首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
根据2010至2015年小清河口区监测数据,系统分析了小清河口水环境质量状况及主要污染物入海通量变化规律。结果表明:小清河口总磷(TP)、化学需氧量(COD)和石油类等污染物浓度超出《地表水环境质量标准》(GB3838-2002)Ⅲ类水质标准。小清河口综合污染指数均值为16.79,平均污染指数均值为1.53,石油类和COD是小清河口区域主要污染因子,监测期间水环境质量呈好转趋势。小清河年均污染物入海总量约为159766 t,污染物入海量中COD起主导作用。小清河污染源包括点源污染和面源污染,点源污染来自于沿岸入河排污口,面源污染主要来自于农业生产中化学肥料。  相似文献   

2.
利用2013~2015年海河防潮闸断面逐日流量及离散的水质数据,基于LOADEST模型构建了TN、TP入海通量多元线性回归方程,对方程进行了评估验证,TN、TP模型的判定系数(R2)分别达到0.917、0.924,表明LOADEST模型适用于平原城市区设闸河流断面污染物入海通量的评估。评估结果表明,海河防潮闸断面TN、TP入海通量及水质表现出不同的变化特征。2013~2015年,TN浓度月均值变化范围3.38~8.33 mg/L,汛期(6~10月)浓度低于非汛期,TP浓度月均值变化范围0.17~0.88 mg/L,汛期浓度高于非汛期;TN年均入海通量2200 t/a,汛期占43.7%,日均入海通量25.8 t/d,非汛期日均入海通量是汛期的2倍;TP年均入海通量216 t/a,汛期占69.3%,日均入海通量2.5 t/d,汛期日均入海通量高于非汛期,9月份最高,4月份最低。研究结果可为实施陆海统筹的最大日污染负荷(TMDL)总量控制提供科学依据。  相似文献   

3.
渤海近海大气颗粒物金属元素的入海通量   总被引:1,自引:1,他引:1  
采集了渤海近海岛屿1 a的大气TSP样品,利用原子吸收光谱仪测定样品中Pb、Zn、Cu、Cd、Fe、Mn、V等金属元素含量,通过模型计算各元素干湿沉降通量,分析大气颗粒物入海通量的季节性变化,结果显示各元素的干沉降通量年均值分别为:Pb 34.344 μg/(m2·d),Zn 89.273 μg/(m2·d),Cu0....  相似文献   

4.
基于2014-2019年钦江入海河口断面流量以及化学需氧量(COD)、总氮(TN)和总磷(TP)3种典型污染物的浓度,本研究通过LOADEST模型优化了COD、TN和TP入海通量计算方程,其优化后的判定性系数分别为0.857、0.772和0.717,这说明优化后的方程能够满足钦江河口典型污染物入海通量及水质变化特征的评估。结果表明:(1)2014-2019年,COD、TN和TP无论是浓度还是通量均呈现先升高后降低的变化趋势,TN依然超标严重;(2)COD、TN和TP季节变化特征显著(p<0.01),入海通量干季低于湿季,浓度干季高于湿季,COD和TN的入海通量与降雨量呈极显著相关性(R2=0.897,p<0.01,R2=0.748,p<0.01),COD和TN主要来自非点源,而TP与降雨量呈显著相关性(R2=0.359,p<0.05),TP不仅受非点源影响,也受点源影响,建议加强沿江污水管网和污水处理能力建设。  相似文献   

5.
东海海洋大气颗粒物中重金属的来源及入海通量   总被引:7,自引:3,他引:7  
秦晓光  程祥圣  刘富平 《环境科学》2011,32(8):2193-2196
2006~2007年,对杭州湾以南的东海海域进行了春、夏、秋、冬4个航次的海洋大气调查,分析了大气颗粒物中重金属元素(Cu、Pb、Zn、Cd)的含量,根据调查结果,采用富集系数法对重金属的来源进行了初步分析,对干沉降入海通量进行了估算.结果表明,调查海域海洋大气颗粒物中的Cu、Pb、Zn、Cd含量相对于地壳和海水均表现...  相似文献   

