首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
第 1期城市绿色空间及对城市热岛效应的影响李延明 ,郭 佳 ,冯久莹 (1)…………………………………………………………外源性污染对梅梁湾水质影响的定量化李一平 ,逢 勇 ,吕 俊 ,等 (5 )……………………………………………………突发性环境污染事故应急预警网络系统的设计与开发冯文钊 ,张 宏 ,彭立芹 ,等 (9)……………………………………生物膜法A/O/O工艺城市污水脱氮处理的挂膜启动李亚新 ,张宏伟 ,连瑛秀 ,等 (12 )……………………………………我国城市污水厂延伸污泥处理与处置责任杨 健 ,吴 敏 (16 )……………………………  相似文献   

2.
第1期区域生态环境服务价值评估———以延安市宝塔区为…………………………………………例韩贵锋,梁保平,胡晓芳(1)宁波市公众环境意识调查与分……………………………………………………………………………………析黄平沙(4)柳州市大气颗粒物中多环芳烃的分布特征及来…………………………………………源何星存,陈孟林,杨崇毅,等(7)海河下游塘沽段生态堤岸设计导………………………………………………………………………则朱琳,龚清宇(10)固定化枝孢霉对铜离子的生物吸………………………………………………………………附董新姣,朱聪,俞…  相似文献   

3.
基于BaPS技术的高山草甸土硝化和反硝化季节变化   总被引:4,自引:0,他引:4  
高永恒  罗鹏  吴宁  陈槐 《生态环境》2008,17(1):384-387
应用气压分离(BaPS)技术测定了川西北高山草甸土硝化和反硝化季节动态变化.结果表明:植物生长季节内,土壤总硝化、反硝化和N2O释放率的变化趋势一致,即从6月份(硝化率:N 8.40 mg kg-1 d-1;反硝化率:N 0.48 mg kg-1 d-1;N2O释放率:N 84.48 靏 kg-1 d-1)开始增加,7月份(N 19.36 mg kg-1 d-1;N 0.60 mg kg-1 d-1;N 100.13 靏 kg-1 d-1)达到最大值,然后开始下降,到9月份(N 1.81 mg kg-1 d-1;N 0.24 mg kg-1 d-1;N 40.09 靏 kg-1 d-1)降为最小值.氮素物质基础(NO3--N和NH4 -N)不是影响该高山草甸土硝化和反硝化的主要因素,土壤温度和湿度是该高山草甸土硝化、反硝化作用的主要影响因子.  相似文献   

4.
垃圾渗滤液原位反硝化研究   总被引:2,自引:0,他引:2  
场外硝化-原位反硝化是垃圾填埋场氮管理的新途径.本文利用垃圾柱模拟生物反应器填埋场.研究了硝化渗滤液在填埋场内部的变迁及其对垃圾降解的影响.结果表明,硝化渗滤液回灌促进了填埋场垃圾降解,回灌的总氧化态氮(TON)被完全还原,反硝化为主要作用反应,最大TON负荷为28.6 mg(N)kg(TS)-1d-1.当负荷大于11.4 mg(N)kg(TS)-1d-1时,垃圾产甲烷受到抑制.抑制作用随负荷的增加而加强.在此过程中,反硝化逐渐代替产甲烷作用成为填埋场内垃圾降解的主要反应,产生气体以氮气为主,而非甲烷;硝化渗滤液与垃圾的长期作用也改变了填埋场的菌群结构.图5表1参18  相似文献   

5.
在面源低污染水的原位修复领域,人工湿地生物脱氮过程受温度、p H波动影响以及NO2--N积累抑制反硝化脱氮效果等问题,因此强化系统脱氮性能在实际工程应用中具有重要意义。固定化微生物技术具有环境变化适应能力以及耐毒害能力强等优点。该研究通过分离筛选高效反硝化菌,对其进行DNA序列分析鉴定及其种属和系统发育地位分析,并以包埋法加以固定,考察固定化反硝化菌在不同温度、p H、DO和C/N下的反硝化性能,分析各因素变化对固定化反硝化菌脱氮效果的影响,探究各影响因素对固定化反硝化菌脱氮性能的作用机理,以期为固定化反硝化菌强化人工湿地脱氮性能提供参考。经反硝化能力测定,筛选得到的高效反硝化菌株对NO3--N、TN的去除率分别为98.83%、98.36%,NO2--N积累量仅为0.28mg·L~(-1),24 h内脱氮效率为8.59 mg·L~(-1)·h~(-1),经16S r RNA测序结果表明该菌株与Pseudomonas stutzeri A1501的最大相似度为99.7%。采用PVA、SA为材料包埋固定该菌株,固定化反硝化菌的生物量为15.67 g·L~(-1),颗粒密度为0.93 g·m L~(-1)。通过对固定化反硝化菌处理低污染水的性能研究得知,p H、T、DO的波动对固定化反硝化菌的脱氮效果影响均小于游离反硝化菌,固定化反硝化菌在p H为7,θ为30℃,DO为0.87~1.54 mg·L~(-1),C/N为5时的脱氮效果最好。  相似文献   

