共查询到20条相似文献,搜索用时 15 毫秒
1.
Laien He Gregory V. Wilkerson 《Journal of the American Water Resources Association》2011,47(6):1298-1316
He, Laien and Gregory V. Wilkerson, 2011. Improved Bankfull Channel Geometry Prediction Using Two‐Year Return‐Period Discharge. Journal of the American Water Resources Association (JAWRA) 47(6):1298–1316. DOI: 10.1111/j.1752‐1688.2011.00567.x Abstract: Bankfull discharge (Qbf) and bankfull channel geometry (i.e., width, Wbf; mean depth, Dbf; and cross‐section area, Abf) are important design parameters in stream restoration, habitat creation, mined land reclamation, and related projects. The selection of values for these parameters is facilitated by regional curves (regression models in which Qbf, Wbf, Dbf, and Abf are predicted as a function of drainage area, Ada). This paper explores the potential for the two‐year return‐period discharge (Q2) to improve predictions of Wbf, Dbf, and Abf. Improved predictions are expected because Q2 estimates integrate the effects of basin drainage area, climate, and geology. For conducting this study, 29 datasets (each representing one hydrologic region) spanning 14 states in the United States were analyzed. We assessed the utility of using Q2 by comparing statistical measures of regression model performance (e.g., coefficient of determination and Akaike’s information criterion). Compared to using Ada, Q2 is shown to be a “clearly superior” predictor of Wbf, Dbf, and Abf, respectively, for 21, 13, and 25% of the datasets. By contrast, Ada yielded a clearly superior model for predicting Wbf, Dbf, and Abf, respectively, for 0, 0, and 14% of the datasets. Our conclusion is that it alongside with developing conventional regional curves using Ada it is prudent to develop regional curves that use Q2 as an independent variable because in some cases the resulting model will be superior. 相似文献
2.
Whitney Blackburn‐Lynch Carmen T. Agouridis Christopher D. Barton 《Journal of the American Water Resources Association》2017,53(4):903-928
Regional curves relate drainage area to the bankfull channel characteristics discharge, cross‐sectional area, width, and mean depth. These curves are used for a variety of purposes, including aiding in the field identification of bankfull elevation and in the natural channel design process. When developing regional curves, the degree to which landform, geology, climate, and vegetation influence stream systems within a single physiographic province may not be fully considered. This study examined the use of the U.S. Geological Survey's Hydrologic Landscape Regions (HLR), as well as data from 2,856 independent sites throughout the contiguous United States (U.S.), to develop a set of regional curves (bankfull discharge, cross‐sectional area, width, and mean depth) for (1) the contiguous U.S., (2) each of the 20 HLRs, (3) each of the eight physiographic divisions, (4) 22 of the 25 physiographic provinces, and (5) individual HLRs within the physiographic provinces. These regional curves were then compared to each other, as well as those from the literature. Regional curves developed for individual HLRs, physiographic divisions, and physiographic provinces tended to outperform the contiguous U.S. indicating increased stratification was beneficial. Further stratifying physiographic provinces by HLR markedly improved regional curve reliability. Use of HLR as a basis of regional curve development, rather than physiographic region alone, may allow for the development of more robust regional curves. 相似文献
3.
Christiane I. Mulvihill Barry P. Baldigo 《Journal of the American Water Resources Association》2012,48(3):449-463
Mulvihill, Christiane I. and Barry P. Baldigo, 2012. Optimizing Bankfull Discharge and Hydraulic Geometry Relations for Streams in New York State. Journal of the American Water Resources Association (JAWRA) 48(3): 449-463. DOI: 10.1111/j.1752-1688.2011.00623.x Abstract: This study analyzes how various data stratification schemes can be used to optimize the accuracy and utility of regional hydraulic geometry (HG) models of bankfull discharge, width, depth, and cross-sectional area for streams in New York. Topographic surveys and discharge records from 281 cross sections at 82 gaging stations with drainage areas of 0.52-396 square miles were used to create log-log regressions of region-based relations between bankfull HG metrics and drainage area. The success with which regional models distinguished unique bankfull discharge and HG patterns was assessed by comparing each regional model to those for all other regions and a pooled statewide model. Gages were also stratified (grouped) by mean annual runoff (MAR), Rosgen stream type, and water-surface slope to test if these models were better predictors of HG to drainage area relations. Bankfull discharge models for Regions 4 and 7 were outside the 95% confidence interval bands of the statewide model, and bankfull width, depth, and cross-sectional area models for Region 3 differed significantly (p < 0.05) from those of other regions. This study found that statewide relations between drainage area and HG were strongest when data were stratified by hydrologic region, but that co-variable models could yield more accurate HG estimates in some local regional curve applications. 相似文献
4.