6.
基于统计数据构建滨海地区点源(工业废水和生活污水)和非点源(农用土地径流和畜禽养殖)污染物通量计算方法,依据地理信息将污染物排放量划分至入海河流,引入入海系数表征污染物从排放到入海过程中的衰减,从而得到各河流的污染物入海通量。应用该方法计算了2000-2014年天津市总氮和总磷的入海通量,结果显示:天津市年均总氮入海量为9 940.7 t,年均总磷入海量为663.4 t;2012年总氮和总磷入海量均达到最大值,分别为12 304.1 t和830.0 t;2000年总氮和总磷入海量均为最小值,分别为7 604.1 t和494.0 t;天津市入海河流中,永定新河的污染物入海通量占比最大;总磷入海通量以农用土地径流和畜禽养殖来源较多,总氮入海通量的来源中点源和非点源各占一半;从污染来源区域分布来看,各区县污染物入海通量综合反映了人口数量、经济发展和污染治理等因素。保护天津市近岸海域环境,消减污染物入海通量,应该着重控制滨海新区的工业废水污染、海河区域的生活污水污染、永定新河区域的农用土地径流污染和畜禽养殖污染。  相似文献   

7.
南黄海和东海海域营养盐等物质大气入海通量的再分析   总被引:12,自引:3,他引:12  
根据国内外学者近年来在黄、东海海域大气营养盐和硫酸盐气溶胶干、湿沉降方面的工作 ,估算出南黄海及东海海域各个季节营养盐和硫酸盐的大气入海通量。分析结果表明 :南黄海及东海海域营养盐和硫酸盐气溶胶浓度和降水中的离子浓度都有较明显的季节变化 ,基本上冬季最大 ,而夏季最小 ;氮盐和硫酸盐的沉降以湿沉降为主 ,而磷酸盐以干沉降为主 ;大气沉降与河流输送相比 ,NH4 和PO43 -以大气沉降为主 ,而SiO3 2 -和NO3 -以河流输送为主  相似文献   

8.
为了解我国河流向海洋汞的输送通量,选取我国沿海10条大型河流的河口作为采样点,采集水体和沉积物,测定水中不同形态汞,包括总汞(THg)、溶解态汞(DHg)、颗粒态汞(PHg)、总氮(TN)、总磷(TP)和溶解有机碳(DOC)等,测定了沉积物THg和甲基汞(MeHg)等.结合河流的径流量,对陆地经河流向海洋汞的输入量进行了粗略的估算.结果显示:我国十条主要入海河流地表水THg含量为2.79~145.15 ng·L-1,DHg含量为0.61~4.44 ng·L-1,PHg含量为1.28~143.54 ng·L-1.PHg约占THg含量的41%~99%,DHg约占THg含量的1%~35%.表层沉积物THg含量为0.02~0.3 mg·kg-1,MeHg含量为0.04~2.00 μg·kg-1.MeHg百分含量为0.1%~1.2%.沉积物THg、MeHg和 TOC之间呈显著相关性(p<0.01).我国主要河流经径流输入THg的入海通量为10.01~29.92 t·a-1,长江是我国河流向海洋汞输送通量的贡献量最大,约占到我国主要河流入海汞通量的58%~69%.本研究基于实测数据的估算值与前人的估算结果对比,我国主要河流的入海汞通量仅占全球入海汞通量0.2%~15%;对比前人对中国河流向海洋汞的输送通量实测结果以及模型模拟结果显示,实测结果在同一数量级,且实测结果比模拟结果更可靠.  相似文献   

9.
为了定量评估辽河保护区退耕封育措施在控制面源污染方面的作用,利用高分辨率遥感影像分析了2010—2018年辽河保护区农田面积变化,并基于源强系数法估算了各年农田地表径流污染物入河量。结果显示:2010年辽河保护区河流两岸分布着大量农田,面积约为627.13 km2,占辽河保护区总面积的33.55%,农田地表径流COD和NH3-N入河量分别为1 864.79和372.96 t/a;2011年随着退耕封育措施的实施,农田面积降为155.63 km2,约减少了75.18%,仅零散分布于河流两岸,农田地表径流COD和NH3-N入河量减至419.55和83.91 t/a;2012—2018年农田面积和地表径流污染物入河量与2011年基本持平;与2010年相比,2011—2018年退耕封育措施累积消减农田地表径流COD和NH3-N入河量分别为11 734.49和2 346.90 t。  相似文献   

