首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The accumulation of dichloroethenes (DCEs) as dominant products of microbial reductive dechlorination activity in soil and water represent a significant obstacle to the application of bioremediation as a remedial option for chloroethenes in many contaminated systems. In this study, the effects of biostimulation and/or bioaugmentation on the biodegradation of cis- and trans-DCE in soil and water samples collected from contaminated sites in South Africa were evaluated in order to determine the possible bioremediation option for these compounds in the contaminated sites. Results from this study indicate that cis- and trans-DCE were readily degraded to varying degrees by natural microbial populations in all the soil and water samples tested, with up to 44% of cis-DCE and 41% of trans-DCE degraded in the untreated soil and water samples in two weeks. The degradation rate constants ranged significantly (P<0.05) between 0.0938 and 0.560 wk(-1) and 0.182 and 0.401 wk(-1), for cis- and trans-DCE, respectively, for the various treatments employed. A combination of biostimulation and bioaugmentation significantly increased the biodegradation of both compounds within two weeks; 14% for cis-DCE and 18% for trans-DCE degradation, above those observed in untreated soil and water samples. These findings support the use of a combination of biostimulation and bioaugmentation for the efficient biodegradation of these compounds in contaminated soil and water. In addition, the results clearly demonstrate that while naturally occurring microorganisms are capable of aerobic biodegradation of cis- and trans-DCE, biotransformation may be affected by several factors, including isomer structure, soil type, and the amount of nutrients available in the water and soil.  相似文献   

2.
Kim YH  Ahn JY  Moon SH  Lee J 《Chemosphere》2005,60(10):1349-1355
Efficiencies of two lypolytic enzymes (fungal cutinase and yeast esterase) in malathion degradation were investigated. Surprisingly, degradation rate of malathion by fungal cutinase was very high, i.e. almost 60% of initial malathion (500 mg l(-1)) was decomposed within 0.5 h, and nearly 50% of the degraded malathion disappeared within initial 15 min. With the yeast esterase, despite the same concentration, more than 65% of malathion remained even after 2-day treatment. During enzymatic degradation of malathion, two malathion-derived compounds were detected, and time-course changes in composition were also monitored. In the degradation by both fungal cutinase and yeast esterase, two additional organic chemicals were produced from malathion: malathion monoacid (MMA) and malathion diacid (MDA) by ester hydrolysis. Final chemical composition after 2 d was significantly dependent on the enzyme used. Fungal cutinase produced MDA as a major degradation compound. However in the malathion degradation by yeast esterase, an isomer of MMA was produced in abundance in addition to MDA. Toxic effects of malathion and its final degradation products were investigated using various recombinant bioluminescent bacteria. As a result, the degradation products (including MMA) by esterase severely caused membrane damage and inhibition of protein synthesis in bacterial cells, while in the fungal cutinase processes, malathion was significantly degraded to non-toxic MDA after the extended period (2 days).  相似文献   

3.
John R. Parsons 《Chemosphere》1992,25(12):1973-1980
Little is known of how the uptake and degradation of highly hydrophobic compounds, such as polychlorinated dibenzo-p-dioxins (PCDDs), by microorganisms is influenced by sorption of these compounds to sediment. In this study aqueous solutions of a mixture of 2-chloro-, 1,3-dichloro-, 2,8-dichloro- and 1,2,4-trichlorodibenzo-p-dioxins were first incubated for 24 days with 100 mg/l suspended sediment. Subsequently, the degradation of the PCDDs in these sediment suspensions by Alcaligenes sp. strain JB1 was compared to that in solutions which did not contain sediment. The amounts of all four compounds degraded in the sediment suspensions after 168 h were greater than those initially present in the dissolved phase, based on their calculated sediment-water partition coefficients. The sorbed fractions were therefore sufficiently readily desorbed to be partly degraded. However, the biodegradation rates were lower in the sediment suspensions than in the solutions.  相似文献   