Rebecca Lave 《Journal of the American Water Resources Association》2009,45(6):1519-1532
Lave, Rebecca, 2009. The Controversy Over Natural Channel Design: Substantive Explanations and Potential Avenues for Resolution. Journal of the American Water Resources Association (JAWRA) 45(6):1519‐1532. Abstract: The controversy over Natural Channel Design (NCD) has perplexed, and sometimes paralyzed, the stream restoration community in the United States for more than a decade. Despite the high level of energy expended by participants on both sides, the content of the discussion has not advanced significantly. The two sides seem to be talking past each other, rather than engaging in constructive conversation. This paper attempts to start that conversation. Based on five years of primarily social science research, this paper explains the key components of the NCD approach, evaluates a number of the most common objections raised by its critics, offers a brief explanation for the widespread use of NCD, and concludes with suggestions about how to bring the controversy to a close. 相似文献
5.
Jason M. Zink Gregory D. Jennings G. Alexander Price 《Journal of the American Water Resources Association》2012,48(4):762-773
Zink, Jason M., Gregory D. Jennings, and G. Alexander Price, 2012. Morphology Characteristics of Southern Appalachian Wilderness Streams. Journal of the American Water Resources Association (JAWRA) 48(4): 762‐773. DOI: 10.1111/j.1752‐1688.2012.00647.x Abstract: Watersheds without urbanization or impacts from logging are rare in the southern Appalachian Mountains. The Joyce Kilmer/Slickrock Wilderness of North Carolina and Tennessee contains 24 km2 of old‐growth forest, with the balance of the wilderness in a mature second‐growth forest. The watersheds of Little Santeetlah and Slickrock Creek are located within the wilderness. Morphological information, including channel dimensions and longitudinal profiles, was gathered from 14 alluvial stream reaches in these watersheds. The study sites had drainage areas from 0.25 to 41.6 km2 and stream slopes from 0.014 to 0.104 m/m. Bankfull cross‐section dimensions of the study stream reaches were strongly correlated to drainage area across the observed range of slopes and bed morphology. Cross‐section area and width relationships for the streams in this study did not differ significantly from regional curves for the mountain physiographic region of North Carolina. Observations of these reaches did not suggest a definitive rule regarding the proportion of steps and riffles in streams. Pools occupied greater than 50% of the length in all stream reaches with slopes less than 0.07 m/m. Significant correlation existed between step height ratio and slope, suggesting that step height can be approximated as the product of channel width and slope. Riffle length and riffle slope ratios were also significantly correlated with slope, though pool spacing was not. 相似文献
6.
Edward R. Schenk Cliff R. Hupp 《Journal of the American Water Resources Association》2009,45(3):597-606
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment. 相似文献
7.
Yusuf M. Mohamoud Rajbir S. Parmar 《Journal of the American Water Resources Association》2006,42(3):755-768
ABSTRACT: Methods to estimate streamflow and channel hydraulic geometry were developed for unpaged streams in the Mid‐Atlantic Region. Observed mean annual streamflow and associated hydraulic geometry data from 75 gaging stations in the Appalachian Plateau, the Ridge and Valley, and the Piedmont Physiographic Provinces of the Mid‐Atlantic Region were used to develop a set of power functions that relate streamflow to drainage area and hydraulic geometry to streamflow. For all three physiographic provinces, drainage area explained 95 to 98 percent of the variance in mean annual streamflow. Relationships between mean annual streamflow and water surface width and mean flow depth had coefficients of determination that ranged from R2= 0.55 to R2= 0.91, but the coefficient of determination between mean flow velocity and mean annual streamflow was lower (R2= 0.44 to R2= 0.54). The advantages of using the regional regression models to estimate streamflow over a conceptual model or a water balance model are its ease of application and reduced input data needs. The prediction of the regression equations were tested with data collected as part of the U.S. Environmental Protection Agency (USEPA) Environmental Monitoring and Assessment Program (EMAP). In addition, equations to transfer streamflow from gaged to ungaged streams are presented. 相似文献
8.