10.
通过估算2007年我国南方溪流九龙江流域库区河段的NH4-N和TP的输送通量,探讨水库对营养盐的滞留效应。该河段径流量和营养盐通量均表现出丰水期高枯水期低的季节性特征。系统对NH4-N存在较强的正滞留效应,滞留率为32%,对总磷的滞留率为-10%,可能是河流“湖库化”导致河流沉积物中磷大量释放。  相似文献   

11.
九龙江河口生物地球化学元素通量的初步模拟   总被引:5,自引:0,他引:5  
按照LOICZ的模拟指南 ,九龙江河口区采用单箱模型模拟其生物地球化学元素的通量。结果表明 ,九龙江河流输入进河口系统的DIP通量为 2 .81× 10 7mol/a ,交换流带入河口区DIP通量为 10 .93× 10 7mol/a ,因此 ,净沉淀量为 8.0 5× 10 7mol/a。九龙江河流输送进河口系统的DIN通量为 73.47× 10 8mol/a ,它远高于DIP的通量。因此 ,此河口区系统内部有 7.6 6× 10 8mol/a的差额才能达到平衡。  相似文献   

12.
九龙江河口区夏季反硝化作用初探   总被引:4,自引:1,他引:4  
陈能汪  吴杰忠  洪华生 《环境科学》2011,32(11):3229-3234
河口反硝化是削减入海河流氮污染的重要途径,为探明地处亚热带的九龙江河口混合区的反硝化作用,于2010年7月开展13个站位的面上调查,利用N2:Ar法和膜进样质谱分析仪(MIMS)直接测定反硝化产物溶解N2浓度,用吹扫捕集-气相色谱法测定溶解N2O浓度,并估算二者净增量和水气交换通量.结果表明,溶解N2和N2O净增量有明显的区域变化,从淡水端向海域减少,N2净增量为-9.9~66.8μmol.L-1,N2O净增量为4.3~31.5 nmol.L-1;N2O饱和度为170%~562%,平均352%;N2水气通量为-2.9~53.2 mmol.(m2.d)-1,N2 O水气通量为5.2~23.9μmol.(m2.d)-1,N2 O通量占总通量的0.03%~1.2%(平均0.25%).温度和营养盐(氮、磷)是影响九龙江河口区反硝化作用的重要因子;淡水端(盐度〈0.5)反硝化作用及其空间分布主要受硝酸盐含量控制,海水端溶解N2与N2O的增加主要来自淡水端的输送,并受盐度梯度(混合作用)影响.  相似文献   

13.
九龙江口水体中多氯联苯的研究   总被引:13,自引:0,他引:13  
1999年 6月 ,对九龙江口 1 5个站位的表层水和 1 3个站位的间隙水中的 1 2种多氯联苯进行分析 ,表层水中的多氯联苯浓度为 0 36— 1 50ng/L ,间隙水中的多氯联苯浓度为 2 0 9-3869ng/L。对其中各组分的含量在各站位的分布特征进行了探讨 ,并对九龙江口的多氯联苯污染进行了初步的风险评价和来源分析。  相似文献   

14.
九龙江流域生态环境需水量计算   总被引:1,自引:0,他引:1  
王钦建 《环境科学与管理》2011,36(4):152-155,160
九龙江流域降雨量和径流量在流域空间和年内分配上明显不均,使枯水季节生态环境用水量在局部河段无法得到满足,导致局部河段水体出现富营养化。根据研究需要,将流域分为12个计算区域。将生态环境需水量分为湿地生态环境需水量和旱地环境生态需水量进行计算,分别为60.431×108m3和84.622×108m3,流域生态环境需水总量合计145.053×108m3。流域多年平均降水量为235.856×108m3,盈余量为90.803×108m3,总体可以满足流域经济社会发展和维护生态系统平衡的需要。但是,生态环境用水量保证程度不但与天然径流量有直接关系,也在很大程度上受人为因素的影响。  相似文献   