6.
温室气体N_2O的生成和排放与反硝化功能微生物关系密切,探讨沉积物反硝化微生物功能基因丰度及其与N_2O通量的关系有助于更好地理解沉积物N_2O生成与排放的微生物学机制。以太湖为研究对象,采用定量qPCR(Quantitative PCR)技术测定了太湖沉积物反硝化功能基因(nirK、nirS、norB和nosZ)丰度,阐明了太湖沉积物反消化功能基因丰度的季节变化规律,并分析了反硝化功能基因丰度与沉积物N_2O通量及其他环境因子的关系。结果表明:太湖沉积物反硝化功能基因丰度呈现夏秋季高冬春季低,具有明显的季节变化特征,norB基因丰度最高,均值为9.03×10~9 copies·g~(-1),其次为nir S基因(1.14×10~9copies·g~(-1)),nirK和nosZ基因丰度均值分别为3.04×10~8copies·g~(-1)和1.09×10~8copies·g~(-1)。沉积物TN和NO_2~-是影响反硝化功能基因丰度的重要环境因子。夏秋季沉积物N2O通量为-0.12-0.04nmol·g~(-1)·h~(-1),均值为-0.05nmol·g~(-1)·h~(-1),与反硝化功能基因(nir K、nir S和nir B)丰度呈显著正相关(P0.05),表明反硝化过程消耗了N_2O。冬春季沉积物N_2O通量为-0.05-0.48 nmol·g~(-1)·h~(-1),均值为0.27 nmol·g~(-1)·h~(-1),与反硝化功能基因丰度不具显著相关性,表明反硝化作用可能不是N_2O产生的主要过程。  相似文献   

7.
以上海某垃圾焚烧厂为研究对象,采用电感耦合等离子体发射光谱(ICP-OES)和荧光定量PCR定量分析了其周边土壤中重金属(Cd、Pb、Cu、Ni、Cr、Zn和As)含量水平,及不同硝化和反硝化功能基因丰度(AOB-amoA、nxrB、narG、nirS、norB和nosZ),并通过空间插值法分析了目标重金属与硝化和反硝化功能基因的空间分布特征,同时通过相关性分析和冗余分析探讨了土壤重金属及其理化性质对硝化和反硝化功能基因丰度变化的作用影响。结果表明,研究区域土壤中Cd、Pb、Cu、Ni、Cr、Zn和As的含量分别为0.083~1.065、15.54~43.17、18.30~65.52、24.58~41.65、65.04~201.0、58.96~153.5和0.098~5.115 mg·kg~(-1),而土壤中AOB-amoA、nxrB、narG、nirS、norB和nosZ基因丰度分别为4.89×10~2~1.34×10~5 copies·g~(-1)、5.43×10~6~5.41×10~7 copies·g~(-1)、1.21×10~6~7.91×10~6 copies·g~(-1)、3.79×10~6~7.39×10~7 copies·g~(-1)、1.61×10~5~1.33×10~7 copies·g~(-1)和1.44×10~4~2.18×10~5 copies·g~(-1)。由空间插值分析结果可知,土壤中重金属主要来源于焚烧烟气排放沉降,硝化和反硝化功能基因的空间分布特征与土壤总氮及重金属均具有相似性。相关性分析和冗余分析结果显示,除Cd和Zn外,其余重金属含量对硝化和反硝化功能基因丰度影响不显著,表明垃圾焚烧厂周边土壤中重金属污染对氮循环过程影响较小。相比之下,土壤理化性质如总有机碳、总氮等对硝化和反硝化功能基因丰度影响更显著。该研究可为相关地区垃圾焚烧厂周边土壤重金属污染控制及微生物生态风险评价提供参考。  相似文献   