Robert M. Goldstein Michael R. Meador Kelly E. Ruhl 《Journal of the American Water Resources Association》2007,43(3):642-650
Abstract: The effects of streamflows on temporal variation in stream habitat were analyzed from the data collected 6‐11 years apart at 38 sites across the United States. Multiple linear regression was used to assess the variation in habitat caused by streamflow at the time of sampling and high flows between sampling. In addition to flow variables, the model also contained geomorphic and land use factors. The regression model was statistically significant (p < 0.05; R2 = 0.31‐0.46) for 5 of 14 habitat variables: mean wetted stream depth, mean bankfull depth, mean wetted stream width, coefficient of variation of wetted stream width, and the percent frequency of bank erosion. High flows between samples accounted for about 16% of the total variation in the frequency of bank erosion. Streamflow at the time of sampling was the main source of variation in mean stream depth and contributed to the variation in mean stream width and the frequency of bank erosion. Urban land use (population change) accounted for over 20% of the total variation in mean bankfull depth, 15% of the total variation in the coefficient of variation of stream width, and about 10% of the variation in mean stream width. 相似文献
9.
POST‐HARVEST RIPARIAN BUFFER RESPONSE: IMPLICATIONS FOR WOOD RECRUITMENT MODELING AND BUFFER DESIGN1
Michael K. Liquori 《Journal of the American Water Resources Association》2006,42(1):177-189
Despite the importance of riparian buffers in providing aquatic functions to forested streams, few studies have sought to capture key differences in ecological and geomorphic processes between buffered sites and forested conditions. This study examines post‐harvest buffer conditions from 20 randomly selected harvest sites within a managed tree farm in the Cascade Mountains of western Washington. Post‐harvest wind derived treefall rates in buffers up to three years post‐harvest averaged 268 trees/km/year, 26 times greater than competition‐induced mortality rate estimates. Treefall rates and stem breakage were strongly tied to tree species and relatively unaffected by stream direction. Observed treefall direction is strongly biased toward the channel, irrespective of channel or buffer orientation. Fall direction bias can deliver significantly more wood recruitment relative to randomly directed treefall, suggesting that models that utilize the random fall assumption will significantly underpredict recruitment. A simple estimate of post‐harvest wood recruitment from buffers can be obtained from species specific treefall and breakage rates, combined with bias corrected recruitment probability as a function of source distance from the channel. Post‐harvest wind effects may reduce the standing density of trees enough to significantly reduce or eliminate competition mortality and thus indirectly alter bank erosion rates, resulting in substantially different wood recruitment dynamics from buffers as compared to unmanaged forests. 相似文献
10.
A. Simon M. Doyle M. Kondolf F.D. Shields B. Rhoads M. McPhillips 《Journal of the American Water Resources Association》2007,43(5):1117-1131
Abstract: Over the past 10 years the Rosgen classification system and its associated methods of “natural channel design” have become synonymous to some with the term “stream restoration” and the science of fluvial geomorphology. Since the mid 1990s, this classification approach has become widely adopted by governmental agencies, particularly those funding restoration projects. The purposes of this article are to present a critical review, highlight inconsistencies and identify technical problems of Rosgen’s “natural channel design” approach to stream restoration. This paper’s primary thesis is that alluvial streams are open systems that adjust to altered inputs of energy and materials, and that a form‐based system largely ignores this critical component. Problems with the use of the classification are encountered with identifying bankfull dimensions, particularly in incising channels and with the mixing of bed and bank sediment into a single population. Its use for engineering design and restoration may be flawed by ignoring some processes governed by force and resistance, and the imbalance between sediment supply and transporting power in unstable systems. An example of how C5 channels composed of different bank sediments adjust differently and to different equilibrium morphologies in response to an identical disturbance is shown. This contradicts the fundamental underpinning of “natural channel design” and the “reference‐reach approach.” The Rosgen classification is probably best applied as a communication tool to describe channel form but, in combination with “natural channel design” techniques, are not diagnostic of how to mitigate channel instability or predict equilibrium morphologies. For this, physically based, mechanistic approaches that rely on quantifying the driving and resisting forces that control active processes and ultimate channel morphology are better suited as the physics of erosion, transport, and deposition are the same regardless of the hydro‐physiographic province or stream type because of the uniformity of physical laws. 相似文献
11.