4.
A detailed field pilot test was conducted to evaluate the use of edible oil emulsions for enhanced in situ biodegradation of perchlorate and chlorinated solvents in groundwater. Edible oil substrate (EOS) was injected into a line of ten direct push injection wells over a 2-day period to form a 15-m-long biologically active permeable reactive barrier (bio-barrier). Field monitoring results over a 2.5-year period indicate the oil injection generated strongly reducing conditions in the oil-treated zone with depletion of dissolved oxygen, nitrate, and sulfate, and increases in dissolved iron, manganese and methane. Perchlorate was degraded from 3100 to 20,000 microg/L to below detection (<4 microg/L) in the injection and nearby monitor wells within 5 days following the injection. Two years after the single emulsion injection, perchlorate was less than 6 microg/L in every downgradient well compared to an average upgradient concentration of 13,100 microg/L. Immediately after emulsion injection, there were large shifts in concentrations of chlorinated solvents and degradation products due to injection of clean water, sorption to the oil and adaptation of the in situ microbial community. Approximately 4 months after emulsion injection, concentrations of 1,1,1-trichloroethane (TCA), perchloroethene (PCE), trichloroethene (TCE) and their degradation products appeared to reach a quasi steady-state condition. During the period from 4 to 18 months, TCA was reduced from 30-70 microM to 0.2-4 microM during passage through the bio-barrier. However, 1-9 microM 1,1-dichloroethane (DCA) and 8-14 microM of chloroethane (CA) remained indicating significant amounts of incompletely degraded TCA were discharging from the oil-treated zone. During this same period, PCE and TCE were reduced with concurrent production of 1,2-cis-dichloroethene (cis-DCE). However, very little VC or ethene was produced indicating reductive dechlorination slowed or stopped at cis-DCE. The incomplete removal of TCA, PCE and TCE is likely associated with the short (5-20 days) hydraulic retention time of contaminants in the oil-treated zone. The permeability of the injection wells declined by 39-91% (average=68%) presumably due to biomass growth and/or gas production. However, non-reactive tracer tests and detailed monitoring of the perchlorate plume demonstrated that the permeability loss did not result in excessive flow bypassing around the bio-barrier. Contaminant transport and degradation within the bio-barrier was simulated using an advection-dispersion-reaction model where biodegradation rate was assumed to be linearly proportional to the residual oil concentration (Soil) and the contaminant concentration. Using this approach, the calibrated model was able to closely match the observed contaminant distribution. The calibrated model was then used to design a full-scale barrier to treat both ClO4 and chlorinated solvents.  相似文献   

5.
Determination photostability of selected agrochemicals in water and soil.   总被引:5,自引:0,他引:5  
The photolysis of selected pesticides in aqueous solutions has been investigated. The photolysis produced different intermediate substances, which were also found to be soil and microbial degradation products. The phototransformation in the presence of TiO2 and humic substances leads to a disappearance of these compounds. The reaction rate is dependent on the semiconductor oxide and concentration. Photoproducts were isolated and characterized by different spectroscopic methods. Results from this study indicate that degradation products of isoproturon are more toxic on Daphnia magna than on the parent compound.  相似文献   

6.
The behavior and fate of triasulfuron (TRS) in water and soil systems were examined in laboratory studies. The degradation of TRS in both buffer solution and soil was highly pH-sensitive. The rate of degradation could be described with a pseudo first-order kinetic and was much faster at pH 4 than at pH 7 and 9. Aqueous hydrolysis occurred by cleavage of the sulfonylurea bridge to form 2-(2-chloroethoxy) benzenesulfonamide (CBSA) and [(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] (AMMT). AMMT was unstable in aqueous solutions in any pH condition but it degraded more quickly at pH 4 and 9. CBSA did not degrade in aqueous solutions or in enriched cultures but it underwent a quick degradation in the soil. The rates of TRS degradation in sterile and non-sterile soils were similar, suggesting that microorganisms played a minimal role in the breakdown process. This hypothesis is supported by the results of studies on the degradation of TRS by enriched cultures during which the molecule underwent a prevalently chemical degradation.  相似文献   

7.
The behavior and fate of triasulfuron (TRS) in water and soil systems were examined in laboratory studies. The degradation of TRS in both buffer solution and soil was highly pH-sensitive. The rate of degradation could be described with a pseudo first-order kinetic and was much faster at pH 4 than at pH 7 and 9. Aqueous hydrolysis occurred by cleavage of the sulfonylurea bridge to form 2-(2-chloroethoxy) benzenesulfonamide (CBSA) and [(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] (AMMT). AMMT was unstable in aqueous solutions in any pH condition but it degraded more quickly at pH 4 and 9. CBSA did not degrade in aqueous solutions or in enriched cultures but it underwent a quick degradation in the soil. The rates of TRS degradation in sterile and non-sterile soils were similar, suggesting that microorganisms played a minimal role in the breakdown process. This hypothesis is supported by the results of studies on the degradation of TRS by enriched cultures during which the molecule underwent a prevalently chemical degradation.  相似文献   

