共查询到14条相似文献,搜索用时 15 毫秒
1.
Warren A. Gebert Mandy J. Radloff Ellen J. Considine James L. Kennedy 《Journal of the American Water Resources Association》2007,43(1):220-236
Abstract: The average annual base flow/recharge was determined for streamflow‐gaging stations throughout Wisconsin by base‐flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970‐99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow‐gaging stations that had long‐term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple‐regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low‐flow partial‐record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base‐flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins. 相似文献
2.
Norman L. Miller Larry L. Dale Charles F. Brush Sebastian D. Vicuna Tariq N. Kadir Emin C. Dogrul Francis I. Chung 《Journal of the American Water Resources Association》2009,45(4):857-866
Abstract: A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream‐to‐aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30‐year model‐simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground‐water insurance to sustain California during extended dry periods. 相似文献
3.
Laura Jean Wilcox Robert S. Bowman Nabil G. Shafike 《Journal of the American Water Resources Association》2007,43(6):1595-1603
Abstract: Previous investigations observed significant seepage losses from the Rio Grande to the shallow aquifer between Socorro and San Antonio, New Mexico. High‐resolution telescopic modeling was used along a 10‐km reach of the Rio Grande and associated drains and canals to evaluate several management alternatives aimed at improving river conveyance efficiency. Observed data consisted of ground‐water and surface‐water elevations, seepage rates along the Rio Grande and associated canals and drains, and borehole geology. Model calibration was achieved by adjusting hydraulic conductivity and specific storage until the output matched observed data. Sensitivity analyses indicated that the system was responsive to changes in hydrogeologic properties, especially when such alterations increased vertical connectivity between layers. The calibrated model predicted that removal of the low flow conveyance channel, a major channel draining the valley, would not only decrease river seepage by 67%, but also decrease total flow through the reach by 75%. The decreased flow through the reach would result in increased water logging and an average increase in ground‐water elevations of 1.21 meter. Simulations of the system with reduced riparian evapotranspiration rates or a relocated river channel also predicted decreased river seepage, but to a much lesser degree. 相似文献
4.
Clogging of an Effluent Dominated Semiarid River: A Conceptual Model of Stream‐Aquifer Interactions1
Samantha Treese Thomas Meixner James F. Hogan 《Journal of the American Water Resources Association》2009,45(4):1047-1062
Abstract: Water managers in arid and semiarid regions increasingly view treated wastewater (effluent) as an important water resource. Artificial recharge basins allow effluent to seep into the ground relieving stressed aquifers, however these basins frequently clog due to physical, chemical, and biological processes. Likewise effluent is increasingly used to maintain perennial base flow for dry streambeds, however, little is known about the impact of effluent on streambed hydraulic conductivity and stream‐aquifer interactions. We address this issue by investigating: if a clogging layer forms, how the formation of a clogging layer alters stream‐aquifer connections, and what hydrologic factors control the formation and removal of clogging layers. We focused on the Upper Santa Cruz River, Arizona where effluent from the Nogales International Waste Water Treatment Plant sustains perennial flow. Monthly sampling, along a 30 km river reach, was done with two foci: physical streambed transformations and water source identification using chemical composition. Historical dataset were included to provide a larger context for the work. Results show that localized clogging occurs in the Upper Santa Cruz River. The clogging layers perch the stream and shallow streambed causing desaturation below the streambed. With these results, a conceptual model of clogging is established in the context of a semiarid hydrologic cycle: formation during the hot premonsoon months when flow is nearly constant and removal by large flood flows (>10 m3/s) during the monsoon season. However, if the intensity of flooding during the semiarid hydrologic cycle is lessened, the dependent riparian area can experience a die off. This conceptual model leads us to the conclusion that effluent dominated riparian systems are inherently unstable due to the clogging process. Further understanding of this process could lead to improved ecosystem restoration and management. 相似文献
5.