Charles J.P. Podolak 《Journal of the American Water Resources Association》2013,49(2):390-401
Abstract: An ensemble of rule‐based models was constructed to assess possible future braided river planform configurations for the Toklat River in Denali National Park and Preserve, Alaska. This approach combined an analysis of large‐scale influences on stability with several reduced‐complexity models to produce the predictions at a practical level for managers concerned about the persistence of bank erosion while acknowledging the great uncertainty in any landscape prediction. First, a model of confluence angles reproduced observed angles of a major confluence, but showed limited susceptibility to a major rearrangement of the channel planform downstream. Second, a probabilistic map of channel locations was created with a two‐parameter channel avulsion model. The predicted channel belt location was concentrated in the same area as the current channel belt. Finally, a suite of valley‐scale channel and braid plain characteristics were extracted from a light detection and ranging (LiDAR)‐derived surface. The characteristics demonstrated large‐scale stabilizing topographic influences on channel planform. The combination of independent analyses increased confidence in the conclusion that the Toklat River braided planform is a dynamically stable system due to large and persistent valley‐scale influences, and that a range of avulsive perturbations are likely to result in a relatively unchanged planform configuration in the short term. 相似文献
12.
John S. Schwartz Melanie Dahle R. Bruce Robinson 《Journal of the American Water Resources Association》2008,44(4):879-886
Abstract: Siltation and subsequent biological impairment is a national problem prompting state regulatory agencies to develop sediment total maximum daily loads (TMDL) for many streams. To support TMDL targets for reduced sediment yield in disturbed watersheds, a critical need exists for stream assessments to identify threshold concentrations of suspended sediment that impact aquatic biota. Because of the episodic nature of stream sediment transport, thresholds should not only be a function of sediment concentration, but also of duration and dose frequency. Water quality sondes can collect voluminous amounts of turbidity data, a surrogate for suspended sediment, at intervals that can be used to characterize concentration, duration, and frequency of elevated turbidity events. To characterize turbidity sonde data in an ecologically relevant manner, a methodology for concentration‐duration‐frequency (CDF) curves was developed using turbidity doses that relate to different levels of biological impairment. To illustrate this methodology, turbidity CDF curves were generated for two sites on Little Pigeon River in the Great Smoky Mountains National Park, Tennessee, using over 30,000 sonde data measurements per site for a one‐year period. Utilizing a Poisson arrival approach, turbidity spikes were analyzed stochastically by observing the frequency and duration of recorded events over a turbidity level that relates to a biological dose response. An exponential equation was used to fit duration and frequency of a specified turbidity level to generate concentric‐shaped CDF curves, where at specific turbidities longer durations occurred less frequently and conversely shorter durations occurred more frequently. The significance of the equation fit to the data was accomplished with a Kolmogorov‐Smirnov goodness‐of‐fit test. Our findings showed that the CDF curves derived by an exponential function performed reasonable well, with most curves significant at a 95% confidence level. These CDF curves were then used to demonstrate how they could be used to assess biological impairment, and identify future research needs for improved development of sediment TMDLs. 相似文献
13.