8.
Baran W  Sochacka J  Wardas W 《Chemosphere》2006,65(8):1295-1299
The photocatalytic degradation of sulfacetamide, sulfathiazole, sulfamethoxazole and sulfadiazine in water solutions during their illumination of UV radiation (lambda(max) 366 nm) with TiO2 catalyst was examined. The growth-inhibition effect of sulfonamides and intermediate products theirs photodegradation was investigated in aqueous solution with the green alga Chlorella vulgaris. The biodegradability of the investigated compounds was determined in the illuminated solutions and is expressed as Biochemical Oxygen Demand. It was found that all of the investigated sulfonamides in the initial solutions were resistant to biodegradation and were toxic relative to C. vulgaris. The toxicity (EC50 values) relative to C. vulgaris increased in the following order sulfacetamide, sulfathiazole, sulfamethoxazole, sulfadiazine. All of the investigated sulfonamides undergo photocatalytic degradation. The toxicity of intermediate products of the sulfonamides degradation was significantly lower than the toxicity of sulfonamides in the initial solutions and was dependent on illumination time and degradation rate. The intermediate products of photocatalysis in contrast to the initial sulfonamides, might be mineralized using biological methods.  相似文献   

9.
Abstract

Two soils, Puyallup fine sandy loam from Puyallup, WA, and Ellzey fine sand from Hastings, FL, each with a prior history of carbofiiran exposure but with different pedological and climatological characteristics, were found to exhibit enhanced degradation toward carbofiiran in surface and subsurface soil layers. The treated Puyallup and Ellzey soils exhibited higher mineralization rates for both the carbonyl and the aromatic ring of carbofiiran when compared to untreated soils. Disappearance rates of [14C‐URL (uniformly ring labeled)] carbofiiran in the treated Ellzey soil was faster than in untreated soil, and also faster in surface soil than in subsurface soil. Initial degradation patterns in the treated Ellzey soil were also different from those in the untreated soil. The treated Ellzey soil degraded carbofuran mainly through biological hydrolysis, while untreated soil degraded carbofuran through both oxidative and hydrolytic processes.  相似文献   

10.
Soil samples obtained from the former polybrominated biphenyls (PBB) manufacturing site in Michigan were analyzed by gas chromatography and gas chromatography with mass spectrometric detection. The results indicate significant degradation of the PBB residue in the soil sample. The soil sample with the highest concentration of PBB had the greatest degree of degradation. Principal degradation products include 2,3', 4,4', 5-pentabromobiphenyl, 2,2', 4,4', 5-pentabromobiphenyl and two unidentified tetrabromobiphenyls. The degradation pattern observed supports a photochemical decomposition mechanism. These degraded residues may be more toxic than the original Firemaster residues. The implications of the results are discussed.  相似文献   

11.
Zhai G  Liu J  He B  Zhang J  Zhou Q  Jiang G 《Chemosphere》2008,72(3):389-399
The photodegradation of methyltins, as environmental pollutants, has scarcely been studied so far because of the shortage of rapid and sensitive speciation methods, even though they have very simple structures. The photodegradation of monomethyltin trichloride (MMT), dimethyltin dichloride (DMT) and trimethyltin chloride (TMT) was studied with our new developed HPLC-FPD hyphenated system, which enables rapid and sensitive detection of methyltins. The half-life times and kinetic rate constants of their degradation at different pH were calculated. The results suggest that MMT, DMT and TMT can be degraded under the UV irradiation rapidly at different pH, with a degradation rate sequence of TMT相似文献   

