2004 was about sixfold smaller than the net change in carbon stocks in trees on all forestland. Thus land use change effects and forest carbon cycling during this period are dominated by changes in tree carbon stocks.  相似文献   

19.
Land-cover change has significant influence on carbon storage and fluxes in terrestrial ecosystems. The southern United States is thought to be the largest carbon sink across the conterminous United States. However, the spatial and temporary variability of carbon storage and fluxes due to land-cover change in the southern United States remains unclear. In this study, we first reconstructed the annual data set of land-cover of the southern United States from 1860 to 2003 with a spatial resolution of 8 km. Then we used a spatially explicit process-based biogeochemical model (Terrestrial Ecosystem Model [TEM] 4.3) to simulate the effects of cropland expansion and forest regrowth on the carbon dynamics in this region. The pattern of land-cover change in the southern United States was primarily driven by the change of cropland, including cropland expansion and forest regrowth on abandoned cropland. The TEM simulation estimated that total carbon storage in the southern United States in 1860 was 36.8 Pg C, which likely was overestimated, including 10.8 Pg C in the southeast and 26 Pg C in the south-central. During 1860-2003, a total of 9.4 Pg C, including 6.5 Pg C of vegetation and 2.9 Pg C of soil C pool, was released to the atmosphere in the southern United States. The net carbon flux due to cropland expansion and forest regrowth on abandoned cropland was approximately zero in the entire southern region between 1980 and 2003. The temporal and spatial variability of regional net carbon exchange was influenced by land-cover pattern, especially the distribution of cropland. The land-use analysis in this study is incomplete and preliminary. Finally, the limitations, improvements, and future research needs of this study were discussed.  相似文献   

20.
西南地区卫星林火监测系统的建立   总被引:2,自引:0,他引:2  
本文对建立GIS支持的NOAA卫星林火监测系统进行了分析.内容包括:监测区GIS的形成;NOAA卫星图像叠加经纬度网格;GIS与NOAA卫星图像的复合.1994年春天,我们对西南林区林火进行了1个多月的实时监测,证明了该系统具有林火分辨率高和定位准确的特点.是一个较为理想的林火监测系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号