15.
九龙江流域氮的源汇时空模式与机理初探   总被引:3,自引:3,他引:3  
综合运用定位监测、野外试验、模型模拟与GIS技术等手段和方法,定量研究了南亚热带地区九龙江流域和五川小流域氮的大气沉降、河流输送(地表径流)、淋失、反硝化和氨挥发等输入输出(源汇)时空模式与机理.结果表明,九龙江流域氮"源"以化肥与饲料输入为主(占总输入125.6kg·hm-2的86%).氮"汇"以氨挥发和河流输送为主(占总输出72.9kg·hm-2的82%).氮输入后50%以上进入大气和水环境,14.5%通过河流输送至河口与近海.大气氮沉降通量为14.9kg·hm-2,其中干沉降占34%,湿沉降占66%,形成1:2的干湿沉降结构;源于化肥施用与畜禽养殖引起的强烈氨挥发,氮沉降集中在春夏两季(占全年80%),且以铵态氮为主(39%以上).氮的径流输出及河流输送受人为氮输入与水文条件的双重控制,2004年九龙江向厦门海域输送无机氮11.5kg·hm-2,其中90%发生在春夏秋季(同期流量占全年89%);五川小流域总氯径流输出负荷为67.1kg·hm-2,其中85%发生在施肥量大、降雨集中的春夏两季(作物生长期);基流与降雨径流分别贡献25%和75%.总氮淋失负荷为27.5kg·hm-2,占总输入的9%;pH<5的酸性土壤带正电荷导致氮淋失以铵态氮为主(约占40%).九龙江流域反硝化通量为7.7 kg.hm-2,而氮挥发高达42.1kg·hm-2,氨挥发主要来自化肥施用与畜禽养殖(分别贡献50%和39%).减少春夏时期肥料氮的输入(养分管理),有效截留雨季的降雨径流(水文控制)是该流域氮素管理的关键.  相似文献   

16.
九龙江流域大气氮湿沉降研究   总被引:25,自引:5,他引:25  
通过2004~2005年对位于我国东南沿海的九龙江流域及周边共17个站点的实地观测,运用GIS技术定量揭示了大气氮湿沉降强度和时空分布特征,并利用氮稳定同位素分析雨水硝态氮的主要来源.结果表明,①17个站点雨水总氮平均浓度为(2.20±1.69)~(3.26±1.37) mg·L-1(以N计,下同),铵态氮、硝态氮和有机氮分别占39%、25%和36%;②雨水氮浓度随降雨强度的增大呈降低趋势,旱季浓度明显大于雨季,降水对大气具有清洗作用;③低δ15N值表明雨水硝态氮主要来源于汽车尾气排放、化石燃料燃烧和化肥施用;④九龙江流域大气氮湿沉降量平均9.9 kg·hm-2,春夏2季约占全年的91%,大气氮湿沉降占沉降总量的66%,揭示了该地区1∶2的大气氮干湿沉降结构.大气氮湿沉降时空差异与降雨量和氮的排放直接相关.  相似文献   

17.
九龙江流域水稻土重金属赋存形态及污染评价   总被引:2,自引:4,他引:2  
采用改进的BCR四步提取-电感耦合等离子体质谱法(ICP-MS)分析九龙江流域71个水稻土中12种重金属元素的赋存形态特征,运用风险评价编码法(RAC)、次生相与原生相分布比值法(RSP)和地质积累指数法(Igeo)评价重金属污染特征.结果表明,大部分重金属总量已存在不同程度的富集且不同重金属元素在水稻土中的赋存形态特征差异较大.Cd和Mn主要以F1弱酸溶态存在,平均比例分别为46.2%和35.2%;Fe和Pb主要以F2可还原态存在,平均比例分别为64.5%和41.5%;而V、Cr、Ni、As、Co、Sr、Zn和Cu主要以F4残渣态存在,平均比例分别为79.6%、78.4%、73.1%、67.7%、51.9%、49.7%、45.3%和38.4%.3种污染评价方法分别重点关注弱酸溶态、次生相和重金属总量,均有应用价值,缺点是不够全面.结合3种评价方法能更准确全面评估重金属污染特征.九龙江流域水稻土中Cd为中度~重度污染,Mn和Sr为轻度~重度污染,Zn、Pb、Cu和Co为轻度~中度污染,As和Ni为无污染~中度污染,V、Fe和Cr为无污染~轻度污染.  相似文献   