12.
The UV-photon-induced degradation of heptafluorobutanoic acid was investigated in acidic aqueous solutions in the presence of titanium dioxide. Heptafluorobutanoic acid could be degraded with this photocatalyst in a light-induced reaction generating carbon dioxide and fluoride anions. Carbon dioxide evolution in a significant amount occurred only in the presence of molecular oxygen and the photocatalyst. The light-induced degradation of trifluoroacetic acid, pentafluoropropanoic acid, nonafluorobutanoic acid, pentadecafluorooctanoic acid, nonafluorobutanesulfonic acid, and heptadecafluorooctanesulfonic acid in the presence of titanium dioxide was also studied. The perfluorocarboxylic acids under investigation are degraded to generate CO(2) and fluoride anions while both perfluorinated sulfonic acids are persistent under the experimental conditions employed in this study. For all compounds photonic efficiencies of the mineralization reaction were estimated to be smaller than 1x10(-5). To increase the photocatalytic activity mixed systems containing homogeneous phosphotungstic acid and heterogeneous titanium dioxide catalysts were also investigated. In the mixtures of these two photocatalysts, the formation rate of CO(2) increased with illumination time.  相似文献   

13.
越南伯克霍尔德菌降解水中微囊藻毒素-LR   总被引:2,自引:0,他引:2  
探讨利用越南伯克霍尔德菌(Burkholderia Vietnamiensis)降解微囊藻毒素-LR(MC-LR)的可能性和降解机理。结果表明,在1 mg/L的MC-LR溶液中投加体积分数为5%菌株,初始pH为5,温度为30℃的好氧条件下,经过48 h培养后对MC-LR的降解效率达到97.6%。首先,降解溶液的液相色谱分析结果发现,MC-LR在238 nm的特征峰消失。其次,动力学研究发现降解过程符合一级动力学反应方程。最后,SEM、FTIR表征技术对菌株降解前后样品进行分析发现微生物形态和降解产物。因此,Burkholderia Vietnamiensis可能将水中的MC-LR作为碳、氮源利用从而将其降解,Burkholderia Vietnamiensis作为生物降解MC-LR的一种途径是有效的。  相似文献   

14.
This study investigates the decomposition of NOD by UV irradiation. Water solutions of pure NOD and NOD-containing Nodularia extract as well as Nodularia filaments collected on filters were exposed to UV-A, UV-B, and white fluorescent light (VIS) during 48 h experiments. In VIS, the toxin was fairly stable and only 3.8-4.6% of the original degraded. UV-B had the most pronounced effect on the NOD degradation rate. In the experiment, the overall loss of NOD was 0.27 and 0.77 micro g ml(-1)day(-1) for the solution of pure toxin and Nodularia extract and 0.28 micro g day(-1) for Nodularia filaments. Comparison of UV-B degradation rate in water and methanol extracts revealed higher stability of NOD in methanol. This might suggest that some hydrophobic components of Nodularia cell play a protective role against UV radiation. Additionally, chemical (LC-MS/MS) and biochemical (ELISA and PPIA) assays were employed to characterize the UV degradation products. LC-MS/MS analyses showed that in UV-B exposed sample, apart from NOD, there were three other compounds with molecular ion at m/z at 825.4. The fragmentation pattern of the ion was the same for all four compounds suggesting that they are geometrical isomers of NOD. The major degradation product, with a local absorption maximum at 242 nm, was active in both biochemical assays.  相似文献   

15.
采用紫外活化过硫酸盐(UV/PS)工艺降解典型磺胺类抗生素磺胺二甲氧嘧啶(SDM),比较单一紫外(UV)、单一过硫酸盐(PS)和UV/PS对SDM的去除效果,考察各因素对降解动力学的影响,并探究其降解机理,对SDM及其中间产物进行毒性测定和风险评价.结果显示,UV/PS可以加速SDM降解,反应速率常数分别是单一UV和单...  相似文献   

16.
Abstract

Soil samples obtained from the former polybrominated biphenyls (PBB) manufacturing site in Michigan were analyzed by gas chromatography and gas chromatography with mass spectrometric detection. The results indicate significant degradation of the PBB residue in the soil sample. The soil sample with the highest concentration of PBB has the greatest degree of degradation. Principal degradation products include 2,3’,4,4’,5‐pentabromo‐biphenyl, 2,2’,4,4’,5‐pencabromobiphenyl and two unidentified tetrabromobiphenyls.