8.
韩磊  庄涛  杨新明  袁旭音  韩年  李洁 《环境化学》2019,38(7):1539-1547
以太湖西部3个中小流域为研究区,于2017年7月15日—20日,采集各流域内3种典型滨岸带表层(0—20 cm)土壤,测定土壤理化性质和反硝化潜力,探讨不同流域滨岸带土壤反硝化潜力的差异和变化规律,并确定土壤反硝化潜力的主要影响因子.研究结果表明,各流域土壤反硝化潜力存在明显差异,天目湖流域、合溪流域和苕溪流域土壤反硝化潜力分别为0.294±0.226 (μg N (N_2O)·(g·h)~(-1))、0.542±0.327 (μg N (N_2O)·(g·h)~(-1))和0.821±0.494 (μg N (N_2O)·(g·h)~(-1)),总体表现为城镇化程度越高,土壤反硝化潜力越大.在相同流域内,林地滨岸带土壤反硝化潜力最大,其次为草地滨岸带和荒地滨岸带.相关分析结果表明,土壤反硝化潜力与土壤含水率、硝态氮含量、有机质含量和微生物碳含量都显著正相关(n=54,P0.01).结合回归分析,表明土壤含水率、硝态氮含量和微生物量碳含量是苕溪流域滨岸带土壤反硝化潜力的主要影响因子;土壤有机质含量和硝态氮含量分别是合溪和天目湖流域滨岸带土壤反硝化潜力的主要影响因子.综上,滨岸带土壤反硝化潜力与人类活动强弱有密切联系,其主要影响因子在不同城镇化背景下的流域间也各不相同.  相似文献   

9.
潮汐流人工湿地(Tidal flow constructed wetland,TF-CW)是一种新型人工湿地生态系统,并且在氮去除方面受到了广泛的关注。通过对比4种不同进水方式TF-CW对NH4+-N和NO3--N两种氮形态的处理效果,并分析基质硝化反硝化强度与去除效果之间的相关性以及不同处理深度基质的硝化反硝化强度。结果显示:4种进水方式的湿地模拟装置对NH4+-N的平均去除率差异性显著且与硝化强度差异性一致,闲置时间/反应时间为2∶1(D)的进水方式下基质的平均硝化强度最大,为(1.68±0.29)mg·kg-1·h-1,4种模拟装置的基质平均反硝化强度差异性也显著(P=1.202×10-5),连续流进水方式反硝化强度最大,为(2.99±1.58)mg·kg-1·h-1;TF-CW基质硝化强度与NH4+-N的去除率有明显的正相关性(r2=0.849 7,P=4.285×10-14),反硝化强度与NO3--N的出水浓度呈明显负相关关系(r2=0.844 8,P=6.939×10-14);装置上部0~30 cm的处理阶段硝化强度最大,随深度增加变化逐渐减小,反硝化强度在中部的30~60 cm阶段较高。本研究为TF-CW设计改善其运行效果奠定了理论基础,在进行人工湿地设计时需综合考虑NH4+-N和NO3--N的整体去除效果,将潮汐流人工湿地与连续流人工湿地进行组合并合理配置,对污染物的去除更加全面有效。  相似文献   

10.
以pH作为SBR法硝化过程模糊控制参数的基础研究   总被引:13,自引:0,他引:13  
为实现SBR法处理啤酒废水硝化时间的在线模糊控制,系统地研究了不同碱度类型和浓度对SBR法硝化过程中pH变化规律的影响,同时考察了DO和ORP的变化规律。结果表明,硝化过程中pH的变化可以分为下降型和上升型,下降型有ρ(HCO3^-)适量和不足两种情况,ρ(HCO3^-)适量时,pH在硝化结束时由下降转为上升;ρ(HCO3^-)不足时,pH在硝化结束时下降速率变小;根据pH这些变化特征控制硝化终点;下降型是最普遍的情形,上升型是ρ(HCO3^-)过分充足的情况,在硝化过程和硝化结束之间,pH一直呈现上升趋势,不能根据pH的变化来控制硝化时间,若ψ(曝气量)适宜,可以通过DO来判断硝化终点;上升型在实际中很少出现,pH以上变化规律不仅可以判断硝化时间,还可以判断硝化反应过程中ρ(HCO3^-)充足与否,在此基础上,建立了SBR法硝化时间的模糊控制规则。图7表1参16。  相似文献   