18.
九龙江口水体中有机氯农药分布特征及归宿   总被引:39,自引:5,他引:39  
1999-06,对九龙江口15个站位的表层水,13个站位的间隙水进行了18种有机氯农药的测定结果表明,有机氯农药总含量在表层水中的浓度范围为51.3~2479nng/L在间隙水中的浓度范围是266~33355ng/L.对不同有机氯的含量在各站位的分布特征进行了探讨,发现Methoxychlor(甲氧滴涕),Endosulfan Sulfate(硫酸硫丹),Endrinaldehyde(乙醛异狄氏剂)以及Endosulfan II(硫丹),Dieldrin(狄氏剂),Deta-HCH和Beta-HCH 7种有机氯农药在18种有机氯农药中都占主要部分;九龙江口的六六六的含量顺序:β>δ>α>γ;对于滴滴涕,表层水中的含量:DDE>>DDD>DDT;间隙水中的含量:DDE>>DDT>DDD,二者DDE的含量都在总DDTs的50%以上,说明环境中的DDTs主要降解为DDE;九龙江口有机氯农药随着盐度梯度,在河口中呈去除趋势;且间隙水中有机氯农药比表层水中的浓度高,说明其倾向于吸附在沉积物颗粒上,其浓度差使得有机污染物可能通过再悬浮等过程从底层向上层迁移.九龙江口的有机氯农药污染与其他港湾相比,污染水平相当,部分站位水质有机氯农药(HCHs和DDTs)超过国家一类水质的标准.  相似文献   

19.
九龙江河口表层沉积物中重金属污染评价及来源   总被引:4,自引:0,他引:4       下载免费PDF全文
采用电感耦合等离子体质谱(ICP-MS)法测定了九龙江河口表层沉积物中24种重金属的质量分数,并采用地累积指数法和潜在生态风险指数法对该水域表层沉积物重金属的污染程度和潜在生态风险进行评价和分析. 结果表明,沉积物中重金属质量分数为w(Fe)>w(Ti)>w(Mn)>w(Ba)>w(Zn)>w(Sc)>w(Co)>w(Rb)>w(Y)>w(Ni)>w(Cr)>w(Pb)>w(Cu)>w(Th)>w(Sr)>w(V)>w(Li)>w(U)>w(Cs)>w(Bi)>w(Cd)>w(Sb)>w(Mo)>w(Hg),其中w(Cd)、w(Sc)、w(Bi)、w(Co)、w(Ni)、w(Zn)、w(Hg)和w(Cu)远高于背景值,说明九龙江河口表层沉积物中上述元素已存在一定程度的富集. 九龙江河口表层沉积物中Cd的Igeo(地累积指数)最高,属于偏重度污染;重金属的潜在生态危害顺序为Cd>Hg>Co>Ni>Cu>Zn>Pb>Cr>Mn>V,其中Cd的潜在生态危害属极强水平,Hg属较强水平. 多元统计分析(因子分析和聚类分析)结果表明,该河口沉积物中重金属污染来源主要有农业生产活动与自然源的复合污染、燃煤污染和采矿污染,其贡献率分别为48.81%、21.51%和13.72%.   相似文献   

20.
九龙江流域森林生态修复模式建立与评价   总被引:3,自引:0,他引:3  
通过对九龙江上游流域森林生态环境现状调查分析,表明:九龙江上游流域森林生态系统仍然脆弱,森林结构不舍理,林种、树种、龄级结构比例失调;林分总体质量下降,并严重导致为空间分布不均衡的破碎性和单一性的残次林;森林资源管护机制不落实,环境污染和“青山挂白”急待绿化整治。按照“绿、亮、美”要求和以人为本的原则,建立了适宜九龙江上游流域森林生态修复模式,并对实施效果进行评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号