首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
In this paper, the impacts of climate change on development rate and production of corn in the northeastern China are discussed. The results show that the higher the temperature is, the faster the development rate will be. And the more the precipitation is, the slower the development rate will be. Of which, air temperature is the controlling factor of corn development rate. The influences of development rate on corn yield are remarkable. The impacts of development rate on production in first and last periods are great, and small in the middle two periods. The development rate is positive by relate with corn production from sowing to emergence stage and negative during other periods. So, it is very important to arrange a suitable sowing time for com cultivating in the northeastern China.  相似文献   

2.
In this paper, impacts of climate change on wheat development rate and production in the northern China are discussed. The results show that the temperature is a controlling factor of development rate but the precipitation is not. The higher the temperature is. the faster the development and the shorter development period will be. Without consideration to varieties and cropping system, meteorological yield of winter wheat would decrease 170.40, 134.25, 98.70 and 97.20 kg/hm2 in the north China and 13.97, 7.95, 39.60 and 19.80 kg/hm2 in the northwest China compared with that in 1950s, 1960s, 1970s and 1980s, respectively, when the CO2 concentration in the atmosphere is doubled. In drought and semi-drought regions, the spring wheat yield would drop with the temperature rise in and raise with the precipitation increase. The influence of temperature on weight of leaf and stalk is also remarkable.  相似文献   

3.
In this paper it was reported that PbCl2 , CdCl2 , HgCl2, and aquatic environmental samples containing Al, Cd, Cu, Pb, Sr, Zn and other heavy metal ions as well as organic chemicals suppressed thegrowth of E. coli only at higher exposed concentrations. The stimulative effects of PbCl2 and HgCl2 on thegrowth of E. coli were clearly showed at lower concentrations and longer time. It suggested that the toxic effects of heavy metal ions and other pollutants on the growth of E. coli are variable according to the differentexposed levels.  相似文献   

4.
Environmentalfactorsaffectinggrowthofgrasses,herbsandwoodyplantsonasanitarylandfillLanChongyu;WongMinghung(DepartmentofBiolog...  相似文献   

5.
1IntroductionLandcoverchangehasanincreasingimpactonforestecosystemsworldwide.Thedestructionofnativehabitatsisrecognizedasoneo...  相似文献   

6.
In this paper, an investigation of simulated monthly precipitations from April to September is made. Though the precipitations are sometimes overestimated or underestimated, the geographical advance and recession of precipitation zones are well simulated by the UKMO global climate model with a simple mixed-layer ocean. Main characteristics of large-scale precipitation distribution are changed less on CO2-doubling, but the change is significant in some regions. The change in precipitation threatens us while the dry region is imposed by rainfall defect or the wet region by abundant rainfall induced by CO2-doubling.  相似文献   

7.
Organic matter-induced black blooms(hypoxia and an offensive odor) are a serious ecosystem disasters that have occurred in some large eutrophic shallow lakes in China. In this study, we investigated two separate black blooms that were induced by Potamogeton crispus in Lake Taihu, China. The main physical and chemical characteristics, including color- and odor-related substances, of the black blooms were analyzed. The black blooms were characterized by low dissolved oxygen concentration(close to 0 mg/L), low oxidation-reduction potential, and relatively low pH of overlying water. Notably higher Fe2+and∑S2-were found in the black-bloom waters than in waters not affected by black blooms. The black color of the water may be attributable to the high concentration of these elements, as black FeS was considered to be the main substance causing the black color of blooms in freshwater lakes. Volatile organic sulfur compounds, including dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide, were very abundant in the black-bloom waters. The massive anoxic degradation of dead Potamogeton crispus plants released dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide, which were the main odor-causing compounds in the black blooms. The black blooms also induced an increase in ammonium nitrogen and soluble reactive phosphorus levels in the overlying waters. This extreme phenomenon not only heavily influenced the original lake ecosystem but also greatly changed the cycling of Fe, S, and nutrients in the water column.  相似文献   

8.
Results from pot culture (with one-year old Cunninghamia lanceolata and Schima superba) are described. It was found that the biomass production and elongation of C. lanceolata was seriously inhibited at pH 2.0 rain, but for S. superba, was not affected markedly. When pH values of experimental rain were higher than 2.0, the root growth of both species was not adversely affected. Aluminium had already accumulated to some degrees in the roots of both trees, and started to affect the root growth of C. lanceolata at pH 2.0 rain. The soil chemistry was also examined. Increased acidity of experimental rain increased the leaching of Ca and Mg. The Al/Ca mol ratio increased from 0.3 to 0.9 in top soil, and in rhizosphere to 1.5 when the pH values of simulated acid rain were 4.5 to 2.0. In this experiment, NO3- fertilization effect was discovered.  相似文献   

9.
In this study, soil column was used to study the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate (NO3^-- N) and potassium (K) leaching in the sandy loam soil and clay loam soil. The results showed that DMPP with ammonium sulphate nitrate (ASN) ((NH4)2SO4 and NHaNO3) or urea could reduce NO3^--N leaching significantly, whereas ammonium (NH4^+-N) leaching increased slightly. In case of total N (NO3^--N+NH4^+-N), losses by leaching during the experimental period (40 d) were 37.93 mg (urea), 31.61 mg (urea+DMPP), 108.10 mg (ASN), 60.70 mg (ASN+DMPP) in the sandy loam soil, and 30.54 mg (urea), 21.05 mg (urea+DMPP), 37.86 mg (ASN), 31.09 mg (ASN+DMPP) in the clay loam soil, respectively. DMPP-amended soil led to the maintenance of relatively high levels of NH4^+ -N and low levels of NO3^--N in soil, and nitrification was slower. DMPP supplementation also resulted in less potassium leached, but the difference was not significant except the treatment of ASN and ASN+DMPP in the sandy loam soil. Above results indicate that DMPP is a good nitrification inhibitor, the efficiency of DMPP seems better in the sandy loam soil than in the clay loam soil and lasts longer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号