11.
垃圾填埋场是重要的甲烷释放源,其有效管理是减缓温室效应的重要环节.通过硝化渗滤液回灌模拟垃圾填埋柱,研究硝化渗滤液在新鲜垃圾和老龄垃圾填埋柱中的脱氮及对垃圾稳定化和产甲烷的影响.结果表明,回灌的硝化渗滤液在不同填埋龄垃圾柱中,均可实现总氧化态氮(Total oxidation nitroge,TON)完全还原.当回灌TON负荷分别达到14.19 g t-1(TS)d-1和10.45 g t-1(TS)d-1时,新、老垃圾柱中甲烷产生开始受到抑制.实验后期,回灌TON负荷增至38.78 g t-1(TS)d-1和30.62 g t-1(TS)d-1时,新、老垃圾填埋柱产甲烷相对抑制率分别达54.10%和95.77%.同时,回灌反硝化对新、老垃圾柱中垃圾降解贡献率(Rd)分别达85%和93%,能有效促进垃圾稳定.  相似文献   

12.
初步实验证实螯台球菌(Chelatococcus daeguensis)TAD1在高温下具有异养硝化-反硝化的能力,为验证其可应用性,采用曝气生物滤池工艺,研究了TAD1在温度为50℃的异养硝化-反硝化性能.结果表明,TAD1在曝气生物滤池中可同时进行好氧反硝化和异养硝化.当分别以硝氮、氨氮及硝氮和氨氮为氮源时,12 h的氮去除率均达到100%,氮的去除能力分别为12.67 mg.L-.1h-1、3.62 mg.L-.1h-1及16.53 mg.L-.1h-1.虽然在脱氮过程中,亚硝盐在6 h迅速积累到76 mg.L-1(硝氮为氮源)和52.6 mg.L-1(硝氮和氨氮为氮源),但在随后的几个小时内又快速降低至0(检测限之外).因而,TAD1具有应用于高温生物脱氮工艺的能力和优势.  相似文献   

13.
生物电化学系统(BES)因兼有污染物去除与能量回收等优点,近年来已成为环境污染治理领域的关注热点.对生物电化学技术在脱氮方面的基本原理、含氮污染物的转化途径进行综述,主要的生物脱氮过程包括阴极反硝化、阳极氨氧化以及阴极同步硝化反硝化等,而非生物脱氮过程包括NH_3/NH_4~+的跨膜转移、氨气逃逸等.总结已报道的BES中主要脱氮微生物及其脱氮机制,BES中多数反硝化菌属于变形菌门(Proteobacteria);硝化细菌主要是亚硝化菌属(Nitrosomonas)和硝化杆菌属(Nitrobacter);在同步硝化反硝化过程中,电极上的硝化、反硝化菌有明显的分层现象.最后阐述了生物电化学脱氮技术在生活污水、渗滤液、地下水处理等领域的最新应用研究,通过改变反应器构型以及运行模式等条件构建不同BES处理各类污水,以达到去除污染物同时回收电能或资源的目的.基于目前BES的优势,认为减少脱氮中间产物(NO_2~--N、N_2O)的积累及扩大BES规模对电能输出和污染物去除效果的影响将是未来的研究方向.  相似文献   

14.
一种新的好氧反硝化菌筛选方法的建立及新菌株的发现   总被引:29,自引:0,他引:29  
利用间歇曝气富集,氰化钾(KCN)选择培养基筛选好氧反硝化的细菌,通过形态学特征、生理生化反应及16SrDNA同源性比较对筛得菌株进行鉴定,并对其好氧反硝化相关基因napA进行扩增并测序比较.筛选到一株可以柠檬酸钠为碳源,硝酸钾为氮源,进行好氧反硝化的细菌.在溶解氧(DO)为(9.0±0.5)mg/L的培养基中,该菌株5 d内将硝态氮由282.0 mg L-1降解至149.2 mg L-1,其硝态氮去除率为46.47 ng mg-1min-1,同时亚硝态氮仅有少量的积累.经鉴定,初步判定它为假单胞菌属,命名为Pseudomonas sp.Y2-1-1.从其基因组中扩增出与好氧反硝化相关的周质硝酸盐还原酶(NAR)的亚基napA基因,并与已报道的napA基因进行Blast比较,发现具有较大差别.利用间歇曝气富集,氰化钾(KCN)选择培养基筛选好氧反硝化的细菌是非常有效的.初步认为Pseudomonas sp.Y2-1-1是一株新的好氧反硝化菌.图6表3参12  相似文献   