The degradation pattern observed supports a photochemical decomposition mechanism. These degraded residues may be more toxic than the original Firemaster residues. The implications of the results are discussed.  相似文献   

17.
Guo RX  Chen JQ 《Chemosphere》2012,87(11):1254-1259
Two common freshwater phytoplankton species Microcystis aeruginosa and Scenedesmus obliquus were employed as test organisms to investigate the toxic effects of chlortetracycline widely used in human medicine and veterinary as antibiotic. Toxicity assays were performed into two parts: antibiotic toxicity test and antibiotic degraded products toxicity test. In general, chlortetracycline had significantly toxic effect on population growth and chlorophyll-a accumulation of two phytoplankton. Although M. aeruginosa had ability to grow after exposed to chlortetracycline at 0.5 mg L−1, its photosynthesis function was also disrupted. Compared with the data in two phytoplankton species, the chlorophyceae was more sensitive than the cyanophyceae. The adverse effect on S. obliquus was stronger than that on M. aeruginosa with increasing concentrations. In addition, for M. aeruginosa, regardless of the UV light degradation time, the treated chlortetracycline also had adverse effect on population growth and chlorophyll-a accumulated. The degraded chlortetracycline under any treatment time was more toxic for S. obliquus than chlortetracycline itself excluding under 24 h. However, the correlation between the toxicity and degradation time was not clear and toxicity enhanced in fact did not follow the increase or decrease in degradation time. Our study showed that the antibiotic chlortetracycline and its degraded products had adverse effect on freshwater phytoplankton, the former has not been reported before and the latter has been overlooked in other research in the past.  相似文献   

18.
At the field scale, the biodegradation rate is usually estimated from analytical solutions to single species transport with first-order reactions, using measured data as input. Because many contaminants, e.g., chlorinated solvents, are degraded in a sequential pattern, with degradation products further reacting to produce new species, it is of great interest to quantify the transformation rate of every reaction. The conventional inverse solutions for identifying the transformation rates are limited to single species problems. In the present study, we propose a successive optimization approach to identify the biodegradation rate for each species by using a previously developed analytical solution to multi-species first-order reactive transport using data obtained at the field scale. By specifying a link between analytical solutions to sequentially reactive transport problems and optimization methods and assuming constant transport parameters (velocity, dispersivities, and retardation factors), the first-order transformation rates are optimized successively from parent species to its daughter species.  相似文献   

19.
The homogeneous degradation of the polychlorinated n-alkane, 1,2,9,10-tetrachlorodecane (T4C10), was studied in aqueous solutions of hydrogen peroxide, including Fenton and photo-Fenton reaction conditions. All solutions were adjusted to a pH of 2.8 and an ionic strength of 0.1 M NaClO4 prior to photolysis. T4C10 (2 x 10(-6) M) was substantially degraded by the H2O2/UV system (1.0 x 10(-2) M H2O2), with 60% disappearance in 20 min of irradiation in a photoreactor equipped with 300 nm lamps of light intensity 3.6 x 10(-5) Ein L(-1) min(-1) (established by ferrioxalate actinometry). The reaction produced stoichiometric amounts of chloride ion indicating complete dechlorination of the chlorinated n-alkane. T4C10 degraded very slowly under Fenton (Fe2+/H2O2/dark) and Fenton-like (Fe3+/H2O2/dark) conditions. However, when the same solutions were irradiated, T4C10 degraded more rapidly than in the H2O2/UV system, with 61% disappearance in 10 min of exposure. The rapid degradation is related to the enhanced degradation of hydrogen peroxide to oxidizing *OH radicals under photo-Fenton conditions. Degradation was inhibited in both the H2O2/UV and photo-Fenton systems by the addition of KI and tert-butyl alcohol due to *OH scavenging.  相似文献   

20.
Degradation of two model insecticides, diazinon and malathion, and their degradation products 2-isopropyl-6-methyl-4-pyrimidinol--IMP (diazinon hydrolysis product) and malaoxon (malathion oxidation product) was compared and studied in the environment. The pesticides and their metabolites were extracted from samples (water, soil, chicory) with ethyl acetate and subsequently the extracts were analyzed by GC/FID. It was shown that hydrolysis is the major process in the degradation of these pesticides in water. In fact, 95% of diazinon was degraded, and only 10% of malathion was oxidised. In soil 30% of diazinon exposed to the sunlight was decomposed by photolysis, whereas in soil left in the darkness no degradation products were observed. In soil left under environmental conditions, 90% of diazinon was degraded and 40% from its initial concentration was transformed into IMP. The concentrations of the pesticides after 21 days on chicory were under maximal allowable concentration, which is 0.5 ppm for malathion and for diazinon. The concentration of malaoxon was more than twice as high as the allowable value, which is for the sum of malathion and malaoxon 3 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号