Bushra Nishat S.M. Mahbubur Rahman 《Journal of the American Water Resources Association》2009,45(6):1313-1327
Nishat, Bushra and S.M. Mahbubur Rahman, 2009. Water Resources Modeling of the Ganges‐Brahmaputra‐Meghna River Basins Using Satellite Remote Sensing Data. Journal of the American Water Resources Association (JAWRA) 45(6):1313‐1327. Abstract: Large‐scale water resources modeling can provide useful insights on future water availability scenarios for downstream nations in anticipation of proposed upstream water resources projects in large international river basins (IRBs). However, model set up can be challenging due to the large amounts of data requirement on both static states (soils, vegetation, topography, drainage network, etc.) and dynamic variables (rainfall, streamflow, soil moisture, evapotranspiration, etc.) over the basin from multiple nations and data collection agencies. Under such circumstances, satellite remote sensing provides a more pragmatic and convenient alternative because of the vantage of space and easy availability from a single data platform. In this paper, we demonstrate a modeling effort to set up a water resources management model, MIKE BASIN, over the Ganges, Brahmaputra, and Meghna (GBM) river basins. The model is set up with the objective of providing Bangladesh, the lowermost riparian nation in the GBM basins, a framework for assessing proposed water diversion scenarios in the upstream transboundary regions of India and deriving quantitative impacts on water availability. Using an array of satellite remote sensing data on topography, vegetation, and rainfall from the transboundary regions, we demonstrate that it is possible to calibrate MIKE BASIN to a satisfactory level and predict streamflow in the Ganges and Brahmaputra rivers at the entry points of Bangladesh at relevant scales of water resources management. Simulated runoff for the Ganges and Brahmaputra rivers follow the trends in the rated discharge for the calibration period. However, monthly flow volume differs from the actual rated flow by (?) 8% to (+) 20% in the Ganges basin, by (?) 15 to (+) 12% in the Brahmaputra basin, and by (?) 15 to (+) 19% in the Meghna basin. Our large‐scale modeling initiative is generic enough for other downstream nations in IRBs to adopt for their own modeling needs. 相似文献
6.
Abstract: Apparent ground‐water ages as determined by the noble gas isotope 85Kr and the water isotope 3H are compared. Refined gas extraction methodology at the wellhead permits efficient collection of Kr for 85Kr isotope enrichment. 85Kr isochrones elucidate areas of much younger ground‐water ages than 3H. Declining 3H activities in the catchment prevent its correlation with the youngest measured 85Kr ages. Source water for most drinking water supplies in the Collyer River catchment is recharged within 40 years BP (2004). Mean‐age (τ) transport modeling suggests uncertainty of ground‐water ages is greatest in the central basin area. 相似文献
7.
James Androwski Abraham Springer Thomas Acker Mark Manone 《Journal of the American Water Resources Association》2011,47(1):93-102
James Androwski, Abraham Springer, Thomas Acker, and Mark Manone, 2011. Wind‐Powered Desalination: An Estimate of Saline Groundwater in the United States. Journal of the American Water Resources Association (JAWRA) 47(1):93‐102. DOI: 10.1111/j.1752‐1688.2010.00493.x Abstract: Increasing scarcity of freshwater resources in many regions of the world is leading water resource managers to consider desalination as a potential alternative to traditional freshwater supplies. Desalination technologies are energy intensive and expensive to implement making desalination using renewable energy resources a potentially attractive option. Unfortunately, saline groundwater resources are not well characterized for many regions hindering consideration of such technologies. In this assessment, we estimate the saline groundwater resources of the principal aquifers of the United States using a geographic information system and correlate these resources to wind resources potentially sufficient to supply the energy demand of desalination equipment. We estimate that 3.1 × 1014 m3 saline groundwater, total volume, are contained in 28 of the country’s principal aquifers known to contain saline groundwater. Of this volume, 1.4 × 1014 m3 saline groundwater are co‐located with wind resources sufficient for electrical generation to desalinate groundwater. 相似文献
8.
The REDD+ (Reducing Emissions from Deforestation and Forest Degradation) partnership works to promote the reduction of greenhouse gas (GHG) emissions by protecting forests in developing countries through positive incentives. It is regarded as an essential component of the post‐2012 climate regime to stabilize GHG emissions and engage developing countries in worldwide mitigation endeavours. This study focuses on the gap between agricultural revenue and REDD+ compensation through the construction of several scenarios that explore the impacts of possible carbon price ranges.Three scenarios that reflect different potential policies are examined: (1) current carbon trading; (2) carbon trading with all forestry activities; and (3) carbon trading with all countries participating gradually over the coming decades. Data for developing the scenarios were obtained through a case study in central Kalimantan, Indonesia, by interrogating the potential for revenue by expanding agricultural land. The results indicate that REDD+ payments could not effectively compensate land users for their opportunity cost of deforestation, making it difficult for the governments to ensure that REDD+ money “reaches the ground” in terms of balancing the agricultural revenue of land users. 相似文献
9.