Christopher I. Thornton Anthony M. Meneghetti Kent Collins Steven R. Abt S. Michael Scurlock 《Journal of the American Water Resources Association》2011,47(1):169-178
Thornton, Christopher I., Anthony M. Meneghetti, Kent Collins, Steven R. Abt, and S. Michael Scurlock, 2011. Stage‐Discharge Relationships for U‐, A‐, and W‐Weirs in Un‐submerged Flow Conditions. Journal of the American Water Resources Association (JAWRA) 47(1):169‐178. DOI: 10.1111/j.1752‐1688.2010.00501.x Abstract: Instream rock weirs are routinely placed into stream systems to provide grade control, reduce streambank erosion, provide energy dissipation, and allow fish passage. However, design and performance criteria for site specific applications are often anecdotal or qualitative in nature, and based upon the experience of the design team. A study was conducted to develop generic state‐discharge relationships for U‐, A‐, and W‐weirs. A laboratory testing program was performed in which scaled, near‐prototype U‐, A‐, and W‐rock weir structures were constructed in 11 configurations. Each configuration encompassed a unique weir shape, bed material, and/or bed slope. Thirty‐one tests were conducted in which each structure was subjected to a sequence of predetermined discharges that minimally included the equivalent of 1/3 bankfull, 2/3 bankfull, and bankfull conditions. All tests were performed in subcritical, un‐submerged flow conditions. Stage‐discharge relationships were developed using multivariant, power regression techniques for each of the U‐, A‐, and W‐rock weirs as a function of the effective weir length, flow depth, mean weir height, rock size, and discharge coefficient. Unique coefficient expressions were developed for each weir shape, and a single discharge coefficient was proposed applicable to the weirs for determining the channel stage‐discharge rating. 相似文献
14.
Ruth R. Brockman Carmen T. Agouridis Stephen R. Workman Lindell E. Ormsbee Alex W. Fogle 《Journal of the American Water Resources Association》2012,48(2):391-406
Brockman, Ruth R., Carmen T. Agouridis, Stephen R. Workman, Lindell E. Ormsbee, and Alex W. Fogle, 2012. Bankfull Regional Curves for the Inner and Outer Bluegrass Regions of Kentucky. Journal of the American Water Resources Association (JAWRA) 48(2): 391‐406. DOI: 10.1111/j.1752‐1688.2011.00621.x Abstract: Bankfull regional curves that relate channel dimensions and discharge to watershed drainage area are useful tools for assisting in the correct identification of bankfull elevation and in stream restoration and reconstruction. This study assessed 28 stable streams located in two physiographic regions of Kentucky: the Inner Bluegrass and the Outer Bluegrass. Bankfull channel dimensions, discharge, and return period as well as average channel slope, median bed material size, sinuosity, Rosgen stream classification, and percent impervious area were determined. Significant relationships were found between drainage area and the bankfull characteristics of cross‐sectional area, width, mean depth, and discharge for both the Inner Bluegrass and Outer Bluegrass regions (α = 0.05). It was also found that the percent impervious area in a watershed had minimal effect on bankfull dimensions, which is attributed to the well‐vegetated nature of the streambanks, cohesive streambank materials, and bedrock control. No significant differences between any of the Inner Bluegrass and Outer Bluegrass regional curves were found (α = 0.05). Comparisons were made between the Inner Bluegrass and Outer Bluegrass curves and others developed in karst‐influenced areas in the Eastern United States. Although few significant differences were found between the regional curves for bankfull discharge and width, a number of the curves differed with regards to bankfull cross‐sectional area and mean depth. 相似文献
15.