15.
为缓解河口水域氮污染,对珠江河口不同湿地类型沉积物中的硝化细菌进行分离和盐度驯化,筛选出耐盐且硝化效率较高的菌株,通过菌株形态、生理生化和16Sr DNA基因分析对其进行鉴定,分别测定菌株在不同温度、pH、接种量和不同沉积物质量下的硝化效率。将硝化细菌与湿地耐盐植物芦苇(Phragmites australis)组合,研究硝化细菌、芦苇及两者组合系统在河口不同盐分和水动力条件下的硝化特性,以期为河口水域咸潮入侵时和入侵后氮污染的修复奠定基础。结果表明,3种典型湿地芦苇、互花米草(Spartina alterniflora)和光滩沉积物中硝化细菌的数量分别为2.1×10~5、1.8×10~5和0.5×10~5cells·g~(-1),净硝化速率分别为(0.41±0.02)、(0.35±0.03)、(0.12±0.02)mg·m~(-2)·d~(-1),硝化作用强度:芦苇区互花米草区光滩区。从芦苇湿地沉积物中筛选出1株高效硝化细菌L4,经鉴定,为亚硝化单胞菌属(Nitrosomonas communi)。菌株L4在盐度从5‰上升至20‰寸,硝化效率从80.5%下降至7.7%。经盐度驯化,菌株L4在20‰内的盐度环境下硝化效率可达到75.6%,其最适pH和温度分别为7.2和30℃,最适接种量为1 g·L~(-1)湿菌,沉积物对菌株L4硝化作用影响不大。模拟不同盐分和水动力条件的河口环境,菌株L4-芦苇组合系统在0‰~20‰的盐度环境下均表现出稳定的硝化效率,7 d硝化效率达到80.9%~88.91%;在盐度分别为30‰和40‰时,硝化效率分别为52.13%和3 1.89%,均大于芦苇和菌株L4单独系统的硝化效率之和,表现出一定的协同性。菌株L4-芦苇组合系统在未曝气时硝化效率可达到67.5%,在1.5 L.h~(-1)的曝气量时硝化效率最高达到81.5%,可见水动力的富氧作用可促进硝化作用的进行。菌株L4和芦苇的协同作用在河口氮污染修复中具有良好的应用潜力。  相似文献   

16.
与传统脱氮菌相比,异养硝化-好氧反硝化菌在脱氮方面具有较大优势并受到广泛关注。以乙酰胺为唯一氮源从活性污泥中分离得到1株脱氮性能较高的异养硝化-好氧反硝化细菌,命名为Y1。经形态观察、生理生化特征和16S rRNA分析后鉴定为Acinetobaterjohnsonii(约氏不动杆菌),革兰氏染色结果为阴性。对Y1菌株进行生理生化鉴定试验,结果显示Y1对吲哚、柠檬酸盐、硫化氢和接触酶的反应呈阳性,表明该菌株能良好的利用以上物质;而甲基红、葡萄糖发酵、蔗糖发酵、明胶液化、淀粉水解、氧化酶、尿素酶试验结果呈阴性,表明该菌株不能很好的利用以上物质。为了检测Y1菌株的脱氮性能,将其分别置于异养硝化培养基和好氧反硝化培养基进行培养,在108 h内,接种Y1菌株的异养硝化培养基中的氨氮去除率约为66.9%,去除速率达0.53 mg.L~(-1)·h~(-1),硝氮去除率约为100%,去除速率达0.10 mg·L~(-1)·h~(-1);在84 h内,接种Y1菌株的好氧反硝化培养基中的硝氮去除率约为69.7%,去除速率达0.74 mg·L~(-1)·h~(-1),上述结果表明Y1菌株的脱氮性能较高。为了进一步研究该菌株的生长需求,保持其它条件不变的情况下,将其分别置于不同碳源和氮源下进行培养,结果表明,菌株Y1在琥珀酸钠为唯一碳源时的生长速率、异养硝化和好氧反硝化性能最好,并且利用无机氮源的能力比有机氮源能力强。  相似文献   