10.
Luigi Bruzzi Valentina Boragno Simona Verità José Luis Rosúa-Campos 《Local Environment》2013,18(2):93-113
The sustainability concept applied to human activities implies the need to harmonise the protection of environment with a satisfactory economic and social development. This is particularly true for tourism development: a misuse of the natural resources can cause a degradation of the tourist appeal of the destination, bringing it finally to its economic decline. This problem is particularly important in coastal tourism destinations. The implementation of an environmental management system is a powerful way for progressing towards better environmental performances. In this paper, the main results obtained in applying the Eco-Management and Audit Scheme procedure to the municipality of Cervia, a well-known tourist destination located on the Adriatic coast of Italy are described. This research puts into evidence that the main environmental pressures in the summer season are related to the supply of potable water, the production of solid wastes and wastewater air pollution and noise, etc. However, if correctly planned and managed, tourism can also contribute to environmental protection, to the conservation of biodiversity and to a sustainable use of natural resources. 相似文献
11.
12.
In recent years, significant advances have been made in business organization and management. The growing demands of clients as well as the globalization of world markets are among the many factors that have led to the establishment of systems of quality control and environmental management as a competitive strategy for businesses. When compared to other professional sectors, the construction sector has been slower to respond to environmental problems and to adopt Environmental Management Systems (EMS). In the world today the ISO 14001 standard is currently the main frame of reference used by construction companies to implement this type of management system. This article presents the results of a general study regarding the evaluation of the application of the ISO 14001 standard at civil engineering construction worksites in the Community of Madrid (Spain), specifically pertaining to requirement 4.4.1, Resources, roles, responsibilities, and authority. According to requirement 4.4.1, company executives should appoint people responsible for implementing the EMS and also specify their responsibilities and functions. The personnel designated for supervising environmental work should also have sufficient authority to establish and maintain the EMS. The results obtained were the following: - EMS supervisors did not generally possess adequate training and solid experience in construction work and in the environment. Furthermore, supervisors were usually forced to combine their environmental work with other tasks, which made their job even more difficult. - Generally speaking, supervisors were not given sufficient authority and autonomy because productivity at the construction site had priority over environmental management. This was due to the fact that the company management did not have a respectful attitude toward the environment, nor was the management actively involved in the establishment of the EMS. - Insufficient resources were allocated to the Environmental Management Unit. As a result, the application of EMSs in construction projects often appeared to be more of a formality, which was merely a way of maintaining the certification of the Environmental Management System. It was more a means of meeting the requirements for submitting a tender to contracting organisms rather than an indicator of any real commitment to improving the environmental performance of construction companies. 相似文献
13.
Sören Lindner Wilhelm Windhorst 《Journal of Environmental Planning and Management》2010,53(8):1069-1088
In the not too distant future several power plants throughout Europe will have to be replaced and the decision has to be made whether to build coal-fired power plants with carbon capture and storage (CCS). In a study for the city of Kiel in northern Germany only an 800 MW coal power plant reaches a required minimum for rentability. This study looks at an additional economic and environmental evaluation of a coal plant with CCS. We find that in two out of three carbon and energy price scenarios integrated gasification combined cycle (IGCC) plants with CCS have the greatest rentability. Pulverised coal (PC) plants with CCS can only compete with other options under very favourable assumptions. Life-cycle emissions from CCS are less than 70% of a coal plant – compared with at least more than 80% when only considering direct emissions from plants. However, life-cycle emissions are lower than in any other assessed option. 相似文献
14.
This paper explores the nature of tri-sector partnerships applied to community development in the mining sector. The case study approach was used to examine an initiative for environmental improvement and socio-economic development in the diamond province of the Republic of Sakha (Yakutia), in the Russian Federation. The study follows the journey of this initiative from a potential tri-sector partnership model between the diamond mining company ALROSA, the Government of the Republic of Sakha (Yakutia) and the SAPI Foundation, to a bi-lateral partnership between ALROSA and the Government represented by the Target Fund. The study explores the community development in the diamond province in the light of economic and political transition within the mining sector of the Russian Federation. 相似文献