Catalina Segura Derek B. Booth 《Journal of the American Water Resources Association》2010,46(5):972-986
Segura, Catalina and Derek B. Booth, 2010. Effects of Geomorphic Setting and Urbanization on Wood, Pools, Sediment Storage, and Bank Erosion in Puget Sound Streams. Journal of the American Water Resources Association (JAWRA) 46(5):972-986. DOI: 10.1111/j.1752-1688.2010.00470.x Abstract: Interrelationships between urbanization, the near-riparian zone, and channel morphology were examined in 44 lowland stream reaches in the Puget Lowlands of western Washington, United States. Both the degree of urbanization and channel type control channel response to a range of instream and riparian conditions. Some of these relationships are not evident in lumped datasets (i.e., with all channel types and/or degrees of urbanization) and highlight the importance of fluvial geomorphology in determining channel response. We found that in low-urbanized watersheds dominated by forced pool-riffle and plane-bed morphologies, the frequency and distribution of large woody debris (LWD), pool spacing, sediment storage, and bank erosion have a strong relationship with channel confinement and characteristics of near-riparian vegetation. In contrast, high-urbanized reaches dominated by simplified morphologies are substantially less sensitive to the condition of the near-riparian zone (e.g., size of the near-riparian vegetation and the level of channel confinement), due to the common disconnection of stream and floodplain caused by the placement of stabilizing structures in the banks. These structures are typically placed to prevent erosion; however, they also result in fewer LWD and pools, less sediment storage, and higher potential for incision. 相似文献
16.
John F. Joseph Hatim O. Sharif Jeffrey G. Arnold David D. Bosch 《Journal of the American Water Resources Association》2013,49(2):300-318
Abstract: The calibration of basin‐scale hydrologic models consists of adjusting parameters such that simulated values closely match observed values. However, due to inevitable inaccuracies in models and model inputs, simulated response hydrographs for multiyear calibrations will not be perfectly synchronized with observed response hydrographs at the daily time step. An analytically derived formula suggests that when timing errors are significant, traditional calibration approaches may generally underestimate the total event‐flow volume. An event‐adaptive time series is developed and incorporated into the Nash‐Sutcliffe Efficiency objective function to diagnose the potential impact of event‐flow synchronization errors. Test sites are the 50 km2 Subwatershed I of the Little River Experimental Watershed (LREWswI) in southeastern Georgia, and the 610 km2 Little Washita River Experimental Watershed (LWREW) in southwestern Oklahoma, with the Soil and Water Assessment Tool used as the hydrologic model. Results suggest that simulated surface runoff generation is 55% less for LREWswI when the daily time series is used compared with when the event‐adaptive technique is used. Event‐flow generation may also be underestimated for LWREW, but to a lesser extent than it may be for LREWswI, due to a larger portion of the event flow being lateral flow. 相似文献
17.
Michael Dettinger 《Journal of the American Water Resources Association》2011,47(3):514-523
Dettinger, Michael, 2011. Climate Change, Atmospheric Rivers, and Floods in California – A Multimodel Analysis of Storm Frequency and Magnitude Changes. Journal of the American Water Resources Association (JAWRA) 47(3):514‐523. DOI: 10.1111/j.1752‐1688.2011.00546.x Abstract: Recent studies have documented the important role that “atmospheric rivers” (ARs) of concentrated near‐surface water vapor above the Pacific Ocean play in the storms and floods in California, Oregon, and Washington. By delivering large masses of warm, moist air (sometimes directly from the Tropics), ARs establish conditions for the kinds of high snowlines and copious orographic rainfall that have caused the largest historical storms. In many California rivers, essentially all major historical floods have been associated with AR storms. As an example of the kinds of storm changes that may influence future flood frequencies, the occurrence of such storms in historical observations and in a 7‐model ensemble of historical‐climate and projected future climate simulations is evaluated. Under an A2 greenhouse‐gas emissions scenario (with emissions accelerating throughout the 21st Century), average AR statistics do not change much in most climate models; however, extremes change notably. Years with many AR episodes increase, ARs with higher‐than‐historical water‐vapor transport rates increase, and AR storm‐temperatures increase. Furthermore, the peak season within which most ARs occur is commonly projected to lengthen, extending the flood‐hazard season. All of these tendencies could increase opportunities for both more frequent and more severe floods in California under projected climate changes. 相似文献
18.