17.
人工湿地作为新兴的污水生态处理技术在村镇污水处理中得到广泛使用,系统中氮去除的最主要途径是微生物的硝化-反硝化作用。研究湿地污水处理系统微生物硝化-反硝化作用,对湿地污水处理工艺的优化及运行管理具有重要意义。2013年分春、夏、秋、冬四季对贵州草海污水湿地处理工程进行采样,研究了长期运行的湿地污水处理系统中氮循环菌数量、硝化-反硝化作用时空分布特征和系统内氮的空间分布规律。结果表明,草海污水人工湿地处理系统对TP和COD的处理效果较好,去除率分别达到57.8%和80.8%,但对TN和NH_4~+-N的去除率仅为43.3%和38.6%;硝化-反硝化作用在草海人工湿地系统中同时发生,硝化作用强度为0.9 mg·kg~(-1)·h~(-1),反硝化强度为30.5 mg·kg~(-1)·h~(-1),反硝化强度是硝化强度的30倍;硝化-反硝化作用在季节上均表现为夏季最高、春季最低,水平空间上呈逐级降低趋势;硝化-反硝化作用强度与总氮去除率呈现显著负相关(P0.05);4类脱氮细菌中,氨化细菌数量最大,高达10~9 MPN·g~(-1),反硝化菌次之,亚硝化菌最低,仅10~2 MPN·g~(-1);脱氮细菌数量与总氮去除率相关性不显著,脱氮过程可能受亚硝化菌的限制。总之,由于长期运行的人工湿地系统缺乏氧气,导致反硝化作用远大于硝化作用,硝化-反硝化作用的失衡最终影响湿地脱氮效率。因此,针对长期运行的人工湿地系统可以通过强化供氧促进硝化作用从而提高湿地脱氮效果。  相似文献   

18.
不同河流水体颗粒物对硝化过程的影响   总被引:1,自引:0,他引:1  
李素珍  夏星辉  张菊 《环境化学》2007,26(4):419-424
采用模拟实验的方法对比研究了长江和黄河水体颗粒物对硝化过程的影响.结果表明:(1)当颗粒物含量分别为0g·l-1和2g·l-1时,长江水样的平均硝化速率在前10d分别为0.21mg·l-1·d-1和0.70mg·l-1·d-1,黄河水样分别为0.18mg·l-1·d-1和0.32mg·l-1·d-1.采用Logistic模型对氨氮的硝化作用进行拟合发现,颗粒物含量为2 g·l-1时的硝化速率常数均显著高于无颗粒物存在时的硝化速率常数,说明有颗粒物存在时的硝化过程较快.(2)有颗粒物存在时,水体氨化细菌、亚硝化细菌和硝化细菌的数量均显著高于无颗粒物存在的水体,而且长江水样中各种菌的数量明显高于黄河水样.(3)长江水样中氨氮的平均硝化速率和硝化速率常数明显大于黄河,这是由于长江水样较高的细菌浓度水平和两条河流颗粒物不同的理化性质所导致.  相似文献   

19.
水环境中不同氧化还原条件的氢浓度特征卢晓霞 李广贺 张 旭等  1 (1 )…………………………水体沉积物中酸挥发性硫化物垂直分布模型的建立及应用方 涛 陈晓国 张维昊等  1 (7)………水体沉积物中酸挥发性硫化物垂直分布模型的参数计算方 涛 陈晓国 张维昊等  1 (1 4)………万家寨引黄工程水源地水质调查分析郭栋生 袁小英 杨 艳等  3 (2 71 )……………………………万家寨引黄工程引水终端水质预测分析郭栋生 袁小英 吴 等  3 (2 76 )…………………………万家寨引黄工程引水中化学毒物安全性评价郭栋生 袁小英 …  相似文献   

20.
聚乙烯醇凝胶包埋固定化细菌联合植物的除氮研究   总被引:1,自引:0,他引:1  
为了解聚乙烯醇(PVA)凝胶包埋固定化菌在富营养化水体生态修复中的效果,利用PVA凝胶包埋固定硝化和反硝化细菌并联合水芹(Oenanthe clecumbens)和蕹菜(Ipomoea aquatica)2种植物进行21 d的除氮试验。结果表明,加菌试验组TN、NH4+-N、NO3--N、NO2--N及TP去除率显著高于无菌试验组(P0.05);各试验组N的去除效率与添加PVA凝胶包埋固定硝化和反硝化细菌呈显著正相关(P0.05)。添加PVA凝胶固定硝化和反硝化细菌的蕹菜和水芹试验组植物的平均生长速率(RGR)分别为38.5和19.6 mg·g-1·d-1,而单纯蕹菜和水芹试验组RGR分别为29.9和9.5 mg·g-1·d-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号