Katrin Bieger Hendrik Rathjens Jeffrey G. Arnold Indrajeet Chaubey Peter M. Allen 《Journal of the American Water Resources Association》2016,52(6):1385-1400
Channel dimensions are important input variables for many hydrologic models. As measurements of channel geometry are not available in most watersheds, they are often predicted using bankfull hydraulic geometry relationships. This study aims at improving existing equations that relate bankfull width, depth, and cross‐sectional area to drainage area (DA) without limiting their use to well‐gauged watersheds. We included seven additional variables in the equations that can be derived from data that are generally required by hydrologic models anyway and conducted several multiple regression analyses to identify the ideal combination of additional variables for nationwide and regional models for each Physiographic Division of the United States (U.S.). Results indicate that including the additional variables in the regression equations generally improves predictions considerably. The selection of relevant variables varies by Physiographic Division, but average annual precipitation (PCP) and temperature (TMP) were generally found to improve the models the most. Therefore, we recommend using regression equations with three independent variables (DA, PCP, and TMP) to predict bankfull channel dimensions for hydrologic models. Furthermore, we recommend using the regional equations for watersheds within regions from which data were used for model development, whereas in all other parts of the U.S. and the rest of the world, the nationwide equations should be given preference. 相似文献
19.
Kelly Kibler Desiree Tullos Mathias Kondolf 《Journal of the American Water Resources Association》2011,47(2):408-423
Kibler, Kelly, Desiree Tullos, and Mathias Kondolf, 2011. Evolving Expectations of Dam Removal Outcomes: Downstream Geomorphic Effects Following Removal of a Small, Gravel‐Filled Dam. Journal of the American Water Resources Association (JAWRA) 1‐16. DOI: 10.1111/j.1752‐1688.2011.00523.x Abstract: Dam removal is a promising river restoration technique, particularly for the vast number of rivers impounded by small dams that no longer fulfill their intended function. As the decommissioning of small dams becomes increasingly commonplace in the future, it is essential that decisions regarding how and when to remove these structures are informed by appropriate conceptual ideas outlining potential outcomes. To refine predictions, it is necessary to utilize information from ongoing dam removal monitoring to evolve predictive tools, including conceptual models. Following removal of the Brownsville Dam from the Calapooia River, Oregon, aquatic habitats directly below the dam became more heterogeneous over the short term, whereas changes further downstream were virtually undetectable. One year after dam removal, substrates of bars and riffles within 400 m downstream of the dam coarsened and a dominance of gravel and cobble sediments replaced previously hardpan substrate. New bars formed and existing bars grew such that bar area and volume increased substantially, and a pool‐riffle structure formed where plane‐bed glide formations had previously dominated. As the Brownsville Dam stored coarse rather than fine sediments, outcomes following removal differ from results of many prior dam removal studies. Therefore, we propose a refined conceptual model describing downstream geomorphic processes following small dam removal when upstream fill is dominated by coarse sediments. 相似文献
20.
Richard J. Horwitz Thomas E. Johnson Paul F. Overbeck T. Kevin O’Donnell W. Cully Hession Bernard W. Sweeney 《Journal of the American Water Resources Association》2008,44(3):724-741
Abstract: The joint influences of riparian vegetation and urbanization on fish assemblages were analyzed by depletion sampling in paired forested and nonforested reaches of 25 small streams along an urbanization gradient. Nonforested reaches were narrower than their forested counterparts, so densities based on surface area differ from linear densities (based on reach length). Linear densities (based on number or biomass of fish) of American eel, white sucker and tesselated darter, and the proportion of biomass of benthic invertivores were significantly higher in nonforested reaches, while linear densities of margined madtom and the number of pool species were significantly higher in forested reaches. Observed riparian effects may reflect differences in habitat and algal productivity between forested and nonforested reaches. These results suggest that relatively small‐scale riparian restoration projects can affect local geomorphology and the abundance of fish. Dense vegetative cover in riparian zones and similar or analogous habitats in both forested and nonforested reaches, the relatively small scale of the nonforested reaches, and the low statistical power to detect differences in abundance of rare species may have limited the observed differences between forested and nonforested reaches. There was a strong urbanization gradient, with reductions of intolerant species and increases of tolerant species and omnivores with increasing urbanization. Interactions between riparian vegetation type and urbanization were found for blacknose dace, creek chub, tesselated darter, and the proportion of biomass of lithophilic spawners. The study did not provide consistent support for the hypotheses that responses of fish to riparian vegetation would be overwhelmed by urban degradation or insignificant at low urbanization. 相似文献